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Abstract

Augmenting large language models (LLMs) with external
tools has emerged as a promising approach to extending the
capability of LLMs. Although some works employ open-
source LLMs for the tool learning task, most of them
are trained in a controlled environment in which LLMs
only learn to execute the human-provided tools. However,
selecting proper tools from the large toolset is also a crucial
ability for the tool learning model to be applied in real-
world applications. Existing methods usually directly employ
self-instruction methods to train the model, which ignores
differences in tool complexity. In this paper, we propose
the Confucius, a novel tool learning framework to train
LLM to use complicated tools in real-world scenarios, which
contains two main phases: (1) We first propose a multi-
stage learning method to teach the LLM to use various
tools from an easy-to-difficult curriculum; (2) thenceforth,
we propose the Iterative Self-instruct from Introspective
Feedback (ISIF) to dynamically construct the dataset to
improve the ability to use the complicated tool. Extensive
experiments conducted on both controlled and real-world
settings demonstrate the superiority of our tool learning
framework in real-world application scenarios compared to
both tuning-free (e.g., ChatGPT, Claude) and tuning-based
baselines (e.g., GPT4Tools).

Introduction
The task of tool learning aims to unleash the power of
large language models (LLMs) to effectively interact with
various tools to accomplish complex tasks (Qin et al.
2023b). By integrating LLM with APIs, we can greatly
expand their utility and empower LLM to serve as an
efficient intermediary between users and the vast ecosystem
of applications (Qin et al. 2023a; Jin et al. 2023; Park
et al. 2023). Existing tool learning approaches can be
divided into two categories: tuning-free and tuning-based
methods. The former ones leverage the proprietary LLMs,
such as ChatGPT or GPT-4, to interact with various tools to
solve complex tasks. These methods prompt the proprietary
LLMs with demonstrations of tool usage. However, the only
way for the proprietary LLMs to access the user-defined
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Figure 1: Comparison between the existing tuning-based
tool learning methods and our proposed Confucius. Instead
of using a pre-constructed dataset, we propose an iterative
data construction framework with multi-stage learning to
train the tool-use model effectively.

tools is the prompt (Li et al. 2023). Thus, the limited
context length of LLMs restricts the application of massive
tools. In contrast, the tuning-based methods fine-tune open-
source LLMs to memorize and understand external tools
by explicitly training on elaborate datasets (Li et al. 2023;
Schick et al. 2023). The majority of these methods (Qin
et al. 2023b) first use Self-Instruct technique to collect tool-
use data from proprietary LLMs and then fine-tune an open-
source model. Since the training data only contains a limited
range of tools, most turn-based methods lack the capability
to generalize to unseen tools (tools outside the training data).
In Table 1, we list several cutting-edge tool-use LLMs.

As shown in Figure 1, most existing methods directly
provide a minimal essential toolset to LLMs without
redundant tools. However, when adapting to real-world
applications, LLMs typically face a large toolset that
contains various tools across different tasks. Thus, how to
teach LLMs to select an appropriate tool from the candidates
becomes the first challenge.

Intuitively, the difficulty of using different tools is
not the same. Some tools are used in different ways in
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Method Base
Model

Dataset
Construction

Compositional
Reasoning

Unseen Tool
in Evaluation

Candidates
Construction

Chameleon (Lu et al. 2023) GPT-4 - ✔ ✔ Manually
MMREACT (Yang et al. 2023b) GPT-3.5 - ✔ ✔ Manually

Toolformer (Schick et al. 2023) GPT-J-6B In-Context Learning ✘ ✘ Manually
GPT4Tools (Yang et al. 2023a) Vicuna-13B Manually ✘ ✔ Manually
ToolAlpaca (Tang et al. 2023) Vicuna-13B Simulation ✘ ✔ Manually
APIBench (Tang et al. 2023) LLaMA-7B Manually ✘ ✘ Manually
ToolBench (Xu et al. 2023b) LLaMA-30B Self-Instruct ✘ ✘ Manually
Ours LLaMA-7B ISIF ✔ ✔ Retrieval

Table 1: Comparison of related works. Dataset construction denotes the method of obtaining the training dataset. Compositional
reasoning indicates whether compositional reasoning is required when answering the user query. Candidates construction
indicates whether the candidate set is carefully constructed manually, or obtained through the same retrieval method as the
real application scenario.

different scenarios, so more attention should be paid to
using such complicated tools during model training. For
example, the Google Map tool for exploring the surrounding
places requires only the current coordinates when traveling.
However, when planning a commute route to work, more
additional information, such as the starting and ending
points, as well as the preference, should be specified to
execute this tool. To better interact with such complicated
tools, it is necessary to train to use the tool in many different
scenarios. Thus, the second challenge is knowing which
tool is more complicated and how to improve the ability to
use these tools.

