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Abstract

We observe two phenomenons with respect to quantity and
capacity: 1) more teacher is not always better for multi-
teacher knowledge distillation, and 2) stronger teacher is not
always better for single-teacher knowledge distillation. To
trade off the quantity and capacity of teacher ensemble, in
this paper, we propose a new distillation paradigm named Dy-
namic Knowledge Distillation (DynaKD) that learn an adap-
tive categorical distribution to stochastically employ a teacher
from a teacher ensemble in each step, to transfer knowledge
from teacher ensemble into student. DynaKD has three ad-
vantages: 1) it can preserve diversity of each teacher via one-
to-one distillation manner instead of several-for-one, 2) it can
make the best of powerful teacher via those multi-level as-
sistant teachers in ensemble, and 3) it can also dynamically
determine the importance of each teacher for various tasks.
To verify the effectiveness of the proposed approach, we con-
duct extensive experiments for BERT compression on GLUE
benchmark. Experimental results show that the proposed ap-
proach achieves state-of-the-art score compared to previous
compression approaches on five out of seven downstream
tasks, including pushing MRPC F1 and accuracy to 92.2 (1.4
point absolute improvement), RTE accuracy to 76.2 (2.8 point
absolute improvement). Moreover, we conduct also extensive
experiments for image classification on CIFAR-100. Simi-
larly, DynaKD achieves also state-of-the-art performance.

Introduction
BERT (Devlin et al. 2019) has brought about a sea change
for natural language processing. Following BERT, numer-
ous subsequent works focus on various perspectives to fur-
ther improve its performance, e.g., hyper-parameter (Liu
et al. 2019b), learnable embedding paradigm (Raffel et al.
2020), architecture (Gao et al. 2022), etc. However, there
are massive redundancies in the above BERT-style mod-
els w.r.t. attention heads (Dong, Cordonnier, and Loukas
2021), weights (Gordon, Duh, and Andrews 2020), and lay-
ers (Fan, Grave, and Joulin 2020). Consequently, many com-
pact BERT-style language models are proposed via prun-
ing (Fan, Grave, and Joulin 2020), quantization (Shen et al.
2020), parameter sharing (Lan et al. 2020) and Knowledge
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Distillation (KD) (Pan et al. 2021). In this paper, we focus
on the KD-based compression approaches.

From the point of view of learning procedure, KD is used
in both pre-training (Turc et al. 2019; Sanh et al. 2019; Sun
et al. 2020; Jiao et al. 2020) and fine-tuning phases (Jiao
et al. 2020; Wu, Wu, and Huang 2021; Ding et al. 2023).
From the point of view of distillation objective, KD is em-
ployed for the outputs of hidden layer (Sun et al. 2020), final
layer (Wu, Wu, and Huang 2021), embedding (Sanh et al.
2019) and self-attention (Wang et al. 2020). Wu, Wu, and
Huang (2021) employ multiple teachers to achieve better
performance than single-teacher KD based approaches on
several downstream tasks of GLUE benchmark. Neverthe-
less, the ensemble of multiple teachers is not always more
effective than the single teacher for student distillation (see
Table 3), where same observations are also existed in SKD-
BERT (Ding et al. 2023). There are two possible reasons
as mentioned in SKDBERT: 1) diversity losing (Tran et al.
2020) and 2) underutilization of powerful teacher (Mirzadeh
et al. 2020). To solve this issue, Ding et al. (2023) propose a
distillation strategy named SKD where a teacher is stochasti-
cally sampled from a teacher ensemble according to a hand-
crafted distribution. However, it is very time-consuming to
design appropriate sampling distribution.

Inspired by SKDBERT, as shown in Figure 1, we pro-
pose DynaKD which stochastically employs a teacher from
a multi-level teacher ensemble following a learned adap-
tive categorical distribution with regard to different down-
stream tasks in each step. The proposed approach can not
only solve the above mentioned issues, but also automate
the designing process of sampling distribution (dubbed as
categorical distribution in this paper). Furthermore, we also
propose a differentiable algorithm to dynamically determine
the adaptive categorical distribution which plays an impor-
tant role in DynaKD. We implement extensive experiments
on GLUE benchmark to verify the effectiveness of DynaKD.
Moreover, to show the generalization capacity, we have also
distilled deep convolutional neural network by DynaKD for
computer vision on CIFAR-100 (Krizhevsky, Hinton et al.
2009). Our contributions are summarized as follows:

• We propose DynaKD which preserves the diversity of
each teacher in local view (i.e., each step) and make the
best use of strong teachers in global view (i.e., entire pro-
cess) under an adaptive categorical distribution.
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Figure 1: Overview of DynaKD. For various downstream tasks, DynaKD optimizes an adaptive categorical distribution with
respect to different-capacity teachers via categorical distribution search, and delivers several categorical distribution candidates
which are evaluated to obtain the best one. In each distillation step, a teacher is sampled to transfer its distinct knowledge with
whole diversity into student under the adaptive categorical distribution. In entire distillation process, assistant teachers (i.e., T1

to T4) contribute to distillation performance improvement via capacity gap alleviation. Best viewed in color.

• We propose a differentiable algorithm to learn the best
adaptive categorical distribution via solving a bi-level op-
timization issue.

• We conduct extensive experiments to verify its effective-
ness and generalization ability for both natural language
processing and computer vision tasks.

