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Abstract
Deep learning is now widely used in drug discovery, provid-
ing significant acceleration and cost reduction. As the most
fundamental building block, molecular representation is es-
sential for predicting molecular properties to enable various
downstream applications. Most existing methods attempt to
incorporate more information to learn better representations.
However, not all features are equally important for a specific
task. Ignoring this would potentially compromise the training
efficiency and predictive accuracy. To address this issue, we
propose a novel approach, which treats language models as an
agent and molecular pretraining models as a knowledge base.
The agent accentuates task-relevant features in the molecular
representation by understanding the natural language descrip-
tion of the task, just as a tailor customizes clothes for clients.
Thus, we call this approach MolTailor. Evaluations demon-
strate MolTailor’s superior performance over baselines, val-
idating the efficacy of enhancing relevance for molecular
representation learning. This illustrates the potential of lan-
guage model guided optimization to better exploit and un-
leash the capabilities of existing powerful molecular repre-
sentation methods. Our code and appendix are available at
https://github.com/SCIR-HI/MolTailor.

Introduction
In recent years, AI technology has been widely applied to
various stages of drug design, such as compound synthesis
and screening, etc. (Mamoshina et al. 2016). This has greatly
improved the efficiency and reduced the cost of drug devel-
opment. Molecular representation learning serves as the cor-
nerstone for AI techniques in drug design, empowering a
wide range of downstream tasks such as molecular property
prediction and drug-drug interaction judgment (Xia et al.
2023). Molecular representations are essentially vector em-
beddings for molecules, analogous to word embeddings in
NLP. The idea of encoding molecules as mathematical vec-
tors dates back to the 1940s (Wiener 1947).

The development of molecular representation learning
can be roughly divided into four phases. In the first phase,
molecular representations were constructed through expert
knowledge, which can be categorized into two types: de-
scriptors (Wiener 1947) and fingerprints (Rogers and Hahn
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Figure 1: Most existing molecular pretraining models (e.g.
Grover, MolCLR) attempt to encode as much molecular in-
formation as possible (e.g. various functional groups and
molecular weight) into a vector to obtain general molecu-
lar representation. However, for specific downstream tasks
(e.g. Lipo, predicting lipophilicity of compounds), features
are not equally important (e.g. Sulfonamide and Carboxylic
acid groups significantly increase the hydrophilicity, being
more critical than the remaining groups). By understanding
task descriptions, MolTailor adjusts the weights of different
features in the representation to obtain task-specific molec-
ular representation.

2010). Descriptors focus on the inherent chemical charac-
teristics of molecules, while fingerprints contain structural
information. In the second phase, inspired by deep learning,
some works (Gilmer et al. 2017; Yang et al. 2019; Song et al.
2020) started to learn molecular representations from la-
beled data using supervised learning. However, the scarcity
of labeled data, due to the expensive experimental cost and
time required, limits further improvements to model perfor-
mance and generalization.

The success of pretrained language models in NLP (De-
vlin et al. 2018) has demonstrated the potential of self-
supervised learning. Building upon this, in the third phase,
some works pretrained sequence-based models to learn
molecular representation by mimicking successful NLP pre-
trained language models. (Chithrananda, Grand, and Ram-
sundar 2020; Kim et al. 2021; Ross et al. 2022). Concur-
rently, others pretrained graph-based models (Hu et al. 2019;
You et al. 2020). More recently, in the fourth phase, re-
searchers are no longer limited to pretraining solely on the
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molecular data itself. Instead, they are attempting to incor-
porate additional information, such as knowledge graphs
(Fang et al. 2022) and textual information (Zeng et al. 2022;
Edwards et al. 2022; Su et al. 2022; Chen et al. 2023). No-
tably, molecule-text multimodal learning has received in-
creasing attention recently and achieved promising results.

As introduced above, most existing works merely strive
to inject more information into the representations without
utilizing task information as prior knowledge, which could
compromise the training efficiency, as shown in Fig. 1. In-
spired by this observation, we propose a new method called
MolTailor, where a language model acts as a tailor, adapt-
ing general molecular representations (ready-made clothing)
into task-specific ones (customized clothing) based on user
needs.