In this paper, we propose the Confucius, a tool-learning
framework to train LLM to use complicated tools in real-
world scenarios. Confucius contains two main phases: (1)
To tackle the first challenge, we first propose a multi-stage
learning method to teach the LLM to use various tools from
an easy-to-difficult curriculum; (2) We propose an Iterative
Self-instruct from Introspective Feedback (ISIF) technique
to dynamically construct the dataset to improve the ability
to use the complicated tool.

Specifically, the multi-stage learning method involves
three training stages: (1) warm-up training, (2) in-category
training, and (3) cross-category training. In the warm-
up training stage, we feed the model with the required
minimal toolset and aim to teach the model to schedule
and execute the tool correctly. Next, in the in-category
training stage, we aim at teaching the model to learn to
select the proper tools among related candidates. Finally,
we employ the cross-category training stage, which trains
the model in the real-world application setting, where the
candidate toolset is constructed by a tool retriever that
conducts semantics matching between the user query and
tool demonstrations. After being trained under our multi-
stage training, an LLM becomes more straightforward and
applied to real application scenarios.

Since the usage of some tools varies significantly in
different scenarios, more extensive training should be
conducted to fully master them. Hence, we introduce the
Iterative Self-instruct from Introspective Feedback (ISIF),
to customize the tool-use training dataset iteratively, which
includes two phases: instance generation and updates with

introspective feedback. In the instance generation phase, we
start with a diverse toolset and an initial set of tool-use
instance data. Then the demonstration of tools is taken as
prompts to ChatGPT to generate diverse queries and then
answer these queries through compositional reasoning with
various tools. Since intricate tools require more training data
for LLM to fully master, the pre-created dataset is out of
sync with the up-to-date LLM.

Therefore, we take the introspection of the LLM for
using tools as the feedback and use this feedback to guide
the dataset update phase. Specifically, in this phase, we
aim to generate more tool-use instances related to the
intricate tools that are usually misused by the current LLM.
Compared to previous works, ISIF facilitates the LLM to
master more intricate tools and prevents it from overfitting
to a subset of simple tools. To verify the effectiveness of
Confucius, we conduct extensive experiments on controlled
and real-world settings using a large-scale tool-use dataset.
Experimental results show that our proposed Confucius
outperforms the tuning-free (e.g., ChatGPT and Claude) and
tuning-based baselines (e.g., GPT4Tools) in terms of four
aspects, which demonstrates the effectiveness of our tool-
learning framework in the real-world application scenario.

To sum up, our contributions can be summarized as
follows: (i) We propose the Confucius, a tool-learning
framework, teaching the LLM to use complicated tools in
real-world scenarios. (ii) We propose a multi-stage learning
method to improve the ability of multiple tool selection
from a large-scale toolset. (iii) We propose an iterative
training strategy ISIF to improve the performance of using
intricate tools by dynamically updating the dataset according
to the model introspection. (iv) Experiments on both seen
and unseen toolsets show that the Confucius effectively
accesses various tools and achieves comparable and even
better performance to proprietary LLMs (e.g., ChatGPT).

Related Work
Tuning-free Tool Learning
The tuning-free methods leverage the inherent in-context
learning capability of LLMs, where the demonstrations of
tools are taken as input to prompt LLMs to use various
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Figure 2: The overall architecture of our framework consists of multi-stage learning and iterative self-instruct from introspective
feedback. We denote the Mi as the target model trained on i-th epoch and the Mi+1 as the target model trained on i + 1-th
epoch.

tools (Paranjape et al. 2023; Yao et al. 2023; Kim, Baldi,
and McAleer 2023). For example, Shen et al. and Wu et al.
integrate existing models hosted by Huggingface as the
toolset to handle various downstream tasks, such as object
detection and question answering. The other studies, such as
Chameleon (Lu et al. 2023), utilize the GPT-4 as the base
model to devise long-term plans and automatically execute
different tools, which further demonstrates the potential
ability to tackle more complex tasks including table-based
reasoning. However, there are two main drawbacks of
tuning-free methods: (1) For data security reasons, not all
the applications (Gao et al. 2019) can transmit tool and user
data to LLM service providers (Gudibande et al. 2023). And
it restricts the use of proprietary LLMs in such applications.
(2) Due to the limitation of the input length, the prompt
cannot accommodate massive tools, thus constraining the
model to utilize only a few tools to tackle the task.