Impact of Quantity and Capacity for
Knowledge Distillation

In this paper, similar to SKDBERT, DynaKD employs also
five teachers (see Table 1) whose performances can be found
in Supplementary Material, as the teacher ensemble for
BERT compression. Moreover, we show the distillation per-
formance of the student with respect to each teacher in Ta-
ble 2. Compared to previous works, e.g., TinyBERT (Jiao
et al. 2020), DynaKD employs more and stronger teachers
for student distillation. However, this does not mean that the
comparison between DynaKD and previous works is unfair.

Quantity: More Teacher is not Always Better
In this section, we employ MT-BERT (Wu, Wu, and Huang
2021) which is a popular multi-teacher distillation paradigm
for BERT compression, to verify the impact of teacher quan-
tity on distillation performance. On the one hand, we employ
the teacher ensemble used in DynaKD for MT-BERT. On
the other hand, similar to DynaKD, we use only the multi-
teacher distillation loss, instead of the multi-teacher hidden
loss and the task-specific loss for MT-BERT. The experi-
mental results are shown in Table 3. Moreover, we give the
implementation details in Supplementary Material.

Model Name Layer Hidden Size Head #Params (M)
Student DynaKD 6 768 12 66.0

Teacher

T1 8 768 12 81.1
T2 10 768 12 95.3
T3 12 768 12 110
T4 24 1024 16 335
T5† 24 1024 16 335

Table 1: The architecture of student and multi-level
teachers. † means that the teacher model is pre-trained
with whole word masking. The student and all teachers
can be downloaded from https://huggingface.co/huawei-
noah/TinyBERT General 6L 768D and https://github.c
om/google-research/bert, respectively.

Teacher MRPC RTE CoLA SST-2 QQP QNLI MNLI AvgF1+acc
2

acc Mcc acc F1+acc
2

acc m
T1 89.6 73.3 45.8 92.0 88.9 91.1 82.9 80.5
T2 89.7 71.8 46.2 92.3 89.0 91.3 83.2 80.5
T3 89.1 71.5 46.9 93.1 88.9 91.4 82.8 80.5
T4 90.0 72.9 48.9 92.1 88.9 91.2 83.4 81.1
T5 89.5 72.6 48.3 92.4 89.0 91.3 83.5 80.9

Table 2: The distillation performance of student with var-
ious teachers on GLUE-dev.

Various teachers contribute to improving the distillation
performance via abundant prediction diversities (Tran et al.
2020). However, weighted or average output of multiple
teachers is prone to losing the prediction diversity of each
characteristic teacher. For instance, multi-teacher KD con-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17916



Task MRPC RTE CoLA SST-2 QQP QNLI MNLI
Metrics F1+acc

2
acc Mcc acc F1+acc

2
acc m

Best Teacher† T4 T1 T1 T3 T2 T3 T5

STKD 90.0 73.3 49.3 93.1 89.0 91.4 83.5
MTKD 89.7 73.7 50.1 92.2 88.6 91.1 83.6

Table 3: Performances of KD using single and multiple
teachers for the student on the development set of GLUE
benchmark. We employ five teachers, i.e. T1 to T5 shown
in Table 1, for single-teacher distillation and multi-teacher
distillation. † means that the best teacher for student distil-
lation on each downstream task as shown in Table 2. STKD
and MTKD mean single-teacher KD and multi-teacher KD,
respectively.

Student Teacher MRPC RTE CoLA SST-2 QNLI AvgF1+acc
2

acc Mcc acc acc

TinyBERT T3 87.0 67.9 42.2 92.0 91.2 76.1
T5 86.7 70.0 40.9 92.0 90.9 76.1

Table 4: Results of TinyBERT with different-capacity
teachers on GLUE-dev. These results are obtained by
TinyBERT with the fine-tuned teacher model of DynaKD
using the code publicly released by the authors (Jiao et al.
2020).

tributes to only improving the performance on three out of
seven downstream tasks. In each distillation step, DynaKD
stochastically samples a single teacher to preserve the pre-
diction diversity.

Capacity: Stronger Teacher is not Always Better
To verify the impact of stronger teacher on vanilla distilla-
tion paradigm, we employ T3 which is used in TinyBERT
(Jiao et al. 2020) and T5 which is the strongest teacher used
in DynaKD, as the teachers to distill TinyBERT on five
downstream tasks for a fair comparison. Following Tiny-
BERT (Jiao et al. 2020), we implement the experiments with
batch sizes of {16, 32} and learning rates of {1e-5, 2e-5, 3e-
5}, and choose the best result to show in Table 4.

We can observe that the strong teacher T5 contributes to
only improving the performance on RTE. For the above phe-
nomenon, the main reason is that a capacity gap (Mirzadeh
et al. 2020) exists between the strongest teacher T5 and stu-
dent which is prone to obtaining unsatisfactory performance.
To fill the capacity gap, we employ several assistant teach-
ers, i.e., T1 to T4 whose capacities lie between the student
and the strongest teacher, to transfer the knowledge from T5

into the student.

The Proposed DynaKD
Overview
With an adaptive categorical distribution Cat(θ), similar to
SKDBERT (Ding et al. 2023), DynaKD samples a teacher
T̂ from a teacher ensemble which consists of n multi-level
BERT-style teachers T1:n, to transfer knowledge into stu-
dent S in each distillation step. The objective function of

DynaKD can be expressed as

L(w) =
∑
x∈X
Ld(fT̂∈T1:n

(x), fS(x;w)), (1)

where Ld represents distilled loss function to compute the
difference between the student S with learnable parameter
w and the sampled teacher T̂, X denotes the training data,
fT̂∈T1:n

(·) and fS(·) denote the logits from T̂ and S, respec-
tively.