To achieve this goal, we adopt a dual-tower model struc-
ture with one language pretraining module and one molec-
ular pretraining module, joint together through a cross-
attention module. Meanwhile, we constructed a new pre-
training task: Molecule-Text Multi-Task Regression (MT-
MTR). The dataset for this task consists of (molecule, task
description, regression labels) triplets. Here, the molecule is
represented as a SMILES string (Weininger 1988), the task
description is a text prompt describing molecular properties
that are most helpful for solving the task, and the regression
labels are values of properties mentioned in the task descrip-
tion. The model needs to predict the regression labels based
on the SMILES and task description. This pretraining task
teaches the model to enhance the weights of task-relevant
properties in the molecular representation according to the
task description. Our contributions can be summarized as
follows:

• We propose MolTailor, the first approach to generate
task-specific molecular representations via text prompts,
which provides a new perspective on text-molecule mul-
timodal learning: not only injecting the knowledge in
texts into molecular representations but also utilizing the
reasoning capacity of language models.

• We construct MT-MTR, a new molecule-text multimodal
pretraining task. This task teaches the model the capa-
bilities of instruction following and adapting molecular
representations.

• We comprehensively evaluate across eight subsets of the
MoleculeNet, thereby demonstrating the effectiveness of
task-specific molecular representation learning.

Related Work
Molecular Pretraining Models. Models can be roughly
categorized into the following three types: sequence-based,
graph-based, and external knowledge (Xia et al. 2023).
1. Sequence-based: Representing molecules as SMILES
strings or other sequences and using language models as
backbones for pretraining. SMILES-BERT (Wang et al.
2019) and ChemBERTa (Chithrananda, Grand, and Ram-
sundar 2020) use Masked Language Modeling (MLM) for
pretraining tasks, while CHEM-BERT (Kim et al. 2021),
ChemBERTa-2 (Ahmad et al. 2022) additionally incorporate
property prediction tasks. MM-Deacon (Guo et al. 2021)

uses contrastive learning with SMILES and INPAC as par-
allel inputs. 2. Graph-based: Representing molecules as
graphs and using graph neural networks for pretraining.
GROVER (Rong et al. 2020) and Mole-BERT (Xia et al.
2022) use Mask Component Modeling (MCM) for pretrain-
ing, while GraphCL (You et al. 2020) and MolCLR (Wang
et al. 2022) employ contrastive learning. Denoising (Zaidi
et al. 2022) and GeoSSL (Liu, Guo, and Tang 2022) are
trained with denoising methods inspired by denoising diffu-
sion models. 3. External knowledge: GraphMVP (Liu et al.
2021) and 3D Infomax (Stärk et al. 2022) incorporate 3D
structures as supplementary information. KCL (Fang et al.
2022) uses knowledge graphs to enhance molecular repre-
sentations.

Image-Text Multimodal Pretraining Models. Models
can be divided into dual-tower and single-tower structures
based on architectures: 1. Dual-tower structure: ViLBERT
(Lu et al. 2019) introduces the co-attentional transformer
(Co-TRM) layer, which effectively integrates information
from both modalities. CLIP (Radford et al. 2021) adopts
contrastive learning for pretraining and achieves significant
performance gains. The CoCa (Yu et al. 2022) model uses
dual towers of an image encoder and a text decoder. 2.
Single-tower structure: VisualBERT (Li et al. 2019) takes
texts and images as a unified input for learning. ViLT (Kim,
Son, and Kim 2021) adopts a patch projection approach,
greatly improving the processing speed. BeiT-3 (Wang et al.
2023) uses distinct Feedforward Neural Network (FFN) lay-
ers for different modalities while sharing attention modules.

Molecule-Text Multimodal Pretraining Models. Simi-
larly, models can be divided into dual-tower and single-
tower structures based on architectures: 1. Single-tower
structure: Using a language model as the backbone for fur-
ther pretraining. KV-PLM (Zeng et al. 2022) and MolXPT
(Liu et al. 2023) inject SMILES into literature text by lo-
cating molecule names to obtain mixed corpora and conduct
MLM and language pretraining (LM) respectively. MolT5
(Edwards et al. 2022) does replace corrupted spans pre-
training on molecular and text data, meanwhile, uses mu-
tual translation between molecules and textual descriptions
as downstream tasks. Text+Chem T5 (Christofidellis et al.
2023) and ChatMol (Zeng et al. 2023) use multi-task learn-
ing for pretraining. GIMLET (Zhao et al. 2023) takes graphs
and texts as a unified input and uses instruction-based su-
pervised property prediction for pretraining. 2. Dual-tower
structure: MoMu (Su et al. 2022) and MoleculeSTM (Liu
et al. 2022) do contrastive learning on molecule-description
pairs. CLAMP (Seidl et al. 2023) does contrastive learning
on molecule-bioassay pairs. Additionally, ChemCrow (Bran
et al. 2023) enhances large language models (LLMs) with
chemical tools to accomplish real-world chemical tasks.