Tuning-based Tool Learning
The tuning-based tool learning methods directly fine-
tune the parameter of language models on the tool-
use dataset (Wang et al. 2023), typically constructed by
prompting proprietary LLMs to use specific tools, e.g.,
search (Qin et al. 2023a; Nakano et al. 2021; Shi et al.
2023a), calculation (Hao et al. 2023; Gao et al. 2023) and
translation (Schick et al. 2023). The advantage of these
methods is that they can be easily deployed in a self-
host environment. However, fine-tuning langauge models on
the constructed datasets typically introduces generalization
problems (Tang et al. 2023), where performance degradation
is usually observed when dealing with new tools which have
not been seen during training. To improve the generalization
of tool-learning models for new tools, some works (Qin
et al. 2023b; Xu et al. 2023b; Patil et al. 2023) devote to

constructing datasets across diverse toolsets and increasing
the diversity of training datasets, which present a promising
solution to enhancing the performance of unseen tools.
However, they ignore the complexity distinctions between
various tools which potentially leads to some complex
tools with intricate usage are not well-learned, hurting the
generalization of the model.

Task Formulation
We formulate the Confucius as a tool learning framework
to train an open-source large language model M to master
various tools in real-world scenarios. In detail, we start
off a large toolset T ∗ with various tools and construct a
tool-use dataset D. Following (Li et al. 2023), we divide
the tools into different categories (ten in our work), such
as navigation and smart home. Each instance d in the
dataset consists of the query q = {q1, q2, . . . , q|q|}, response
y = {y1, y2, . . . , y|y|} and ground truth tools T =
{τ1, τ2, . . . , τ|T |} for answering the query q. Meanwhile, we
denote the relevant toolset as Tr, which derives from the
same category as T , and has no overlap with the T . We
then train the target model M to decompose the original
query q into sub-tasks via compositional reasoning and
schedule the appropriate tools step by step to generate the
response y. During inference, we first retrieve a subset T̃ =
{τ1, τ2, . . . , τ|T̃ |} from toolset T ∗ for the given query q

which contains the candidate tools to generate the response.
Figure 2 shows the overall architecture of our proposed

Confucius operates the two main phrases iteratively:
(1) Given a tool-use dataset, we propose a multi-stage
learning method to finetune the LLM in an easy-to-difficult
curriculum paradigm; (2) After tuning the LLM on the
dataset, we dynamically update such dataset according to the
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confused set caused by the finetuned LLM. Continually, we
employ the updated dataset to finetune the LLM and conduct
the training paradigm in an iterative manner.

Multi-stage Learning
In real-world applications, the tool-use model should select
appropriate tools from the retrieved tools and schedule them
correctly (a.k.a., difficult mode), instead of directly using
human given candidate toolset (a.k.a., easy mode). Similar
to human learning procedures, tool learning models can
benefit from an easy-to-difficult curriculum during model
training (Xu et al. 2020). Therefore, we propose a multi-
stage learning method that consists of warm-up training, in-
category training, and cross-category training, teaching the
LLM to master various tools in the real-world setup.

