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Abstract

Selective rationalization can be regarded as a straightforward
self-explaining approach for enhancing model explainability
in natural language processing tasks. It aims to provide expla-
nations that are more accessible and understandable to non-
technical users by first selecting subsets of input texts as ratio-
nales and then predicting based on chosen subsets. However,
existing methods that follow this select-then-predict frame-
work may suffer from the rationalization degeneration prob-
lem, resulting in sub-optimal or unsatisfactory rationales that
do not align with human judgments. This problem may fur-
ther lead to rationalization failure, resulting in meaningless
rationales that ultimately undermine people’s trust in the ra-
tionalization model. To address these challenges, we propose
a Guidance-based Rationalization method (G-RAT) that ef-
fectively improves robustness against failure situations and
the quality of rationales by using a guidance module to reg-
ularize selections and distributions. Experimental results on
two synthetic settings prove that our method is robust to the
rationalization degeneration and failure problems, while the
results on two real datasets show its effectiveness in provid-
ing rationales in line with human judgments. The source code
is available at https://github.com/shuaibo919/g-rat.

Introduction
Selective rationalization is a method for explaining the pre-
dictions of a machine learning model by selecting a short
and coherent part of the input that is sufficient for the predic-
tion when yielding them (Gurrapu et al. 2023). Lei, Barzi-
lay, and Jaakkola (2016) were the first to propose this select-
then-predict framework for rationalizing neural predictions
in that the selector first selects a rationale that is a subset of
the entire input sentence. Then the predictor makes the judge
only based on this rationale, as shown in Figure 1.

Based on the select-then-predict framework, many meth-
ods have been proposed (Bastings, Aziz, and Titov 2019;
Yu et al. 2019; Chang et al. 2020). The rationale learned by
these methods is the only available information to the pre-
dictor, leading to the predictor overfitting the rationale pro-
duced by the selector. That is to say, the whole model can
still produce a lower prediction loss even though the qual-
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This beer poured out a 
beautiful clear dark gold color.

This beer poured out a 
beautiful clear dark gold color.

Figure 1: The basic framework for selective rationalization.
X,M,R, Ŷ ,⊙ represent the input text, binary mask, ratio-
nale, prediction, and element-wise product, respectively.

ity of selected pieces is not good, and this problem is com-
monly referred to as rationalization degeneration (Yu et al.
2019; Liu et al. 2022). For example, the case of Figure 2
(Sub-optimal) given the right sentiment prediction but using
the rationale missed some critical context. Many approaches
(Huang et al. 2021; Yu et al. 2021; Yue et al. 2022; Sha,
Camburu, and Lukasiewicz 2022) have been proposed to ad-
dress the above degeneration issue. The basic idea of these
approaches is to restrain the predictor using supplementary
modules that utilize full information of inputs such that the
predictor does not entirely rely on rationales at training time.

While these methods can partially alleviate the rational-
ization degeneration problem, they remain bound to the two-
stage framework during training. Consequently, they may be
unable to handle more intricate cases, which we named ra-
tionalization failure. Unlike the widespread concern about
rationalization degeneration, the failure problem of selec-
tive rationalization has been largely overlooked in previous
works (Zheng et al. 2022). This failure will make the ratio-
nale meaningless to users, thus damaging users’ trust. Ide-
ally, the selector should determine which words to be se-
lected based on the input semantic information and hon-
estly perform its selection responsibility. However, when a
rationalization failure occurs (Zheng et al. 2022; Jacovi and
Goldberg 2021), the selector is able to predict and pass its
prediction through the binary mask M .

In Figure 2 (Failure), a broken selector always selects the
first token of the input when its prediction is positive or the
last token of the input when its prediction is negative. As a
result, the predictor will produce a lower prediction loss in
fitting the particular pattern than the semantics information
of rationales, although the pieces selected by this broken se-
lector are meaningless. Can we consider the rationales in this
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This beer poured out a 
beautiful clear dark gold color.

This beer poured out a 
beautiful clear dark gold color.

The color of this beer was far 
from impressive.