Compare to previous KD paradigms, there are three dif-
ferences in DynaKD:
1. Multiple teachers in global view but single teacher

in local view for prediction diversity preservation: In
each step (i.e., local view), only the sampled teacher is
used to provide prediction for student. In entire proce-
dure (i.e., global view), all teachers are used to transfer
knowledge into student.

2. Multi-level assistant teachers for filling the capacity
gap in global view: In local view, student is directly
guided by the sampled teacher whose capacity may be
too strong to knowledge transfer. In global view, learned
knowledge from assistant teachers contributes to trans-
ferring the strongest teacher’s knowledge into student.

3. Adaptive categorical distribution for teacher impor-
tance control: In global view, DynaKD employs an
adaptive categorical distribution which can be optimized
with respect to various downstream tasks for choosing
appropriate teacher in local view.

In DynaKD, Cat(θ) where θ = {θ1:n} and
∑n
i=1 θi = 1,

is employed to sample the teacher from the teacher ensem-
ble. Particularly, the probability p(Ti) of Ti being sam-
pled is θi. The best adaptive categorical distribution Cat∗(θ)
varies with different downstream tasks. For that, DynaKD
employs a two-phase paradigm: 1) search and 2) evaluation.

Search Phase
Problem Formulation DynaKD has two groups of learn-
able parameter: 1) θ of adaptive categorical distribution and
2) w of student. We split original training data into train-
ing and validation subsets, and denote Ltrain and Lval as
the entropy losses on training and validation subsets, re-
spectively. Both Ltrain and Lval are determined not only by
Cat(θ), but also by w. Particularly, DynaKD aims to learn
the best categorical distribution Cat(θ∗) that minimizes the
validation loss Lval(w∗,Cat(θ)), where the weights w∗ as-
sociated with the categorical distribution Cat(θ) are ob-
tained by argminw Ltrain(w,Cat(θ)). Consequently, Dy-
naKD can be considered as a bilevel optimization problem
(Colson, Marcotte, and Savard 2007) with upper-level vari-
able Cat(θ) and lower-level variable w:

min
Cat(θ)

Lval(w∗(Cat(θ)),Cat(θ)),

s.t. w∗(Cat(θ)) = argmin
w

Ltrain(w,Cat(θ)).
(2)

We optimize θ of adaptive categorical distribution (Sec. )
and w of student (Sec. ) in an alternate and iterative way,
and show the optimization algorithm in Algorithm 1.
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Algorithm 1: Search and Evaluation Phases of DynaKD

Output: Initialize categorical distribution Cat(θ), weights
w of student, candidate number M for evaluation, maxi-
mum step N , current step n = 0

Input: M categorical distribution candidates Computing
step number m for saving categorical distribution candi-
date, i.e., m = bNM c
while n < N do

Update w by descending Eq. (5)
Update Cat(θ) by descending Eq. (4)
n = n+ 1

end while
if n > 0 and n mod m == 0 then

Delivering current Cat(θ) as a categorical distribution
candidate

end if
Evaluate each categorical distribution candidate to choose
the best one

Categorical Distribution Search For categorical distri-
bution search, w is frozen. We employ Continuous Relax-
ation (CR) (Liu et al. 2019a) as the technique to optimize
Cat(θ) in a differentiable way via computing mixture of log-
its with respect to teachers as

fT1:n
(x; Cat(θ)) =

n∑
i=1

θifTi(x). (3)

Subsequently, the gradient with respect to Cat(θ) dubbed
∇Cat(θ)Lval(w∗(Cat(θ)),Cat(θ)) can be computed by an
approximation scheme:

∇Cat(θ)Lval(w − α∇wLtrain(w,Cat(θ)),Cat(θ)), (4)

where w and α indicate the current weights of the student
and the learning rate of categorical distribution, respectively.
In particular, we employ w with a single-step adapting (i.e.,
w − α∇wLtrain(w,Cat(θ)) to appropriate w∗(Cat(θ)) for
avoiding the inner optimization in Eq. (2). This appropria-
tion scheme has been widely used in meta-learning (Finn,
Abbeel, and Levine 2017) and Neural Architecture Search
(NAS) (Liu et al. 2019a).

Student Distillation For student distillation, Cat(θ) is
frozen. Similar to Eq. (1), we utilize the following object
function:

L(w) =
∑
x∈X

θ̂Ld(fT̂∈T1:n
(x), fS(x;w)), (5)

where θ̂ indicates the probability of the teacher T̂ being sam-
pled from T1:n according to Cat(θ).

Evaluation Phase
Generation. Following NAS (Liu et al. 2019a; Ding et al.
2021), search phase delivers M categorical distribution can-
didates whose generation manner can be found in Algorithm
1, where M candidates are generated every bNM c steps.

Evaluation. Subsequently, we evaluate each candidate to
choose the optimal categorical distribution Cat∗(θ). We
train w of student of DynaKD from scratch with each candi-
date of Cat(θ) and evaluate each candidate on development
set. More details can be found in Supplementary Material.

Experiments and Results
Datasets and Settings
Datasets. We evaluate the proposed DynaKD on GLUE
benchmark, including MRPC, RTE, CoLA, SST-2, QQP,
QNLI and MNLI.