Warm-Up Training Stage
In the initial warm-up stage, for each query q, we provide
the LLM M with the ground truth toolset T to generate the
response y, which can be formulated as:

P (y|q, T ) =

|y|∏
t=1

PM(yt|y(<t), q, T ). (1)

Then we employ the log-likelihood objective Lwarm-up to
train the M to decompose the query into tool-use sub-tasks
and generate the response y by scheduling multiple tools:

Lwarm-up = − logP (y|q, T ). (2)

In-Category Training Stage
To gradually adapt the model to the real-world setting, for
each query, we integrate a mixture of the ground truth
toolset T and the relevant toolset Tr which are randomly
selected from the same category as the T . The category of
a tool indicates the using scenario, for example, planning
a route and searching for a place are tools of the map
navigation category. In this setting, in addition to arranging
the appropriate tools for the model, it is also necessary to
first select the proper tools from candidates Tr ∪ T . And the
LLM generates the response on the condition of the query q
and mixed toolset Tr ∪ T , which can be formulated as:

Lin = −
|y|∑
t=1

PM(yt|y(<t), q, T , Tr). (3)

Cross-Category Training Stage
Since the tools used to answer the query should be
retrieved automatically rather than manually provided in
real-world applications, we introduce the cross-category
training method, which explicitly empowers LLM to select
appropriate tools in the realistic setting. Specifically, we first
construct a tool retriever model based on the dual-encoder
framework (Reimers and Gurevych 2019) to retrieve the
candidate toolset T̃ , which encodes the user query q and
the tool demonstrations into dense representations and
computes the cosine similarity as relevance. Intuitively, the
retrieved toolset T̃ contains the hard negative (redundant)

### You are an intelligent assistant with
various tools. You need to propose some
real-world tasks and use the tools we
provide to solve them.
### You can use the following APIs:
{Tool list}
### Here are some usage examples:
{in-context learning examples}
Each query involves four tools at least.

Table 2: Prompt used for generating new tool-use instances.

tools that the LLM is more likely to get confused with.
Therefore, we take the union of T and T̃ as the candidate
toolset for each training example. Then the LLM is
supervised to select appropriate tools from the candidate
toolset T̃ ∪ T and generate the response to query q, which
can be formulated as:

Lcross = −
|y|∑
t=1

PM(yt|y(<t), q, T , T̃ ). (4)

Iterative Self-Instruct from Introspection
In order to conduct more targeted training for intricate
tools, we propose the Iterative Self-instruct from
Introspective Feedback (ISIF), a dynamic method for
constructing training data, which updates the training
dataset continuously based on model knowledge of tools.
As shown in Figure 2, ISIF iterates the two phases, i.e.,
instance generation and update with introspective feedback.

Initial Dataset Construction
We start off building a tool store which contains 110
common-used tools and usage instances, which are
constructed manually as the seed instance pool. Specifically,
each instance consists of a concrete query, and the answer
follows the chain-of-thought format, where at least four
tools are involved to encourage the complexity of our
dataset. As shown in Figure 2, for each step, we first
sample 5~7 tools from the tool store, denoted as T ∗.
Then, the demonstrations of sampled tools paired with
corresponding instances are taken as input, prompting
ChatGPT to reason the potential compositional relationship
of tools and generate diverse instances. In Table 2, we show
an example of the prompt, which consists of three main
parts: (1) task instruction; (2) candidate tools list; (3) tool-
use instance demonstrations, which consist of a user query
and a ground truth response. More details for statistics and
comparison with other related datasets are given in Table 3.

Updates with Introspective Feedback
Since the instances generated via self-instruct may be
uncontrolled without any training targeted guidance (Xu
et al. 2023a; Bian et al. 2023), we propose to construct a
prompt to guide the instance generation phase according to
the training procedure. Given a query containing n tokens
q = {q1, ...qn}, we first retrieve a toolset T ∗, and then
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Dataset Tools
amount

Instance
amount

Reasoning
steps

Avg. word
input/output

API-bank 53 272 2.08 56.50 / 59.39
APIBench 3 17,002 1.0 32.36 / 110.21
ToolAlpaca 426 3,938 1.6 23.42 / 36.19
Toolformer 4 144,467 - -
ToolBench 8 2,746 5.9 -
Ours 110 72,000 4.70 223.66 / 75.59

Table 3: Comparison of our and the other tool-use datasets.

provide the LLM M with T ∗ to generate the response.
The generation perplexity h of the target response which
contains m tokens y = {y1, ...ym} conditioned on q and
T ∗ can be factorized as follows:

h = n

√
1

PM(y|q, T ∗)
, (5)

where the PM(y|q, T ∗) is the generation probability,
formulated as:

PM(y|q, T ∗) =

|y|∏
i=1

PM(yi|y(<i), q, T ∗). (6)

Since perplexity h represents the degree of generation
uncertainty, samples with higher perplexity h requires
further training in subsequent training.