This beer poured out a 
beautiful clear dark gold color.
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Figure 2: These two toy examples illustrate the degeneration of selective rationalization. The underlined pieces of the text are
the gold rationale, and the pieces of tokens in dark red represent the rationales from the selector. In the sub-optimal case, the
chosen rationale still contains useful semantic information (the word beautiful) for making accurate predictions, but it may not
be the most optimal choice. In the case of failure, the selected rationale conveys the prediction information by choosing the first
or last token of the input without contributing any meaningful semantic content to the correct prediction.

case as explanations? Obviously not. It does not provide any
valuable information to users. Unfortunately, existing ratio-
nalization methods may encounter this failure situation and
fail to deal with it. Explicitly modeling rationalization fail-
ure is challenging since the prompt from the selector may be
more complex than the toy example we mentioned above.

To address both rationalization degeneration and failure
problems, in this paper, we propose a novel method named
Guidance-based Rationalization (G-RAT) for selective ra-
tionalization that contains two modules named the rationale
module and the guidance module. The rationale module fol-
lows the previous selective rationalization framework, while
we use the guidance module to guide the rationale module’s
selector and predictor simultaneously. The guidance module
outputs a weighted score and a prediction distribution. We
use the former to regularize the rationale module’s selector
for dealing with the failure problem and the latter to regular-
ize the rationale module’s predictor for dealing with the de-
generation problem. Different from the previous rationaliza-
tion methods, our method takes an important step in coping
with rationalization failure. In addition, we have created a
new synthetic experiment named Skew-Selector, which sim-
ulates a failed selector based on different strengths and can
be used to effectively evaluate a rationalization method in
preventing the rationalization failure problem. Finally, ex-
tensive experiments demonstrate that our approach can pro-
duce more informative rationales than existing methods and
deal with the failure problem effectively.

Related Work
Model Explainability
Model explainability refers to an understanding and expla-
nation of how a machine learning model works and why it
makes specific predictions. This is essential for many rea-
sons, including guaranteeing trust, safety, and accountabil-
ity in machine learning systems. Current research on model
explainability are mainly divided into post-hoc methods and
self-explanatory models (Danilevsky et al. 2020; Sun et al.
2021), and our method belongs to the latter.

Existing post-hoc methods aim to interpret a neural net-
work after it has been trained by analyzing how each feature
or instance affects the model prediction. Various techniques
fall under this category, such as saliency maps (Simonyan,
Vedaldi, and Zisserman 2014), LIME (Ribeiro, Singh, and
Guestrin 2016), and SHAP (Lundberg and Lee 2017). Re-
cent works (Covert, Lundberg, and Lee 2021; Deng et al.
2023) have also attempted to explain post-hoc approaches in
a unified view. Post-hoc methods have limitations. They do
not consider the model’s structure and require extra compu-
tations. They may not be entirely trustworthy in capturing
relationships between features and the output (Rudin 2019).

The self-explanatory models focus on building models
that are inherently interpretable without the need for external
tools. These models can incorporate various types of expla-
nations, such as feature-based explanations (Lei, Barzilay,
and Jaakkola 2016; Chen et al. 2018), which select or gener-
ate a subset of features that can justify the output; and natu-
ral language explanations (Camburu et al. 2018; Kumar and
Talukdar 2020; Rajani et al. 2019), which produce textual
pieces that can explain the result in a human-readable way.

Selective Rationalization
Selective rationalization aims to construct a self-explanatory
model which can provide explanations and predictions si-
multaneously by extracting important features of inputs. The
inputs that are not selected will not have any impact on the
prediction. Lei, Barzilay, and Jaakkola (2016) first proposed
a select-then-predict framework for rationalization with a
reinforce-style training (Williams 1992).

To address the end-to-end optimization problem of the
vanilla rationalization framework, Bastings, Aziz, and Titov
(2019) proposed the use of a rectified Kumaraswamy dis-
tribution to re-parameterize gradient estimates instead of
the Bernoulli sampling. Meanwhile, there are other methods
available to replace the reinforce-style training in the frame-
work presented by Lei, Barzilay, and Jaakkola, such as the
Gumbel-softmax trick (Jang, Gu, and Poole 2016), which
has been employed in various works (Bao et al. 2018; Paran-
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jape et al. 2020; Sha, Camburu, and Lukasiewicz 2022).
Another series of improvements focus on exploiting the

information from the original text to regularize the predictor
and improve the quality of the selected rationale. Some re-
searchers have accomplished this by adding extra modules
to the rationalization process. Huang et al. (2021) matched
the distributions of rationales and input text in both the
feature and output spaces. Sha, Camburu, and Lukasiewicz
(2022) introduced an adversarial-based technique to make
the select-then-predict model learn from an extra predictor.
Yue et al. (2022) used the information of non-rationales for
extracting rationales. In particular, some work has analyzed
the phenomenon of rationalization degeneration following
this line of work. For instance, Yu et al. (2021) introduced a
soft selection using an attention module to avoid the risks of
degeneration from model interlocking. Liu et al. (2022) uti-
lized a shared encoder to keep the selector and the predictor
having the same learning speed to alleviate the degeneration
problem. The primary goal of these methods is to improve
the quality of rationales. Our approach also aligns with this
objective but highlights strengthening the robustness to deal
with both rationalization degeneration and failure problems.