Methodology
Fig. 2 presents an overview of our proposed approach. In this
section, we introduce MolTailor in three aspects: 1. Con-
struction of the MT-MTR corpus. 2. Model architecture of
MolTailor. 3. Pretraining of MolTailor and application of
MolTailor to downstream tasks.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18145



List of molecules

DeduplicateCanonicalize

Compute

Molecular Properties

QED 0.55012…
MolWt 180.158…
TPSA 63.6000…
NumHDonors 1
…… ……

Random Sample

After analyzing the given chemical task, severa
l key descriptors were identified that can be use
d to solve the task. These descriptors include:

> Introduction

> Summary:

1. HallKierAlpha: This descriptor represents th
e molecule’s shape and size. It can ……

2. VSA_EState2: This descriptor ……

3. HeavyAtomCount: This descriptor ……

……

By considering these descriptors, we can gain i
nsights into the chemical properties……

> Task-relevant properties
{name of property}: description of property

Task Description (Text Prompt)

5~10

…
…

K
ey

Va
lu

e

Regression Labels

-1.83999… …21.1847… 13

M-EncoderUnimodal
T-Encoder

Multimodal
T-Encoder

SMILES
Task Description

General
Molecular

Representation

𝐾𝑚 𝑉𝑚
×𝐾

A
tte

nt
io

n

𝑄
𝑡

𝐾
𝑡

𝑉 𝑡

Te
xt

ua
lH

id
de

n 
St

at
es

A
dd

 &
La

ye
r N

or
m

Fe
ed

 F
or

w
ar

d

A
dd

 &
La

ye
r N

or
m

Task-Specific Molecular Representation

MolTailor

SMILES Task Description

Task-Specific Molecular Representation

Predict
Regression Labels

MolTailor

…following d
escriptors mig
ht be helpful:
1. MolLogP:
This descripto
r calculates th
e lipophilicity
of the …

BBBP

Analyze

C[C@H](N)Cc1ccccc1

p_np: 1Linear

a) b)

c)

d)

e)

Figure 2: Overview of the MolTailor framework. a) The construction process of the MT-MTR dataset. We obtain representative
molecules from DrugBank (Wishart et al. 2018) and ChEBI (Hastings et al. 2016), and then use RDKit to calculate 209
properties for each molecule. For each molecule, we randomly sample 5-10 properties from the property set, use the property
names to generate virtual task descriptions via GPT-3.5, and use the property values as regression labels. b) Model architecture
of MolTailor. MolTailor consists of a language pretraining model (T-Encoder) and a molecular pretraining model (M-Encoder).
The T-Encoder is divided into a unimodal part (for understanding task descriptions) and a multimodal part (for adjusting
molecular representations). c) Internal structure of the Multimodal T-Encoder. It modifies the original Transformer Encoder
Block to perform self-attention and cross-attention operations simultaneously: mapping the general molecular representation
to obtain Km and Vm vectors which are then concatenated with textual vectors Kt and Vt. d) Pretraining task of MolTailor.
The model needs to predict properties mentioned in the task description based on the molecule and text prompt. e) Downstream
tasks of MolTailor. For a specific downstream task, we first generate the task description in the same format as pretraining via
GPT-4 analysis, then take the SMILES and task description as input to predict labels for the corresponding task.

Construction of MT-MTR
The construction process of the MT-MTR (Molecule-Text
Multi-Task Regression) dataset consists of 3 main steps as
shown in Fig. 2a:

Step 1: Obtain representative molecules. We obtain
molecules from DrugBank (Wishart et al. 2018) and ChEBI
(Hastings et al. 2016), then use RDKit1 to deduplicate and
canonicalize, resulting in 55,759 valid SMILES.

Step 2: Calculate molecular properties. For each
molecule obtained in the previous step, we use RDKit to
calculate 209 properties2. Among these properties, some are
continuous values while others are discrete values. We unify
them into regression tasks.