And next, we filter the generated instances D =
{d1, d2, . . . , d|D|} with high perplexity instances D∗ which
should be trained more. These filtered instances D∗ are then
utilized in the self-instruct prompt to generate more similar
tool-use instances for further training. The instance generate
method is the same as the initial dataset construction , only
the tool-use demonstration in the prompt is replaced by the
filtered instance d∗ ∈ D∗. Specifically, for each update, we
generate σ percent new instances of the original dataset,
which is guided by the filtered instances, and we append
these instances to the original dataset D. The updated dataset
will be used to train the model in the next epoch, and this
process is conducted iteratively for each epoch.

Experimental Setup
Dataset
To verify the effectiveness of Confucius, we employ two test
sets: Seen and Unseen toolset, and each of them consists
of 2,000 instances with ten tools. All the tools in the Seen
toolset have been used in the training set, while the tools in
the Unseen toolset have not been used when training.

Evaluation Metrics
Following Li et al. (2023) and Tang et al. (2023), we evaluate
from four aspects: tool selection, parameter correctness,
compositional reasoning, and interaction fluency. Tool
Selection evaluates the capability to select correct tools
from the candidate toolset. Since multiple tools are involved
for each instance, we employ the listwise metric, which

calculates the NDCG (Järvelin and Kekäläinen 2002) score
between the tools in the generated response and the
ground-truth response. Parameter Correctness measures
the correctness of the input parameter type for the tools,
which validates whether the LLM response conforms to the
schema of the tool’s interface. Compositional Reasoning
first identifies the topological order of tools in generated and
ground-truth response and calculates the ROUGE-L score
of two sequences of tools. Interaction Fluency employs
the average of ROUGE-1, ROUGE-2, and ROUGE-L scores
as the similarity between the generated and ground-truth
responses, which indicates whether the model comprehends
tools execution results and delivers fluent responses. We
also employ human evaluation where three master students
are invited to evaluate 50 randomly sampled cases with a
three-scale score in the following aspects: (1) Executability:
whether multiple tools are invoked in the correct order to
generate the response (2) Fluency: whether the generated
response is human-like and fluent (Shi et al. 2023b).

Baselines
We compare our Confucius with tuning-based baselines,
including ToolFormer-6B (Schick et al. 2023), ToolLLaMA-
7B (Qin et al. 2023b) and GPT4Tools (Yang et al. 2023a).
We also compare with tuning-free methods, including the
proprietary LLMs (e.g., ChatGPT and GPT-3) and open-
source models, which interact with various tools by in-
context learning. For a fair comparison, all the tuning-based
methods use the dataset as ours, and all the baselines are
provided with the same candidate toolset, which is retrieved
by our dense tool retriever. We use the top-10 tools with the
highest cosine similarity as the candidate toolset.

Implementation Details
In our work, we take the LLaMA-7B1 as our base model.

We vary the percent σ in {10, 15, 20, 25, 30} and find that
the σ = 20 achieves the best performance. We optimize
the model using deepspeed ZeRO strategy (Rasley et al.
2020) with the learning rate of 5e−5 and the weight decay
coefficient of 0.01. The training of our model can be done
within 20 hours with 4 NVIDIA A100-PCIE-80GB GPUs.

Experimental Results
Overall Performance
Table 4 shows the experimental results of all baselines.
We can find that our proposed Confucius achieves the best
performance in seen and unseen toolsets in terms of all
metrics. Compared with ChatGPT, Confucius gets 88.61
(4.99 absolute improvement) in terms of tool selection in
the seen test set, which suggests Confucius shows great
potential for selecting proper tools correctly. We observe that
the Confucius reaches 87.99 and 63.65 in the compositional
reasoning aspect with the seen and unseen toolset, which has
a significant improvement compared with the tuning-based
baseline, and it also outperforms the advanced proprietary
LLM, i.e., ChatGPT. This result highlights the Confucius

1https://huggingface.co/huggyllama/llama-7B
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Seen Toolset Unseen Toolset