Methodology
Preliminary
Selective Rationalization Consider a text classification
problem, (X,Y ), X is the input with n tokens X =
{x1, x2, ..., xn}, and Y is the ground-truth corresponding la-
bel from the training set Dtr. In the process of selective ra-
tionalization, the selector takes X as an input and outputs a
binary mask of M = {m1,m2, ...,mn}, where mi ∈ {0, 1}
indicates whether to select the ith token xi, then the pre-
dictor uses the rationale which is a subset of the input X ,
R = M ⊙ X = {m1x1,m2x2, ...,mnxn} to yield model
prediction. Suppose g(·; θg) and f(·; θf ) represent the se-
lector and predictor respectively. We then feed the rationale
to the predictor to obtain a prediction and calculate the loss
Ltask for the entire select-then-predict model. Formally, the
process of rationale selection and prediction is as follows:

minE X,Y∼Dtr

M∼g(X,θg)

[Ltask(f(M ⊙X; θf ), Y )]. (1)

Regularizing for Shortness and Coherence We expect
that the selector g(·; θg) selects short and fluent rationales
in practice. To achieve this goal, Lei, Barzilay, and Jaakkola
constrain the rationales to use an additional regularizer Ls =
λ1

∑n
i=0 |Mi| + λ2

∑n
i=1 |Mi − Mi−1| with respect to the

selections where the first term penalizes the number of se-
lections, and the second one encourages continuity of se-
lections. The specific form may be a different subject to
the different architecture of the rationale model (Bastings,
Aziz, and Titov 2019; Huang et al. 2021; Sha, Camburu, and
Lukasiewicz 2022). For example, many methods replace the
first term of the above regularizer with λ1|α− 1

n

∑n
i=0 Mi|,

where the α ∈ [0, 1] explicitly specifies the degree of spar-
sity. So Eq.(1) can be rewritten as:

minE X,Y∼Dtr

M∼g(X,θg)

[Ltask(f(M ⊙X; θf ), Y ) + Ls]. (2)

Guidance-Based Rationalization

Overall Pipeline As shown in Figure 3, our proposed G-
RAT consists of two modules: a rationale module and a guid-
ance module. The rationale module is based on the standard
select-then-predict framework, and the guidance module is
an end-to-end predictor. In addition to generating a predic-
tion distribution p(H), the guidance module will also gener-
ate a weighted score α, which is the weight used to multiply
with the representation of each token before the guidance
module generates p(H), so it can reflect the contribution of
tokens to the prediction to some extent. Then, we incorpo-
rate the guidance module into our training process and use
the guidance model’s two outputs to regularize the rationale
module, which can also be seen as a process of knowledge
distillation. Once training is completed, we only keep the
rationale module for predicting and providing rationales.

Regularizing Selections for Failure Alleviation As dis-
cussed previously, rationalization failure means that the se-
lector and predictor cooperate by selecting meaningless to-
kens to encode class information instead of selecting those
that truly explain the prediction. This happens because (1)
there are no restrictions on M to prevent it from encoding
class information, and (2) the predictor also has the ability to
directly use each token’s position in the rationale R for pre-
diction, such as the failure example in Figure 2. Therefore,
the rationalization failure can be alleviated if we can restrict
or directly destroy the ability of M to contain the class in-
formation. Based on this idea, we propose a new strategy
to alleviate this problem. Specifically, we make some noise
disturbances on M to make the predictor unable to get a
higher prediction accuracy when it uses the positional infor-
mation, thus forcing the predictor to focus on the semantic
information instead of the positional information in R. How-
ever, it is well-known that selective rationalization schemes
are hard to train (Yu et al. 2019; Bastings, Aziz, and Titov
2019). Adding noise directly to disturb M may lead to the
instability of the rationale M ⊙ X and make the training
process even harder to converge.