Settings. We employ the development set of GLUE
benchmark dubbed as GLUE-dev, for categorical distribu-
tion evaluation of DynaKD. We employ a teacher ensemble
which consists of 5 BERT-style teachers, to distill a 6-layer
BERT-style student dubbed DynaKD. The architecture in-
formation of the student and the teachers can be found in
Table 1. On the one hand, we employ T5 as target teacher
to transfer abundant knowledge into student for distillation
performance improvement. However, there is a large capac-
ity gap between the target teacher and student which is prone
to underutilization of target teacher (Mirzadeh et al. 2020).
On the other hand, we employ weak T1 to T4 (refer to Table
1) as assistant teachers whose capacities are stronger than
student but weaker than the strongest teacher (i.e., T5), to
transfer their knowledge into student for filling the above
capacity gap between the target teacher and student. More-
over, we obtain all experimental results on NVIDIA A100
GPU with AMD EPYC 7642 48-Core Processor.

DynaKD Optimization
Search Phase

Data Split. The original training set of each downstream
task in GLUE benchmark is split fifty-fifty into two subsets,
i.e., validation subset for categorical distribution search and
training subset for student distillation.

Categorical Distribution Search. We employ Adam as
the optimizer for adaptive categorical distribution search.
For various tasks, we utilize identical hyper-parameters ex-
cept learning rate as shown in Supplementary Material.

Student Distillation. For various downstream tasks, we
employ other Adam as the optimizer with identical hyper-
parameters, except batch size, learning rate and training
epoch number, for student distillation. We show the detailed
hyper-parameters in Supplementary Material.

Evaluation Phase DynaKD delivers 15 categorical distri-
bution candidates in search phase, and trains the student with
each candidate from scratch to choose the optimal categor-
ical distribution. In addition to epoch number, other hyper-
parameters (e.g., batch size, learning rate, etc.) are identical
to student distillation on various downstream tasks as shown
in Supplementary Material. The epoch number is set to 15
on MRPC, RTE, CoLA tasks, and 5 on SST-2, QQP, QNLI
and MNLI tasks.
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Model MRPC RTE CoLA SST-2 QQP QNLI MNLI
F1/acc acc Mcc acc F1/acc acc m

Poor Man’s BERT6 (Sajjad et al. 2020) -/80.2 65.0 - 90.3 -/90.4 87.6 81.1
DistilBERT6 (Sanh et al. 2019) 87.5/- 59.9 51.3 92.7 -/88.5 89.2 82.2
LayerDrop (Fan, Grave, and Joulin 2020)† 85.9/- 65.2 45.4 90.7 -/88.3 88.4 80.7
BERT-of-Theseus (Xu et al. 2020) 89.0/- 68.2 51.1 91.5 -/89.6 89.5 82.3
MiniLM (Wang et al. 2020) 88.4/- 71.5 49.2 92.0 -/91.0 91.0 84.0
TinyBERT6 (w/o aug) (Jiao et al. 2020)‡ 88.4/- 72.2 42.8 91.6 -/90.6 90.5 83.5
MT-BERT (Wu, Wu, and Huang 2021)§ 90.8/87.0 72.2 49.1 92.2 87.1/90.4 91.4 83.8
SKDBERT (Ding et al. 2023) 92.1/89.0 75.5 49.1 92.9 87.9/91.0 91.4 84.1
WID55 (Wu et al. 2023) -/88.2 70.4 61.7 92.4 -/91.0 90.1 82.9
DynaKD (ours) 92.2/89.1 76.2 49.8 93.0 88.1/91.1 91.5 84.2

Table 5: Results of DynaKD and other popular approaches on GLUE-dev. All comparative approaches have
identical architecture, i.e., 6-layer BERT-style language model with 66 million parameters. † and ‡ indicate that
the results are cited from (Xu et al. 2020) and (Zuo et al. 2022), respectively. § indicates that the result is obtained
by our settings with the distillation loss described in (Wu, Wu, and Huang 2021), and the experimental details
can be found in Supplementary Material.

Figure 2: Learned adaptive categorical distributions.

Results and Analysis
Learned Adaptive Categorical Distribution We show
the adaptive categorical distributions learned by DynaKD on
GLUE benchmark in Figure 2. In the teacher ensemble, each
individual teacher shows various importances on different
downstream tasks. 1) The strongest teacher T5 plays a dom-
inant role on MRPC, CoLA and QQP tasks rather than all
tasks. 2) Assistant teachers provide also useful knowledge
to fill the above mentioned capacity gap for student distil-
lation on downstream tasks. For instance, the importance of
T1 is the largest on the task of RTE. T2 shows the most im-
portant role on MRPC and QNLI tasks. T3 plays the most
important role on the task of MNLI.

Performance on GLUE Benchmark Table 5 summa-
rizes the performance of DynaKD and the comparative ap-
proaches, e.g., Poor Man’s BERT (Sajjad et al. 2020), Distil-
BERT (Sanh et al. 2019), LayerDrop (Fan, Grave, and Joulin
2020), BERT-PKD (Sun et al. 2019), BERT-of-Theseus (Xu
et al. 2020), MiniLM (Wang et al. 2020), TinyBERT (Jiao
et al. 2020), MT-BERT (Wu, Wu, and Huang 2021), on

GLUE-dev. DynaKD achieves state-of-the-art performance
on six out of seven tasks. DynaKD contributes to particularly
achieving better performance on those tasks with small data
size, e.g., MRPC and RTE. On MRPC, DynaKD achieves
92.2 F1 score and 89.1 accuracy score which are 1.4 and 2.1
point higher than previous state-of-the-art MT-BERT (Wu,
Wu, and Huang 2021), respectively. On the other hand, com-
pared to TinyBERT (Jiao et al. 2020) and MT-BERT (Wu,
Wu, and Huang 2021) on RTE task, DynaKD achieves 4.0
point absolute improvement.