Method Tool
Selection

Parameter
Correctness

Compositional
Reasoning

Interaction
Fluency

Tool
Selection

Parameter
Correctness

Compositional
Reasoning

Interaction
Fluency

Claude 75.30 56.00 74.18 55.81 45.13 31.82 45.71 51.38
ChatGPT 83.62 67.31 82.59 65.65 57.65 48.24 57.05 56.89
Text-davinci-003 79.13 59.71 78.66 60.57 54.73 29.53 54.72 46.37
ChatGLM-6B (Du et al. 2022) 41.74 30.81 41.11 43.62 11.13 3.32 11.47 42.53
ChatGLM2-6B (Du et al. 2022) 24.34 18.33 24.43 39.32 7.41 5.62 7.75 22.37
Llama-7B (Patil et al. 2023) 67.52 53.81 65.33 47.71 17.39 14.14 18.20 33.68
Llama2-7B (Patil et al. 2023) 70.93 54.52 67.84 58.49 29.27 20.37 27.12 39.43
Vicuna-7B (Chiang et al. 2023) 66.79 51.19 65.60 58.72 31.32 24.57 30.19 41.04
Vicuna-13B (Chiang et al. 2023) 72.26 57.51 71.17 61.75 36.13 27.52 35.56 41.04
GPT4Tools (Yang et al. 2023a) 75.20 58.52 74.07 64.99 44.58 30.21 46.21 55.87
ToolLLaMA (Qin et al. 2023b) 62.92 44.92 62.99 62.26 34.33 22.31 34.62 50.62
Toolformer (Schick et al. 2023) 30.81 20.48 29.65 38.75 29.27 22.36 27.16 36.29
Ours (LLaMA-7B) 88.61 77.72 87.99 79.09 59.79 50.21 63.65 66.82

Ablation Study

- w/o Lwarm-up 86.11↓2.50 70.16↓7.56 83.91↓4.08 74.86↓4.23 57.30↓2.49 45.32↓4.89 59.58↓4.07 62.60↓4.22
- w/o Lin 85.73↓2.88 70.21↓7.51 83.64↓4.35 75.21↓3.88 57.23↓2.56 47.22↓2.99 60.24↓3.41 62.27↓4.55
- w/o Lcross 83.49↓5.12 63.73↓13.99 77.79↓10.20 70.73↓8.36 53.51↓6.28 40.70↓9.51 53.46↓10.19 58.46↓8.36
- w/o ISIF 83.52↓5.09 67.46↓10.26 81.21↓6.78 73.05↓6.04 54.72↓5.07 41.45↓8.76 56.87↓6.78 60.71↓6.11

Effectiveness Analysis

Ours (LLaMA2-7B) 89.40 77.81 84.38 75.22 59.84 49.53 64.41 68.82
Ours (Vicuna-7B) 87.30 73.50 83.02 76.04 56.94 48.62 61.96 65.05

Table 4: Comparing with baselines on seen and unseen test datasets. The tools in the seen test set have been used in the training
dataset, and the tools in the unseen test set have not been used when training. All the tuning-free methods learn to use the tools
by in-context learning, and the tuning-based baselines use the same dataset as ours.

Seen Toolset Unseen Toolset

Method Executability Fluency Executability Fluency

ChatGPT 2.70 2.73 2.07 2.04
Text-divinci-003 2.53 2.50 1.85 2.15
Toolformer 1.19 1.22 1.10 1.08
GPT4tools 1.83 1.78 1.32 1.22
Ours 2.78 2.80 2.00 2.14

Table 5: Human evaluation on seen and unseen test datasets.

benefits from the chain-of-thought tool-use instances to
conduct compositional reasoning.

In the unseen toolset, the Confucius outperforms the
strong tuning-free methods ChatGPT and Claude, pushing
the score of tool selection to 59.79 ( 3.91% relative
improvement), demonstrating that Confucius achieves
effective generalized tool-use capability. From Table 4, we
also find that the previous tuning-based baselines suffer from
a performance drop when generalizing from seen to unseen
toolset. For example, the compositional reasoning score of
GPT4Tools is 74.07 with seen toolset while only 46.21 in
the unseen toolset, which has a 37.61% relative decrease.
The same trend has also been observed with ToolLLaMA
(45.04% relative decrease). In contrast, Confucius shows a
slight decline, where the score of compositional reasoning
has only a 27.65% relative decrease. The potential reason

is that the LLM can acquire robust tool-use skills from our
iterative training strategy ISIF.