To tackle this issue, we incorporate noise into the guid-
ance model’s weighted score α, which is then used to guide
learning M instead of directly disturbing M . This weighted
score α represents the weights of each token in the input
text, as we mentioned previously, so it can guide the selec-
tor to choose the tokens that contributed to the prediction. In
addition, the weighted score α is a vector with continuous
values, and introducing noise to it has less influence on the
convergence of the training process than introducing noise
to the binary mask M . With the weighted score α, the ratio-
nale module’s selector can be constrained not to encode the
class information into M , reducing the possibility of falling
into rationalization failure. Specifically, to achieve this goal,
our guidance module takes the original text X as the input
and consists of two primary cells: h(·; θh) and p(·; θp). For
each X ∈ Dtr, the first cell h(·; θh) generates a score α
and hidden states H , while the second cell p(·; θp) takes H
to output its prediction p(H) which will used to deal with
the rationalization degeneration problem in the next section.
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Figure 3: The proposed rationalization architecture. The guidance module regularizes the selector and the predictor using two
loss terms Lguide, Lmatch. The rationale module is trained separately from the guidance module and only uses the guidance
module as guidance. Only the rationale module is used at inference time to obtain the prediction and the rationale.

This internal process can be formalized as follows:

Ĥ = h(X; θh) + e(X), α = softmax(ĤW1 + ϵ),

H = (α⊙ Ĥ)W2, ϵ ∼ N (0, I).
(3)

Here e is the embedding layer, W1 and W2 represent two dis-
tinct linear layers. The variable ϵ is random noise sampled
from a multivariate Gaussian distribution. Since the score
α generated by the guidance module reflects the contribu-
tion of each token with regard to the whole input, its value
does not match the binary situation in the rationale mod-
ule. Therefore, before using this score to guide the selec-
tion of the rationale module, we scale each element of α
by min(αi/ᾱ, 1.0) and we marked it as a parametric func-
tion α̂(·; θα̂) for simplicity. Then we use α̂(X; θα̂) as the
supervision to calculate its cross-entropy with the selector’s
output g(X; θg), which regularizes the rationale selection:

Lguide = CrossEntropy(g(X; θg), α̂(X; θα̂)). (4)

Matching Predictions for Degeneration Reduction In
the previous section, the weighted score α is used to allevi-
ate the rationalization failure problem, allowing our method
to repair the broken selector. Unfortunately, it cannot repair
the inadequate or sub-optimal rationales that will occur in
the rationalization degeneration situations since the score α
can only partially reflect the contribution of each token to
the prediction. However, we know that the best rationale can
make the same prediction as the original input, which means
that the prediction distribution based on the best rationale
should be consistent with the one based on the original in-
put. Based on this idea, we match the two prediction distri-
butions of the guidance module and the rationale module as
consistently as possible since the guidance module makes
predictions based on the original input X to meet the above
requirements. Then we compute the Jensen-Shannon diver-
gence between the two predictive distributions and use it as
a regularization term on the rationale-predictor:

Lmatch = JS(f(M ⊙X; θf )||p(h(X ; θh)⊙ α; θp)), (5)

here, the prediction distribution of the rationale module is
represented by f(M⊙X; θf ) where the rationale R = M⊙
X is the input. Similarly, the part of the guidance module is

represented by p(h(X; θh)⊙ α; θp) where the hidden states
H = h(X; θh)⊙α are the input. The distribution alignment
enforces the outputs of the rationale module and guidance
module to have the minimum distance. It can be seen as a
way of preserving the information from the original input
into the rationales and can help avoid selecting irrelevant
features that may lead to rationalization degeneration.

Switching of Regularization Terms in Training We face
a new concern when incorporating Eq.(4) into our training as
a regularization term. It’s possible that the rationale-selector
could become overly dependent on the weighted score α
of the guidance module, which could negatively impact the
overall performance. Therefore, we use a coefficient τ to
control this external guidance, which will decay from 1 to 0
in the training process. Another interesting fact is that Eq.(5)
as a regularization term only makes sense after the guid-
ance module converges, so we reuse the above coefficient
to smoothly switch the above two regularizers and combine
the two terms as a one Lg&m:

Lg&m = τλguideLguide + (1− τ)λmatchLmatch, (6)

here, λguide, λmatch are used to control the constraint
strength of Lguide, Lmatch respectively. For simplicity, We
linearly decay this coefficient τ until it reaches 0 in training.