Step 3: Obtain task descriptions and regression la-
bels. For each molecule, we randomly sample 5-10 proper-
ties from the property set obtained in the previous step. The
sampled property names are filled into the prompt template
in Tab. 1 (Prompt for Pretraining) to obtain text input fed
into GPT for generating virtual task description. Since GPT-
4 and GPT-3.5 achieve similar performance on this task, we
use the more cost-effective GPT-3.5 for generation in our ex-
periments. The values of the sampled properties are used as

1https://www.rdkit.org
2RDKit’s “Descriptor” module provides 209 descriptors, which

we uniformly refer to as “properties” in this paper for clarity.

the regression labels.
The resulting MT-MTR corpus contains (molecule, task

description, regression labels) triplets. It is also worth noting
that MT-MTR does not ask the model to predict all prop-
erties of the molecules; it only needs to predict properties
mentioned in the text prompt. This aims to teach the model
to generate molecule representations tailored to the text for
improved predictions.

Model Architecture of MolTailor
As illustrated in Fig. 2b&c, MolTailor consists of a lan-
guage pretraining model (T-Encoder) and a molecular pre-
training model (M-Encoder). The language model is divided
into a Unimodal Text Encoder (UT-Encoder) and a Multi-
modal Text Encoder (MT-Encoder) by introducing a few pa-
rameters. We treat the M-Encoder as a knowledge base and
the T-Encoder as an agent. The agent obtains the final de-
sired representation by understanding natural language and
adjusting the well-initialized molecular representation from
the knowledge base. The UT-Encoder captures semantic in-
formation and the MT-Encoder then tailors molecular repre-
sentations based on understanding task descriptions.

Since any molecular pretraining model can serve as the
M-Encoder in our method, in this section we mainly de-
scribe the Transformer encoder block (TEB), the fundamen-
tal component composing mainstream language models, as
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Template
Prompt
for
Pre-
training

As a seasoned expert in the field of chem-
istry, your task is to analyse a chemical task.
And you found following properties of chemi-
cal compounds can help solve this task. Please
summarize your analysis. The length should be
less than 300 tokens.
Properties:
{Sampled Properties}.
Task analysis results:

Prompt
for
Down-
stream

Example:
{Example of task description from MT-MTR}
Property Names:
{209 property names from RDKit}
Please analyze the Task Name. When dis-
cussing the properties related to this task, list
any properties that you think may be helpful
for solving the task. Simply provide the analy-
sis results directly in less than 400 tokens, re-
ferring to the example for guidance.

Table 1: Prompt templates for interacting with GPT to gen-
erate task descriptions.

well as the internal structure of the MT-Encoder. Addition-
ally, in our experiments, we tested two types of M-Encoder:
CHEM-BERT (Kim et al. 2021) and ChemBERTa-2 (Ah-
mad et al. 2022).

Transformer Encoder Block. As the basic building block
of the Transformer (Vaswani et al. 2017) encoder, it con-
sists of four main components: Multi-Head Self-Attention
(MHA), Feed Forward Network (FFN), and Residual Con-
nection with Layer Normalization (LN). For MHA, given
hidden states x ∈ R(bs×n×d) where bs indicates batch size,
n indicates sequence length, and d indicates embedding di-
mension, it is first mapped to vectors Q, K and V by ma-
trices WQ,WK ,W V ∈ R(d×d), keeping dimensions un-
changed. Then, with h heads, d is split into h parts. After
that, vectors are transposed and reshaped to get Q,K,V ∈
R(bs×h×n×d/h). Finally, attention is computed:

Attention(Q,K,V ) = softmax
(
QV T

√
dk

)
(1)

MHA(x) = Attention(f r
Q(x), f

r
K(x), fr

V (x)) (2)

where fr
∗ means freshape(xW ∗). The output x∗ ∈

R(bs×n×d) of the MHA goes through the FFN, residual con-
nection and LN to obtain the final output x ∈ R(bs×n×d).

FFN(x) = ReLU(xW 1 + b1)W 2 + b2 (3)

x = LN(x+ FFN(MHA(x))) (4)

Multimodal T-Encoder. Since the task descriptions con-
tain biomedical terminology, we chose PubMedBERT (Gu
et al. 2021) as the backbone for the T-Encoder. Addition-
ally, we also present in the appendix the results of using

BioLinkBERT (Yasunaga, Leskovec, and Liang 2022). Pub-
MedBERT contains 12 TEBs. We designate the first 9 layers
as the UT-Encoder, and the remaining 3 layers as the MT-
Encoder.