Ablation Studies

Performance Comparison to Other Knowledge
Distillation Paradigms

To verify the effectiveness of the proposed KD paradigm of
DynaKD, we compare it with single-teacher KD paradigm
and several multi-teacher KD paradigms, e.g., AvgKD (Hin-
ton, Vinyals, and Dean 2015), TAKD (Mirzadeh et al. 2020)
via extensive experiments on GLUE benchmark under iden-
tical experimental settings. The experimental results are
shown in Table 6. Moreover, the experimental settings can
be found in Supplementary Material.

For single-teacher KD paradigm, the strongest teacher
may not be the best teacher for student distillation. Capac-
ity gap (Mirzadeh et al. 2020) between the strong-capacity
teacher and weak-capacity student plays an important role
for this phenomenon. For multi-teacher AvgKD, the diver-
sity losing issue leads to worse performance than single-
teacher KD paradigm except QQP task, due to using the en-
semble of teacher outputs. For multi-teacher TAKD, weak-
capacity teachers dramatically reduce the distillation per-
formance of student. In TAKD, the weakest teacher assis-
tant (e.g., T1 of the teacher ensemble) transfers mixture of
knowledge which learned from previous stronger teacher as-
sistants (e.g., T02 to T4 of the teacher ensemble) into the stu-
dent. As a result, the performance of TAKD is very sensitive
to the capacity of the weakest teacher assistant.
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KD Paradigm Teacher MRPC RTE CoLA SST-2 QQP QNLI MNLI AvgF1+acc
2

acc Mcc acc F1+acc
2

acc m

Single-teacher

T1 89.6 73.3 49.3 92.0 88.9 91.1 82.9 81.0
T2 89.7 71.8 48.5 92.3 89.0 91.3 83.2 80.8
T3 89.1 71.5 46.9 93.1 88.9 91.4 82.8 80.5
T4 90.0 72.9 47.7 92.1 88.9 91.2 83.4 80.9
T5 89.5 72.6 48.3 92.4 89.0 91.3 83.5 80.9

AvgKD (Hinton, Vinyals, and Dean 2015) T1-T5 89.9 72.9 48.4 92.2 89.0 91.2 83.4 81.0
TAKD (Mirzadeh et al. 2020) T1-T5 89.3 71.8 47.8 92.7 88.7 91.4 83.4 80.7
DynaKD (ours) T1-T5 90.7 76.2 49.8 93.0 89.6 91.5 84.2 82.1

Table 6: Distillation performance of student with various distillation paradigms on GLUE-dev.

Categorical Distribution Teacher MRPC RTE CoLA SST-2 QQP QNLI MNLI AvgF1+acc
2

acc Mcc acc F1+acc
2

acc m
Uniform (Ding et al. 2023) T1-T5 89.8 73.3 48.8 92.7 89.5 91.4 84.1 81.4
Teacher-rank (Ding et al. 2023) T1-T5 90.5 75.5 49.1 92.1 89.5 91.2 83.9 81.7
Student-rank (Ding et al. 2023) T1-T5 89.9 73.7 47.4 92.9 89.4 91.2 84.0 81.2
Adaptive (ours) T1-T5 90.7 76.2 49.8 93.0 89.6 91.5 84.2 82.1

Table 7: Distillation performance of student with various hand-crafted categorical distributions on GLUE-dev.

Approach TinyBERT DynaKD
Task MRPC RTE CoLA SST-2 QNLI MRPC RTE CoLA SST-2 QNLI
Transformer Layer Distillation 3.42 2.80 12.72 12.90 61.94 0 0 0 0 0
Categorical Distribution Search 0 0 0 0 0 0.08 0.05 0.32 0.64 1.23
Prediction Layer Distillation† 5.04 3.24 4.35 31.71 187.62 1.05 0.75 3.45 3.90 10.95
Total Cost 8.46 6.04 17.07 44.61 249.56 1.13 0.8 3.77 4.54 12.18

Table 8: The computation cost (hours) of TinyBERT and DynaKD on five downstream tasks. These results about
TinyBERT are obtained by following the experimental settings described in (Jiao et al. 2020) with the code publicly
released by the authors (Jiao et al. 2020). † For TinyBERT, the cost is obtained by 6 groups of experiment with various
hyper-parameters (i.e., batch sizes of {16, 32} and learning rates of {1e-5, 2e-5, 3e-5}) on augmentation data. For
DynaKD, the cost is obtained by 15 groups of experiment on vanilla data with different categorical distributions
learned in the process of categorical distribution search.

Performance Comparison with Hand-crafted
Categorical Distributions
In this section, we employ three types of hand-crafted cat-
egorical distribution proposed in SKDBERT (Ding et al.
2023) to examine the effectiveness of the adaptive categor-
ical distribution, which can be dynamically optimized ac-
cording to various tasks.