Training and Inference By combining all the above equa-
tions, we divide the total losses into two parts: the loss of the
rationale module and the loss of the guidance module. The
objective of our rationale module is as follows:

minE X,Y∼Dtr

M∼g(X,θg)

[Lr
task + Ls + Lg&m], (7)

where Lr
task uses the superscript r to indicate that this is the

task loss for the rationale module Ltask(f(M ⊙X; θf ), Y ).
Since the guidance module does not have the sampling op-
eration M ∼ g(X, θg), its objective is to directly minimize
the difference between the predicted and the true labels:

minEX,Y∼Dtr
[Lg

task], (8)

where Lg
task indicates that this is the task loss for the guid-

ance module Ltask(p(h(X; θh)⊙ α; θp), Y ).
During the training phase, we use the Adam (Kingma and

Ba 2015) optimizer alternatively to optimize the above two
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Setting
RNP* FR* G-RAT

Acc P R F1 Acc P R F1 Acc P R F1

Smell
Skew-10 82.6 68.5 63.7 61.5 87.1 73.9 71.7 72.8 85.5 84.8 63.9 72.9
Skew-15 80.4 54.5 51.6 49.3 86.1 71.3 68.0 69.6 85.6 84.9 63.3 72.5
Skew-20 76.8 10.8 10.8 11.0 85.5 72.3 69.0 70.6 84.6 85.3 63.3 72.7

Palate
Skew-10 77.3 5.6 7.4 5.5 75.8 54.6 61.2 57.7 81.0 63.4 59.8 61.7
Skew-15 77.1 1.2 2.5 1.3 81.7 51.0 58.4 54.5 82.0 63.5 59.5 61.4
Skew-20 75.6 0.4 1.4 0.6 83.1 48.0 58.9 52.9 85.5 69.9 51.1 59.0

Table 1: Results of Skew-Predictor settings. “ * ” represents the results from Liu et al. (2022).

Setting
Appearance Smell Palate

Acc S P R F1 Acc S P R F1 Acc S P R F1

Skew-55
Re-RNP 85.6 19.3 75.4 73.5 74.4 84.1 14.7 67.7 56.4 61.6 59.1 12.8 0.2 0.2 0.2
FR 82.8 20.6 78.8 81.6 80.2 86.1 14.9 75.0 64.3 69.3 73.3 11.2 39.4 20.0 26.5
G-RAT 81.8 19.3 82.9 81.0 81.9 88.6 14.8 80.4 69.7 74.7 82.2 14.3 60.9 63.3 62.1

Skew-60
Re-RNP 85.7 20.1 72.6 74.6 73.6 81.1 13.9 70.2 55.9 62.3 85.9 15.4 0.2 0.2 0.2
FR 83.3 20.7 79.8 83.2 81.5 84.1 14.6 77.4 65.6 71.1 67.5 12.3 0.2 0.2 0.2
G-RAT 86.2 19.7 82.7 82.5 82.6 82.8 13.9 82.4 67.3 74.1 87.5 14.1 59.8 63.2 61.5

Skew-65
Re-RNP 83.3 19.6 72.2 73.4 72.8 82.2 17.6 45.0 46.8 45.9 83.7 15.1 0.1 0.2 0.2
FR 83.3 18.8 75.0 73.1 74.0 80.9 18.0 41.4 44.2 42.8 85.7 12.5 0.3 0.2 0.3
G-RAT 86.0 19.8 80.8 81.8 81.3 84.3 13.8 82.3 66.6 73.6 83.7 15.2 56.7 62.9 59.6

Skew-70
Re-RNP 81.5 21.4 64.0 70.9 67.2 81.9 16.7 43.4 42.8 43.1 84.0 14.9 0.2 0.2 0.2
FR 77.6 19.1 71.6 71.5 71.5 81.2 18.3 36.8 40.5 38.5 86.9 13.7 0.4 0.4 0.4
G-RAT 90.1 19.0 81.1 79.3 80.2 87.5 14.1 79.6 65.5 71.9 83.9 17.5 45.4 56.7 50.4

Skew-75
Re-RNP 86.1 20.7 68.9 73.7 71.2 79.4 14.7 2.1 1.8 1.9 80.8 15.0 0.2 0.2 0.2
FR 79.7 19.4 68.4 69.8 69.0 81.8 14.4 2.0 1.7 1.8 83.7 14.2 0.2 0.2 0.2
G-RAT 83.2 19.2 79.0 77.6 78.3 82.5 17.7 57.6 59.3 58.5 82.6 17.9 0.9 1.3 1.1