To build the MT-Encoder, we draw on previous work
(Chen et al. 2022) to modify the original MHA to MHA∗

that can simultaneously perform Self-Attention and Cross-
Attention operations, by introducing very few parameters.
Specifically, the MT-Encoder takes xt and xm as inputs,
where xt ∈ R(bs×nt×dt) denotes the hidden states from the
UT-Encoder, and xm ∈ R(bs×nm×dm) denotes the general
molecular representation (i.e., the last hidden states from the
M-Encoder). MHA∗ computes as follows:

Q∗ = fr(xtW
t
Q)

K∗ = fr([xtW
t
K ,xmWm

K ])

V ∗ = fr([xtW
t
V ,xmWm

V ])

MHA∗(xt,xm) = Attention(Q∗,K∗,V ∗)

(5)

where fr denotes reshape function, [∗] denotes concate-
nation along the dimension corresponding to the sequence
length n. The output of the MT-Encoder Block is computed:

x∗ = LN(xt + FFN(MHA∗(xt,xm))) (6)

Chen et al. (2022) formally proves that MHA∗(x) is equiv-
alent to a weighted average of self-attention and cross-
attention:

MHA∗(xt,xm) = (1− λ(xt))MHA(xt)

+ λ(xt)MHA(Qt,Km,V m)
(7)

Pretraining and Downstream Application
Pretraining on MT-MTR. We use MT-MTR as the pre-
training objective . In detail, given SMILES (zm) and task
description (zt) as input, the model predicts regression la-
bels y ∈ R(1×209), as displayed in Fig. 2d. The pretraining
loss uses MSE and can be formulated as:

L =
1

N

N∑
j=1

(
1

count(m)

M∑
i=1

mij(yij − ŷij)
2

)
(8)

where N is the number of samples, m ∈ R(1×209) is a
0-1 vector, in which the value 1 indicates the existence of
the corresponding regression label, while 0 indicates its ab-
sence, count(m) means the number of valid labels, M is the
number of all properties (here M = 209), yij is the ground
truth regression label, and ŷij is the predicted value.

Downstream Application. When applying MolTailor to
downstream tasks, we use GPT-4 to analyze the specific
task and then generate the corresponding task description,
as shown in Fig. 2e. We use the template in Tab. 1 to prompt
GPT to generate descriptions that mimic the format of those
in the pretraining corpus. Notably, we restrict it such that
it can only select the names of properties from the set sup-
ported by RDKit. Then, we feed the generated analysis and
SMILES into MolTailor to obtain the task-specific molecu-
lar representation:

z = MolTailor (zm|zt) (9)
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where z denotes the task-specific molecular representation.
Finally, z goes through a prediction head to predict the la-
bels corresponding to the task.

Experiments
In this section, we conduct comprehensive experiments to
demonstrate the efficacy of our proposed method. The ex-
periments are designed to analyze the method by addressing
the following six key questions:

Q1: Are the task-specific molecular representations gen-
erated by MolTailor better than general representations? Q2:
Can MolTailor achieve performance improvements on dif-
ferent M-Encoders? Q3: How do the task descriptions in-
fluence the effectiveness of pretraining? Q4: How do dif-
ferent text prompts affect MolTailor? Q5: When MolTailor
achieves better performance, are the task-relevant proper-
ties in the molecular representations enhanced? Q6: Does
MolTailor pay attention to the key information in both the
molecules and text prompts?

Experimental Setup
Pretraining Corpus. We use MT-MTR corpus for pre-
training, which contains 55,759 triples. Moreover, we
present the data overlap analysis results in the appendix.

Downstream Datasets. We select 8 representative tasks
from MoleculeNet (Wu et al. 2018) for experiments, which
consist of 4 classification tasks (BBBP, ClinTox, HIV,
Tox21) and 4 regression tasks (ESOL, FreeSolv, Lipophilic-
ity, QM8), covering physiology, biophysics, physical chem-
istry, and quantum mechanics. Following Wu et al. (2018),
each task uses the recommended splitting method to divide
data into training/validation/test sets with a ratio of 8:1:1.

Baselines. We adopt the following four types of baselines:

• Molecular Fingerprints: MACCSFP (Durant et al.
2002) encodes molecules based on substructures, RD-
KitFP (O’Boyle and Sayle 2016) encodes molecules
based on topology or path, and MorganFP (Rogers and
Hahn 2010) encodes molecular environment and struc-
ture starting from atoms within a radius.

• Sequence-based Methods: BioLinkBERT(Yasunaga,
Leskovec, and Liang 2022), PubMedBERT (Gu et al.
2021); ChemBERTa-2 (Ahmad et al. 2022), and CHEM-
BERT (Kim et al. 2021).