Three Types of Hand-crafted Categorical Distribution
We employ three types of hand-crafted categorical distri-
bution proposed in SKDBERT (Ding et al. 2023), i.e., uni-
form, teacher-rank and student-rank. Uniform categorical
distribution sets the weight of each teacher to 1

n , where
n refers to the number of teacher. Teacher-rank categori-
cal distribution sets the weight of i-th teacher according to
sft
i∑n

j=1 j
, where sfti = n − rfti + 1 refers to the fine-tuning

performance score of i-th teacher with respect to its rank
rfti ∈ [1, · · · , n]. Similarly, Student-rank categorical distri-

bution sets the weight of i-th teacher according to sdisi∑n
j=1 j

,

where sdisi = n − rdisi + 1 refers to the distillation perfor-
mance score of student distilled by i-th teacher with respect
to its rank rdisi ∈ [1, · · · , n].

Experiments For hand-crafted categorical distribution
evaluation, we employ Adam as the optimizer, and choose
the best batch size and learning rate from {16, 32} and
{1e-5, 2e-5, 3e-5}, respectively. Other hyper-parameters are
identical to DynaKD. We show the experimental results in
Table 7.

For various downstream tasks, hand-crafted categorical
distributions play different roles. Uniform categorical dis-
tribution achieves the best performance on the tasks of QQP,
QNLI and MNLI. Teacher-rank categorical distribution per-
forms the best on the tasks of MRPC, RTE, and CoLA.
Student-rank categorical distribution shows the best perfor-
mance on SST-2 task. However, the proposed adaptive one
outperforms all hand-crafted categorical distributions on all
tasks. Particularly, compared to the best hand-crafted one,
adaptive categorical distribution achieves 0.7 point absolute
improvement on the tasks of RTE and CoLA.

Cost Comparison to TinyBERT
In this section, we show the cost of DynaKD in terms of cat-
egorical distribution search and evaluation, and compare our
approach to TinyBERT with respect to algorithm cost. Ex-
perimental results are shown in Table 8 where on five down-
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Student WRN-16-2 WRN-40-1
Teacher WRN-40-2 WRN-40-2
Student Accuracy 73.26 71.98
Teacher Accuracy 75.61 75.61
KD (Hinton, Vinyals, and Dean 2015) 74.92 73.54
FitNet (Romero et al. 2015) 73.58 72.24
AT (Zagoruyko and Komodakis 2017) 74.08 72.77
SP (Tung and Mori 2019) 73.83 72.43
CC (Peng et al. 2019) 73.56 72.21
VID (Ahn et al. 2019) 74.11 73.30
RKD (Park et al. 2019) 73.35 72.22
PKT (Passalis and Tefas 2018) 74.54 73.45
AB (Heo et al. 2019) 72.50 72.38
FT (Kim, Park, and Kwak 2018) 73.25 71.59
FSP (Yim et al. 2017) 72.91 -
NST (Huang and Wang 2017) 73.68 72.24
CRD (Tian, Krishnan, and Isola 2020) 75.48 74.14
SKD (Uniform) (Ding et al. 2023) 75.52 74.19
SKD (Teacher-rank) (Ding et al. 2023) 75.42 74.63
SKD (Student-rank) (Ding et al. 2023) 75.37 74.29
DynaKD 76.04 74.72

Table 9: Test accuracy (%) of the proposed DynaKD and
other popular distillation approaches on CIFAR-100. All ex-
perimental results are cited from (Tian, Krishnan, and Isola
2020). Average of the last epoch over 5 runs.

stream tasks, the cost of DynaKD is 22.42 hours which is
14.5× less than TinyBERT.

The distillation process of TinyBERT can be divided into
two phases: 1) transformer layer distillation on augmenta-
tion data and 2) prediction layer distillation on augmenta-
tion data. The transformer layer distillation of TinyBERT is
time-consuming, e.g., it spends about 62 hours on QNLI.
Besides, the prediction layer distillation of TinyBERT is also
time-consuming due to using large-scale augmentation data.

Differently, DynaKD consists of categorical distribution
search and evaluation (i.e., prediction layer distillation). On
the one hand, categorical distribution search is efficient, e.g.,
1.23 hours on the task of QNLI, due to the gradient-based
optimization method. On the other hand, categorical distri-
bution evaluation is also efficient even choosing the best cat-
egorical distribution from 15 candidates.

Generalization for Image Classification
The proposed approach is a general KD paradigm for BERT
compression. Consequently, we implement also extensive
experiments to verify the effectiveness for image classifi-
cation on CIFAR-100. Experimental results (see Table 9)
show that the proposed KD paradigm can also achieve state-
of-the-art performance for computer vision tasks. More de-
tails with respect to experimental settings and results can be
found in Supplementary Material.

Related Work
Pre-trained Language Model
Based on the transformer-style architecture (Vaswani et al.
2017), BERT (Devlin et al. 2019) achieves state-of-the-art
performance on different natural language understanding

benchmarks, e.g., GLUE, SQuAD. Subsequently, a great
number of variants of BERT are proposed, e.g., XLNet
(Yang et al. 2019), ELECTRA (Clark et al. 2020) with new
pre-training objectives, RoBERTa (Liu et al. 2019b), T5
(Raffel et al. 2020) with larger pre-training corpus, Con-
vBERT (Jiang et al. 2020) with various architectures and
Synthesizer (Tay et al. 2020) with developed transformer-
like block w.r.t. the dot-product self-attention mechanism.
Besides, previous pre-trained language models often have
several hundred million parameters (e.g. 335 million of
BERTLARGE (Devlin et al. 2019), even 175 billion of
GPT-3 (Brown et al. 2020)) which contribute to delivering
amazing performance on downstream tasks while exponen-
tially increasing the difficulty of deployment on resource-
constrained device. ALBERT (Lan et al. 2020) adopts pa-
rameter sharing strategy to reduce the parameters, and
achieves competitive performance.