Skew-80
Re-RNP 83.3 19.2 69.9 69.7 69.8 81.0 15.4 2.6 2.3 2.4 81.3 15.2 0.2 0.2 0.2
FR 84.4 18.7 68.2 66.5 67.3 79.1 14.6 0.2 0.2 0.2 83.9 14.8 0.3 0.2 0.2
G-RAT 80.1 18.9 74.6 72.8 73.7 85.2 17.1 5.5 6.1 5.8 86.9 16.4 0.2 0.3 0.2

Table 2: Results of Skew-Selector settings. In the three aspects, the precise k of different skew thresholds are {55.0, 55.5, 55.2},
{60.2, 60.0, 60.6}, {65.0, 65.5, 65.6}, {70.3, 70.5, 70.1}, {75.1, 75.2, 75.1}, and {80.0, 80.1, 81.2} respectively.

objectives on our training dataset Dtr. This allows us to
leverage the guidance module as a regularizer to guide the
rationale module without the latter’s objective affecting its
parameters. During the inference phase, we only execute the
rationale module to obtain the final prediction results and the
rationales R = M⊙X , consistent with previous rationaliza-
tion methods, as shown in Figure 3. More detailed settings
on training and hyperparameters can be found in Appendix.

Experiments
Experimental Settings
Datasets Following the work of Huang et al. (2021) and
Liu et al. (2022), we consider two widely used datasets
for selective rationalization. 1) BeerAdvocate (McAuley,
Leskovec, and Jurafsky 2012) contains more than 220,000
beer reviews, where users rate different aspects of beer from
0 to 5 stars. We replicate the pre-process of Lei, Barzilay,
and Jaakkola (2016) where the dataset has been decorre-
lated into three aspects. 2) HotelReview (Wang, Lu, and

Zhai 2010) is another multi-aspect dataset similar to Beer-
Advocate. It contains reviews of hotels and ratings in dif-
ferent aspects. For a fair comparison, we consider both the
above beer and hotel reviews prediction as a binary classi-
fication task as Bao et al. (2018) did, while other settings
followed the previous works (Huang et al. 2021; Yu et al.
2021). The Appendix has pre-processing settings details.

Comparison Methods We compare our approach to sev-
eral influential selective rationalization methods and the lat-
est improvement work: RNP (Lei, Barzilay, and Jaakkola
2016), DMR (Huang et al. 2021), A2R (Yu et al. 2021), and
FR (Liu et al. 2022), all these methods are detailed in the
section of related work. In addition, our re-implementation
of RNP using the straight-through trick (Bengio, Léonard,
and Courville 2013) and Gumbel-softmax (Jang, Gu, and
Poole 2016) for reparameterization is called Re-RNP. To
ensure the comparability of the results, we follow the com-
monly used setting in our implementations. For all the im-
plemented methods, we replicate the setting that most pre-
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Methods
Appearance Smell Palate

Acc S P R F1 Acc S P R F1 Acc S P R F1

RNP* 84.0 18.7 72.0 72.7 72.3 85.2 15.1 59.0 57.2 58.1 90.0 13.4 63.1 68.2 65.5
Re-RNP 85.6 17.9 72.5 68.3 70.3 84.8 16.1 56.9 60.9 58.8 77.2 17.3 45.7 56.8 50.6
DMR* - 18.2 71.1 70.2 70.7 - 15.4 59.8 58.9 59.3 - 11.9 53.2 50.9 52.0
A2R* 83.9 18.4 72.7 72.3 72.5 86.3 15.4 63.6 62.9 63.2 81.2 12.4 57.4 57.3 57.4
FR* 87.2 18.4 82.9 82.6 82.8 86.6 15.0 74.7 72.1 73.4 89.7 12.1 67.8 66.2 67.0
G-RAT 88.4 18.5 84.8 83.2 84.0 87.8 15.5 79.1 74.3 76.6 88.3 12.3 63.4 67.2 65.2
G-RAT−Lguide

85.4 18.9 80.8 82.1 81.4 83.9 15.4 64.3 66.3 65.3 85.7 13.4 63.5 57.3 60.2
G-RAT−Lmatch