• Graph-based Methods: Grover (Rong et al. 2020), Mol-
CLR (Wang et al. 2022), Mole-BERT (Xia et al. 2022),
and Uni-Mol (Zhou et al. 2023).

• Multimodal Methods: KCL (Fang et al. 2022), KV-
PLM (Zeng et al. 2022), MolT5 (Edwards et al. 2022),
and MoMu (Su et al. 2022).

We additionally construct Random and RDKit-DP as base-
lines for comparison, where Random refers to random vec-
tors, and RDKit-DP consists of the 209 molecular properties
calculated by RDKit.

Evaluation Methodology. To better evaluate the molecu-
lar representations learned by different models, we conduct
experiments in linear probe setting. As a result, the baseline
experimental results reported in this paper may differ from
the original papers. We freeze the model parameters to ex-
tract representations for downstream tasks. These extracted
representations are then mapped to labels through a learn-
able linear layer.

Following the recommendation of Wu et al. (2018), we
use ROC-AUC as the evaluation metric for classification
tasks. For the regression task qm8, we use MAE, and for
other regression tasks, we use RMSE. To ensure fairness,
we use Optuna (Akiba et al. 2019) to search 10 learning rates
(LRs) for each model. We repeat each task 3 times and report
the mean and standard deviation. Due to space limitations,
the standard deviations are included in the appendix.

Implementation Details. For the pretraining phase, we
employ the AdamW optimizer, complemented by a linear
learning rate scheduler. We set the LR at 5.5e-5 and use a
warmup ratio of 0.1. The training is conducted 50 epochs
with a batch size of 64, utilizing two A100-SXM4-80GB
GPUs. For the downstream tasks, we opt for the Adam opti-
mizer and leverage Optuna for hyperparameter tuning, con-
ducting 10 trials to identify the optimal LR within the range
of 1e-5 to 1e-2 for each model on every task. The optimal
LR is determined based on the performance of the validation
set. We train our model using a batch size of 64 on a single
GeForce RTX 2080 Ti GPU, employing an early stop mech-
anism with a patience setting of 3 and limiting the training
to a maximum of 50 epochs.

Performance Comparison (Q1 & Q2)

Q1: We evaluate whether molecular representations en-
hanced by task descriptions could improve performance
across 8 tasks. Tab. 2 shows that MolTailor achieves perfor-
mance gains over the backbone model on the 4 regression
tasks, and notably attains state-of-the-art (SOTA) results on
ESOL, FreeSolv, and Lipophilicity datasets. On the 4 classi-
fication tasks, MolTailor’s performance is inconsistent, with
gains on HIV and Tox21 but losses on the other 2 datasets
when using CHEM-BERT as backbone. We hypothesize that
the difference in model performance on classification and re-
gression tasks is due to the pretraining data benefiting the re-
gression task more. Meanwhile, we experimented with con-
verting the regression pretraining task into a classification
form. The results were still similar, eliminating the influence
of the form of the pretraining task on downstream tasks.

Q2: We experiment on two backbones, ChemBERTa-2
and CHEM-BERT. MolTailor achieves similar gains on top
of both backbones. Notably, the performance differences
between the backbones are also mirrored in the respective
MolTailor variants. This demonstrates MolTailor’s transfer-
ability and ability to inherit strengths of different back-
bones. The results support that further gains may be achiev-
able by transferring MolTailor to new state-of-the-art single-
modality models.
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Models Classification (ROC-AUC) Regression (RMSE / MAE)