Since the candidate toolset of all the baselines is retrieved
automatically, we also verify the effectiveness of our tool
retriever, The recall@10 of our tool retriever achieves 93.49
and 91.20 in seen and unseen toolsets. It shows that the tool
retriever with dual-encoder architecture is qualified to find
proper tools closely aligned with the ground truth.

Generalization for Different Base Models
To further explore the robustness of our proposed Confucius,
we finetune the other two open-source LLMs (LLaMA2-7B
and Vicuna-7B) using Confucius with the same setting. As
Table 4 shows, compared with the corresponding tuning-
free versions, both two models trained using Confucius
outperform their base model by a large margin, which
demonstrates the generalization of our framework.

Human Evaluation
We conduct human evaluation, and Table 5 summarizes the
results. We find that the Confucius consistently outperforms
the best tuning-based baselines in two aspects, such as
pushing Executability to 2.73 (0.90 absolute improvement)
with seen toolset. Moreover, we also observe that the
Confucius achieves comparable or even better results with
ChatGPT, indicating the effectiveness of our framework.
The average Kappa statistics for two evaluation metrics
are 0.762 and 0.732, illustrating agreement among the
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Figure 3: Comparison between our method with ISIF and a
variant model which randomly sample tools to generate new
instances without the introspective feedback.

annotators. We also provide examples of model outputs in
the supplementary material.

Analysis of Multi-stage Training

In Table 4, we compare Confucius with several ablation
variants, including the model (w/o Lwarm-up, Lin, and Lcross)
which removes each training stage in the multi-stage
training method. We can find that all the variant models
suffer performance degradation, which demonstrates the
effectiveness of our proposed multi-stage training methods
in Confucius. We observe that the model w/o Lcross has
the largest performance drop compared with the other two
variant models in terms of the tool selection score. This
phenomenon demonstrates the necessity of constructing a
candidate toolset similar to the real-world setting to improve
the tool selection ability of LLM.

Analysis of ISIF

We explore whether the performance improvement is simply
caused by the expansion of the training set so as to further
verify the necessity of the introspective feedback in ISIF.
For a fair comparison, different from ISIF, which updates
the dataset according to the high perplexity instance, we
random sample some instances as the prompt of self-instruct
to generate new instances. And then, the updated dataset is
used to train the LLaMA, which is the same base model
as our Confucius. Figure 3 shows the performance of the
models trained on different sizes of initial datasets. We find
that our proposed ISIF performs constantly better than the
model directly trained by vanilla self-instruct in each size of
the dataset, which verifies the effectiveness of dynamically
updating the dataset guided by the introspective feedback.
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Figure 4: The qualitative analysis for update percentage.

Qualitative Analysis for Update Percentage

In our Confucius, we dynamically update the σ percent
dataset according to the perplexity. These filtered instances
are used as the self-instruct prompt to generate new tool-
use instances. By appending these new instances to the
training set, the model can enhance the understanding of
these tools. In this section, we explore the effect of the
percentage of data updates σ on the final performance. In
Figure 4, we vary the data updating percentage σ from 10%
to 30%. As the percentage σ changes from 10% to 20%, the
performance keeps increasing and peaks at 20%. It can be
seen from the results that with the increase of the dynamic
update percentage, the performance is also improved. This
phenomenon can prove the effectiveness of our proposed
updating with introspective feedback. But as the update
percentage continues to increase to 30%, the performance
begins to decline. One possible reason is that too many
targeted tool-use instances introduce the distribution bias,
which causes the model to overfit a few specific tools,
thereby reducing the generalization of the model.

Conclusion

In this paper, we propose the Confucius, a novel tool
learning framework to teach LLM to master various tools,
which consists of two main steps: (1) multi-stage learning
and (2) iterative self-instruct from introspective feedback
(ISIF). Concretely, we fine-tune the LLM with three learning
stages from an easy-to-difficult curriculum, i.e., warm-up,
in-category, and cross-category stages. Since the usage of
some tools varies in different scenarios, which requires more
training to fully understand the usage, we introduce the
ISIF to iteratively update the tool-use training dataset based
on the model introspection. Extensive experiments on seen
and unseen toolsets demonstrate that Confucius can boost
the tool-learning performance of LLM compared with both
tuning-based and tuning-free baselines, including ChatGPT.
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