84.6 19.0 82.9 79.7 81.2 84.7 15.7 78.8 61.7 69.2 81.3 14.2 61.0 68.1 64.4

(a) Beer Reviews

Methods
Location Service Cleanliness

Acc S P R F1 Acc S P R F1 Acc S P R F1

RNP* 97.5 8.8 46.2 48.2 47.1 97.5 11.0 34.2 32.9 33.5 96.0 10.6 29.1 34.6 31.6
Re-RNP 97.6 9.9 43.8 44.4 44.1 96.9 11.8 40.0 35.2 37.5 96.4 11.3 29.4 31.8 30.5
DMR* - 10.7 47.5 60.1 53.1 - 11.6 43.0 43.6 43.3 - 10.3 31.4 36.4 33.7
A2R* 87.5 8.5 43.1 43.2 43.1 96.5 11.4 37.3 37.2 37.2 94.5 8.9 33.2 33.3 33.3
FR* 93.5 9.0 55.5 58.9 57.1 94.5 11.5 44.8 44.7 44.8 96.0 11.1 34.9 43.4 38.7

G-RAT 97.4 10.1 56.1 59.3 57.6 97.9 12.1 48.8 44.1 46.3 95.9 11.9 41.4 37.3 39.2
G-RAT−Lguide

98.0 9.5 53.5 47.3 50.2 98.3 12.4 41.3 39.0 40.1 96.1 10.3 38.0 33.3 35.5
G-RAT−Lmatch

98.0 9.7 58.3 53.5 55.8 98.1 12.8 43.1 46.2 44.6 95.8 11.3 40.9 35.9 38.2

(b) Hotel Reviews

Table 3: Results on beer and hotel review prediction tasks. “ * ” represents the results from Yu et al. (2021) and Liu et al. (2022).

vious works have adopted (Yu et al. 2021; Liu et al. 2022)
by using the 100-dimension Glove (Pennington, Socher, and
Manning 2014) as the embedding, GRU as the encoder cell.
Experiments are all conducted on a single Tesla A100 GPU.

Evaluation Metrics Following the work of Chang et al.
(2020) and Yu et al. (2021), we mainly focus on the quality
of the rationales, which is measured by the overlap between
the model-selected and human-annotated tokens using the
token-level precision, recall, and F1-score denoted as P, R,
and F1 respectively. The best results of the F1-score are em-
phasized in bold. S refers to the average proportion of se-
lected tokens in the original text. Acc refers to the predictive
accuracy, with all methods getting similar values.

Synthetic Experiments
To show that our G-RAT is more robust to the rationalization
degeneration and failure problem, we conduct two synthetic
experiments in the BeerAdvocate dataset. These synthetic
experiments were first proposed in A2R (Yu et al. 2021) and
later improved in FR (Liu et al. 2022). We mainly refer to
the experimental settings in FR and then compare our G-
RAT with it and our direct baseline RNP.

Skew-Predictor Yu et al. (2021) pre-trained the predictor
separately using only the first sentence of the input text in
some aspects of BeerAdvocate. As a result, the over-fitted
predictor in the first sentence will pass an incorrect gradient
to the selector, thus simulating a rationalization degeneration
situation. Thus, we initialize the predictor with intentionally
misleading pre-trained parameters before training the selec-

tor and predictor cooperatively. We replicate their experi-
ment as Liu et al. (2022) did and use skew-k to represent the
skew threshold, where k represents the number of epochs for
which the predictor was pre-trained.

Skew-Selector This is our newly designed synthetic ex-
periment with a stronger setup than Liu et al. (2022) did.
we pre-train the selector separately using the text classifica-
tion label as the label of mask only in the first token position
while keeping the regularizer of shortness and coherence Ls.
As a result, the predictor will be able to know the category
of a rationale merely through whether the first token is se-
lected as a part of the rationale or not and may overfit this
positional bias. Compared with the setup in FR, our syn-
thetic experiment considers the regularizer Ls, which makes
it closer to the rationalization failure that may occur in real
training, and we conduct experiments on all three aspects of
BeerAdvocate not only in the palate aspect. In detail, we pre-
trained a broken selector with k = {55, 60, 65, 70, 75, 80}
on each of the three aspects, and we predefined the sparsity
with {15%, 10%, 10%} respectively. Since the accuracy in-
creases rapidly in the first few epochs, the skew threshold k
here is the task accuracy, not the number of epochs.