Params
Dataset BBBP ClinTox HIV Tox21 ESOL FreeSolv Lip QM8
#Molecules 2039 1478 41127 7831 1128 642 4200 21786
#Split Scaffold Random Scaffold Random Random Random Random Random
#Tasks 1 2 1 12 1 1 2 16
Random 48.38 56.01 49.54 51.11 3.3358 5.4831 1.3813 0.0320 -
RDKit-DP 78.25 67.36 70.85 65.61 4.8940 2.8068 0.9963 0.0202 -
RDKit-FP 87.65 57.13 78.66 76.14 1.0830 2.0725 0.9007 0.0181 -
MACCS-FP 81.64 83.05 77.53 77.27 1.0833 1.9086 0.9886 0.0196 -
Morgan-FP 82.73 72.61 82.65 75.29 1.2413 2.1896 0.8196 0.0200 -
Grover 79.83 87.75 77.47 79.61 0.8977 1.9041 0.8301 0.0184 107M
MolCLR 81.27 78.15 71.48 75.61 1.3421 3.0436 1.0448 0.0219 2M
Mole-BERT 82.70 81.82 79.35 84.20 1.1379 2.3626 0.8316 0.0221 2M
Uni-Mol 79.52 88.65 74.18 78.08 1.0509 2.6913 1.0363 0.0219 48M
BioLinkBERT 83.81 87.75 71.24 73.81 1.1739 3.1350 1.0589 0.0234 108M
PubMedBERT 89.10 84.29 72.30 73.77 1.0715 2.5999 1.0851 0.0232 108M
ChemBERTa-2 84.70 84.21 78.88 80.75 0.8103 1.8439 0.7948 0.0191 3M
CHEM-BERT 84.10 93.80 76.99 80.54 0.7973 2.0214 0.8571 0.0215 51M
KCL 76.86 60.80 68.48 74.98 0.8728 2.7615 0.9868 0.0225 1M
KV-PLM 86.36 81.20 73.52 74.62 1.1785 2.8840 1.1004 0.0233 109M
MoMu-ME 80.41 67.99 71.91 74.75 1.4135 2.3229 0.9835 0.0222 2M
MoMu-TE 82.24 81.94 67.88 73.07 1.2562 3.1480 1.0885 0.0250 109M
MolTailor∗ 84.65 85.95 76.42 80.32 0.7128 1.7826 0.7848 0.0185 112M
MolTailor 81.15 92.37 77.42 80.67 0.7234 1.7881 0.8107 0.0196 161M

Table 2: Evaluation results of MolTailor and baselines under the linear probe setting on MoleculeNet. Here, ME stands for
Molecule Encoder and TE stands for Text Encoder in MoMu-ME/TE. MolTailor∗ denotes using ChemBERTa-2 as the M-
Encoder, while MolTailor indicates using CHEM-BERT. The table shows the average performance over 3 runs. Standard devi-
ations are omitted due to space limitations but can be viewed in the appendix. Results in bold indicate state-of-the-art (SOTA)
performance, while the underlined results show that the model outperforms the backbone used in the M-Encoder.

Ablation Study (Q3 & Q4 & Q5)
Q3. To evaluate the influence of task descriptions on pre-
training in MT-MTR, we first remove the task descriptions
to obtain the dataset MT-MTR∗, then pretrain CHEM-BERT
and PubMedBERT on MT-MTR∗ to get CHEM-BERT∗ and
PubMedBERT∗ models. Next, we concatenate the task de-
scriptions after the SMILES strings to construct dataset MT-
MTR†, and pretrain PubMedBERT on MT-MTR† to obtain
PubMedBERT†. As shown in Tab. 3, CHEM-BERT∗ im-
proves over untrained CHEM-BERT on regression tasks but
drops on classification, indicating MTR as a pretraining task
benefits downstream regression but negatively impacts clas-
sification. Also, PubMedBERT† over PubMedBERT∗ and
MolTailor over CHEM-BERT both demonstrate further re-
gression performance gains but classification performance
drops. This shows introducing task descriptions helps mod-
els better learn from the data. That is, if constructing new la-
bels can improve model performance on classification tasks,
then supplementing task descriptions can further amplify
such gains.

Q4. We replace the task-specific descriptions generated
via GPT-4 with the irrelevant text “to be or not to be, this
is the question.” as noise prompts. Results in Tab. 4 show
degraded performance with noise prompts, indicating infor-
mation in the task descriptions does help the model gener-
ate better molecular representations. However, it should be

noted that the performance drop is slight, suggesting textual
information is not as important as expected in the process
of generating representations. Further investigation into this
phenomenon is needed.

Models Classification↑ Regression↓
CHEM-BERT 83.86 0.9243
CHEM-BERT∗ 83.11 0.9209
PubMedBERT 79.87 1.1949
PubMedBERT∗ 81.67 0.9148
PubMedBERT† 81.08 0.9131
MolTailor 82.09 0.8475

Table 3: Experimental results for Q3. CHEM-BERT and
PubMedBERT use their original weights when evaluated on
downstream tasks. The remaining methods are pretrained on
MT-MTR and its variants, with overlapping molecules be-
tween pretraining and downstream data removed. Addition-
ally, all methods are pretrained for only 20 epochs.