Knowledge Distillation for BERT-style Language
Model Compression

To obtain device-friendly BERT-style language model,
many KD-based compression approaches have been pro-
posed. DistilBERT (Sanh et al. 2019) compresses a smaller,
faster, cheaper and lighter 6-layer BERT-style language
model via learning the soft target probabilities of the teacher
in the pre-training stage. In MobileBERT (Sun et al. 2020),
an inverted-bottleneck BERT-style language model is pre-
trained to transfer knowledge to task-agnostic MobileBERT
in a layer-to-layer way. The student in MiniLM (Wang et al.
2020) imitates not only the attention distribution of the
teacher, but also the deep self-attention knowledge which re-
flects the difference between values. In both the pre-training
and the fine-tuning phases, TinyBERT (Jiao et al. 2020)
learns various knowledge from hidden layer, final layer,
embedding and self-attention to achieve high performance.
MT-BERT (Wu, Wu, and Huang 2021) employs multiple
teachers to achieve better performance than single-teacher
KD based approaches on several downstream tasks. Our ap-
proach is inspired by SKDBERT (Ding et al. 2023) where
a teacher is stochastically sampled from a predefined multi-
level teacher ensemble in each step to distill the student fol-
lowing hand-crafted categorical distribution.

Conclusion

This work proposes DynaKD, where an adaptive categori-
cal distribution is optimized for stochastic knowledge dis-
tillation (Ding et al. 2023). We observe that the categori-
cal distribution plays an important role for obtaining high-
performance DynaKD. Consequently, we propose a differ-
entiable optimization framework to learn the best categor-
ical distribution. Extensive experiments on GLUE bench-
mark show that the proposed DynaKD achieves state-of-
the-art performance compared to popular compression ap-
proaches on 6 out of 7 GLUE downstream tasks. Moreover,
the proposed KD paradigm can also achieve state-of-the-art
performance for image classification on CIFAR-100.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17921



References
Ahn, S.; Hu, S. X.; Damianou, A.; Lawrence, N. D.; and
Dai, Z. 2019. Variational information distillation for knowl-
edge transfer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, 9163–
9171.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan,
J. D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.;
Askell, A.; et al. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, 1877–1901.
Clark, K.; Luong, M.-T.; Le, Q. V.; and Manning, C. D.
2020. ELECTRA: Pre-training text encoders as discrimina-
tors rather than generators. In 8th International Conference
on Learning Representations, ICLR.
Colson, B.; Marcotte, P.; and Savard, G. 2007. An overview
of bilevel optimization. Annals of operations research,
153(1): 235–256.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT, volume 1, 4171–4186.
Ding, Z.; Chen, Y.; Li, N.; Zhao, D.; Sun, Z.; and Chen,
C. P. 2021. BNAS: Efficient neural architecture search using
broad scalable architecture. IEEE Transactions on Neural
Networks and Learning Systems, 33(9): 5004–5018.
Ding, Z.; Jiang, G.; Zhang, S.; Guo, L.; and Lin, W. 2023.
SKDBERT: Compressing BERT via Stochastic Knowledge
Distillation. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 37, 7414–7422.
Dong, Y.; Cordonnier, J.-B.; and Loukas, A. 2021. Atten-
tion is not all you need: Pure attention loses rank doubly
exponentially with depth. In International Conference on
Machine Learning, 2793–2803. PMLR.
Fan, A.; Grave, E.; and Joulin, A. 2020. Reducing Trans-
former Depth on Demand with Structured Dropout. In
8th International Conference on Learning Representations,
ICLR.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In Inter-
national Conference on Machine Learning (ICML), 1126–
1135. PMLR.
Gao, J.; Xu, H.; Shi, H.; Ren, X.; Philip, L.; Liang, X.; Jiang,
X.; and Li, Z. 2022. AutoBERT-zero: Evolving BERT back-
bone from scratch. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, 10663–10671.
Gordon, M. A.; Duh, K.; and Andrews, N. 2020. Com-
pressing BERT: Studying the Effects of Weight Pruning on
Transfer Learning. In Proceedings of the 5th Workshop on
Representation Learning for NLP, 143–155. Association for
Computational Linguistics.
Heo, B.; Lee, M.; Yun, S.; and Choi, J. Y. 2019. Knowledge
transfer via distillation of activation boundaries formed by
hidden neurons. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 3779–3787.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Huang, Z.; and Wang, N. 2017. Like what you like: Knowl-
edge distill via neuron selectivity transfer. arXiv preprint
arXiv:1707.01219.
Jiang, Z.-H.; Yu, W.; Zhou, D.; Chen, Y.; Feng, J.; and Yan,
S. 2020. Convbert: Improving bert with span-based dynamic
convolution. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, 12837–12848.
Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.;
Wang, F.; and Liu, Q. 2020. TinyBERT: Distilling BERT
for Natural Language Understanding. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP, 4163–4174.
Kim, J.; Park, S.; and Kwak, N. 2018. Paraphrasing complex
network: Network compression via factor transfer. In Ad-
vances in Neural Information Processing Systems, NeurIPS,
volume 31.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma,
P.; and Soricut, R. 2020. ALBERT: A Lite BERT for
Self-supervised Learning of Language Representations. In
8th International Conference on Learning Representations,
ICLR.
Liu, H.; Simonyan, K.; Yang, Y.; et al. 2019a. DARTS: Dif-
ferentiable architecture search. In International Conference
on Learning Representations (ICLR).
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019b. RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.
Mirzadeh, S. I.; Farajtabar, M.; Li, A.; Levine, N.; Mat-
sukawa, A.; and Ghasemzadeh, H. 2020. Improved knowl-
edge distillation via teacher assistant. In Proceedings of
the AAAI Conference on Artificial Intelligence, AAAI, vol-
ume 34, 5191–5198.
Pan, H.; Wang, C.; Qiu, M.; Zhang, Y.; Li, Y.; and Huang,
J. 2021. Meta-KD: A Meta Knowledge Distillation Frame-
work for Language Model Compression across Domains.
In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing,
ACL/IJCNLP, 3026–3036.
Park, W.; Kim, D.; Lu, Y.; and Cho, M. 2019. Relational
knowledge distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR, 3967–3976.
Passalis, N.; and Tefas, A. 2018. Learning deep representa-
tions with probabilistic knowledge transfer. In Proceedings
of the European Conference on Computer Vision, ECCV,
268–284.
Peng, B.; Jin, X.; Liu, J.; Li, D.; Wu, Y.; Liu, Y.; Zhou, S.;
and Zhang, Z. 2019. Correlation congruence for knowledge
distillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, ICCV, 5007–5016.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17922



Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21: 140:1–140:67.
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta,
C.; and Bengio, Y. 2015. Fitnets: Hints for thin deep nets. In
3th International Conference on Learning Representations,
ICLR.
Sajjad, H.; Dalvi, F.; Durrani, N.; and Nakov, P. 2020. Poor
man’s bert: Smaller and faster transformer models. arXiv
preprint arXiv:2004.03844.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019.
DistilBERT, a distilled version of BERT: Smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108.
Shen, S.; Dong, Z.; Ye, J.; Ma, L.; Yao, Z.; Gholami, A.;
Mahoney, M. W.; and Keutzer, K. 2020. Q-BERT: Hessian
based ultra low precision quantization of BERT. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 8815–8821.
Sun, S.; Cheng, Y.; Gan, Z.; and Liu, J. 2019. Patient
Knowledge Distillation for BERT Model Compression. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing,
EMNLP-IJCNLP, 4322–4331.
Sun, Z.; Yu, H.; Song, X.; Liu, R.; Yang, Y.; and Zhou, D.
2020. MobileBERT: A Compact Task-Agnostic BERT for
Resource-Limited Devices. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguis-
tics, ACL, 2158–2170.
Tay, Y.; Bahri, D.; Metzler, D.; Juan, D.; Zhao, Z.; and
Zheng, C. 2020. Synthesizer: Rethinking self-attention
in transformer models. arXiv 2020. arXiv preprint
arXiv:2005.00743, 2.
Tian, Y.; Krishnan, D.; and Isola, P. 2020. Contrastive rep-
resentation distillation. In 8th International Conference on
Learning Representations, ICLR.
Tran, L.; Veeling, B. S.; Roth, K.; Swiatkowski, J.; Dillon,
J. V.; Snoek, J.; Mandt, S.; Salimans, T.; Nowozin, S.; and
Jenatton, R. 2020. Hydra: Preserving ensemble diversity for
model distillation. In International Conference on Machine
Learning Workshop on Uncertainty and Robustness in Deep
Learning.
Tung, F.; and Mori, G. 2019. Similarity-preserving knowl-
edge distillation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV, 1365–1374.
Turc, I.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
Well-read students learn better: The impact of student
initialization on knowledge distillation. arXiv preprint
arXiv:1908.08962.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. volume 30.
Wang, W.; Wei, F.; Dong, L.; Bao, H.; Yang, N.; and Zhou,
M. 2020. MiniLM: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers. In Ad-

vances in Neural Information Processing Systems, NeurIPS,
volume 33, 5776–5788.
Wu, C.; Wu, F.; and Huang, Y. 2021. One teacher is enough?
pre-trained language model distillation from multiple teach-
ers. In Findings of the Association for Computational Lin-
guistics: ACL/IJCNLP, 4408–4413.
Wu, T.; Hou, C.; Zhao, Z.; Lao, S.; Li, J.; Wong,
N.; and Yang, Y. 2023. Weight-Inherited Distillation
for Task-Agnostic BERT Compression. arXiv preprint
arXiv:2305.09098.
Xu, C.; Zhou, W.; Ge, T.; Wei, F.; and Zhou, M.
2020. BERT-of-Theseus: Compressing BERT by Progres-
sive Module Replacing. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Process-
ing, EMNLP, 7859–7869.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R. R.; and Le, Q. V. 2019. XLNet: Generalized autoregres-
sive pretraining for language understanding. In Advances
in Neural Information Processing Systems, NeurIPS, vol-
ume 32.
Yim, J.; Joo, D.; Bae, J.; and Kim, J. 2017. A gift from
knowledge distillation: Fast optimization, network mini-
mization and transfer learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR, 4133–4141.
Zagoruyko, S.; and Komodakis, N. 2017. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer.
Zuo, S.; Zhang, Q.; Liang, C.; He, P.; Zhao, T.; and Chen,
W. 2022. MoEBERT: from BERT to Mixture-of-Experts
via Importance-Guided Adaptation. In Proceedings of the
2022 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, NAACL, 1610–1623.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17923