Results In the above Skew-Selector setting, the h(·; θh) of
the guidance module and the g(·; θg) of the rationale mod-
ule in our method are all initialized with the parameters of
the skew-selector for the fair comparison. The experimental
results of these two synthetic experiments are shown in Ta-
ble 1 and Table 2. We first found that all methods achieve
high prediction accuracy at different skew thresholds. How-
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ever, with increasing the skew threshold k, RNP fails to
find human-annotated rationales, and its F1-score rapidly
decreases in the palate aspect of the Skew-Predictor and
Skew-Selector settings. FR shows its ability to alleviate the
degeneration problem in the Skew-Predictor setting, but its
F1-score declines at the lowest threshold (Skew-55) of the
palate aspect in the Skew-Selector setting. In contrast, our
method is robust in dealing with this situation of deliber-
ately initializing misleading parameters. It shows consistent
performance under different threshold k on two skew set-
tings, and even in the most challenging palate aspect, it still
works well until in the skew-75 setting. We also found that
all the methods achieve a high F1-score in the appearance
aspect under the Skew-Selector setting. This was because
the first token we used to convey the class information over-
lapped with the description of the appearance (the first sen-
tence is usually about the appearance aspect of the beer in
the BeerAdvocate dataset). Finally, these results show that
our method can prevent the rationalization degeneration and
failure problems. This is a significant step towards solving
a critical issue in the existing rationalization framework,
which can enhance people’s trust in model prediction, es-
pecially in some safety-critical application scenarios.

Results on Real-World Settings
Reviews Prediction Table 3 (a) and Table 3 (b) show the
main results compared to previous methods on two review
prediction benchmarks. All comparative experiments used
the settings mentioned in the previous section and selected
the same pre-defined sparsity in the regularization term Ls.
Regarding the F1 score, our approach outperforms the best
available methods in five aspects of the two datasets. In
particular, compared to our direct re-implementation base-
line Re-RNP, we get significant improvements in terms of
F1 score in several aspects (i.e., Appearance, Smell, Palate,
Location). The results of synthetic experiments have shown
that G-RAT can improve the robustness of the rationalization
method by introducing two regularizers Lguide and Lmatch,
and the improvement on this real-world settings proves that
these two regularizers can also improve the overall perfor-
mance. We also conducted the following ablation studies
further to verify these two regularizers’ influence.

Ablation Study 1) We removed the regularizer Lguide and
report the results in the line G-RAT−Lguide

, and 2) we re-
moved the regularizer Lmatch and report the results in the
line G-RAT−Lmatch

. In Table 3, we can see that removing
any regularizer will lead to a decline in the F1 score in all
aspects. This shows that these two regularizers can cooper-
ate with each other and help improve the rationale quality.

Parameters Sensitivity Analysis
In the previous setup, we set λguide = 5.0 and λmatch =
1.0. This is an empirical choice because these two regular-
izers can have a similar scale as the task loss Ltask. To gain
an insight into the effects of selecting different λ, we further
conduct experiments varying λguide and λmatch.

Sensitivity of λguide We repeat the Skew-Selector exper-
iment with the skew thresholds of k = 70 and k = 65 on

(a) (b)

Figure 4: Analysis of the sensitivity of λguide

(a) (b)

Figure 5: Analysis of the sensitivity of λmatch

the three aspects while setting λmatch = 0. We disregard the
gradually decaying τ to observe the effect of Lguide without
potential interference. Figure 4 describes the results under
the value of λguide ranging from 0.1 to 30. It is observed
that Lguide performs well when λguide is within the range
of [2, 10]. If λguide is smaller than this range, Lguide strug-
gles to repair the broken selector, whereas if λguide is too
large, it restricts the rationale-selector’s ability excessively.

Sensitivity of λmatch Similar to the previous analysis, we
set λguide to 0 to exclude interference, and then we re-run
G-RAT on the beer and hotel review tasks, with the value of
λmatch varying from 0.1 to 20. Figure 5 shows that the per-
formance on both datasets presents a shape of low on both
sides and high in the middle which shows that λmatch per-
forms well in the wide range [0.5, 2].

Conclusion and Future Work
In this paper, we have thoroughly discussed the rationaliza-
tion degeneration and failure problems that may arise in the
existing rationalization methods. Therefore, we proposed G-
RAT, a robust guidance-based rationalization approach that
utilizes a guidance module to regulate the process of selec-
tive rationalization. Through quantitatively testing and an-
alyzing G-RAT in both real-world and synthetic settings,
the results showed that it outperformed existing methods in
rationale quality and robustness. G-RAT helps to promote
trustworthiness in model explainability. Moving forward, we
plan to explore the feasibility of rationalizing large language
models, such as incorporating abstract rationales or human
feedback, and further study other ways to address the ratio-
nalization degeneration and failure problems.
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