Q5. The experiments in Tab. 2 show that the molecule
representations generated by MolTailor attained better per-
formance. However, are the obtained representations more
task-specific, meaning the task-relevant properties in the
representations are enhanced? To validate this, we designed
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Prompt Types Classification↑ Regression↓
Origin 82.92 0.8348
Noise 82.77 0.8541

Table 4: Experimental results for Q4.
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Figure 3: Performance of three methods on ESOL and
molecular properties prediction tasks for Q5. The x-axis
shows the task names, the y-axis shows the normalized
RMSE, with lower values indicating better performance. Of
the four molecular properties, the first three are related to the
ESOL task, while the last one is opposite.

the following experiment: we used the representations gen-
erated by different methods to predict task-related and task-
unrelated properties. If the expectations are met, then the
representations enhanced by MolTailor should have better
performance in predicting task-related molecular properties.

We conduct experiments on the ESOL dataset. For the
models, we use MolTailor and its corresponding backbone
CHEM-BERT. We also test the performance of MolTai-
lor using irrelevant text as the prompt, denoted as MolTai-
lor(noise). In detail, we first use RDKit to compute the prop-
erties of the molecules in the ESOL dataset, obtaining the
ESOL-MTR dataset. Then, we randomly split the dataset
into 8:1:1 for training, validation, and testing.

The results are shown in Fig. 3. We present the perfor-
mance of the three methods on the ESOL task and in pre-
dicting four molecular properties. Among the four selected
properties, two have names mentioned in the prompt and
are relevant to the ESOL task (MolWt and FractionCSP3),
one is not mentioned but is relevant (EState VSA3), and
one is neither mentioned nor relevant (Kappa1). We use
RMSE as the evaluation metric. For better visualization, we
normalize the RMSE under each task using the formula:
Normalized RMSE = RMSE−mean(RMSE)

std(RMSE) .
The results show that: a) Compared to CHEM-BERT,

MolTailor does focus more on the properties mentioned in
the prompt, validating that the obtained representations are
indeed task-specific. b) MolTailor not only pays more atten-
tion to the relevant properties explicitly stated in the prompt,
but also to the unstated yet still relevant properties. Mean-
while, it decreases attention on the unrelated, unmentioned
properties. This demonstrates the method’s generalization
capability. c) The declined performance of MolTailor(noise)

> Last layer of UT-Encoder

Top 5 tokens: groups, ether, [SEP],
s, weight.

> Last layer of MT-Encoder
Top 5 text tokens: molwt,
molecular, can, solving, descriptors.Origin Prompt Noise Prompt

Figure 4: Visualization of the attention, answering Q6. The
two molecular graphs on the left show MolTailor’s atten-
tion over the molecules under different prompts. The text on
the right shows which input tokens from the original prompt
MolTailor pays most attention to.

in property prediction indicates that the prompt does help
the model attend to critical information.

Case Study (Q6)
Q6. We analyze the attention matrices from the last layers of
the UT/MT-Encoder to investigate whether MolTailor pays
attention to key information. We select the ESOL dataset,
which is related to solubility, to conduct experiments. If the
model attends to information such as molecular weight or
polar functional groups that are critical determinants of sol-
ubility, it suggests key information is captured.

In detail, We pass the SMILES from the test set through
MolTailor trained on ESOL to obtain the required attention
matrices MUT and MMT . Then, we take the values of the
matrix between the “[CLS]” token and the other tokens as
the required attention weights.

The analysis results in Fig. 4 show that MolTailor does
pay attention to solubility-related information, such as
“groups”, “ethers”, and other highlighted tokens. Notably,
the tokens here are merged to form complete words. Ad-
ditionally, the model also pays attention, as seen in the
left molecule attention graph, to polar functional groups
within the SMILES. Furthermore, variations between the
two molecule attention graphs under different prompts in-
dicate effective prompts help the model better focus on key
information that assist in solving the task

Conclusion and Future Work
Overall, in this work we propose a new perspective on
molecular representation learning. Instead of trying to incor-
porate more information into the representations, we obtain
more task-specific representations by combining contextual
information. At the same time, we not only utilize the knowl-
edge contained in the text modality, but also try to leverage
the reasoning ability of language models, which has huge
potential in the era of large language models.

In the future, we first plan to explore new pretraining tasks
that can stably improve model performance on both classifi-
cation and regression tasks. Secondly, we will explore how
to build molecular-text multimodal models based on large
language models. Finally, we look forward to in-depth col-
laborations with domain experts to apply the molecular-text
multimodal methods to actual production problems.
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