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Abstract

Aspect prediction (AP) and sentiment prediction (SP) are
representative applications in fine-grained sentiment anal-
ysis. They can be considered as sequential tasks, where
AP identifies mentioned aspects in a sentence, and SP in-
fers fine-grained sentiments for these aspects. Recent mod-
els perform the aspect-sentiment prediction in a joint man-
ner, but heavily rely on the feature interactions of aspect
and sentiment. One drawback is that they ignore correlation
strength varies between aspect features and sentiment fea-
tures across different sentences, and employ a fixed feature
interaction strategy may limit effective knowledge transfer
across tasks. To tackle this issue, in this paper, we propose
an Adaptive Inter-task Feature Interaction framework, AIFI,
for joint aspect-sentiment prediction. Specifically, we intro-
duce a novel contrast-based alignment method based on con-
trastive learning. Our approach considers the AP-specific and
SP-specific representations of a given sentence as a positive
pair, while representation of another random sentence serves
as a negative example. Moreover, we propose an inter-task
feature correlation network to predict the contrast strength,
which is determined by the temperature coefficient in the In-
foNCE loss. This dynamic correlation adjustment enhances
model’s ability to capture proper feature interactions more
efficiently. Experimental results on three datasets validate the
effectiveness of our approach.

Introduction
In comparison to traditional sentiment analysis tasks, aspect-
level sentiment analysis (ALSA) requires a more in-depth
examination of the context and the extraction of more de-
tailed information (Liu 2012; Zhang et al. 2022b). ALSA
involves several sub-tasks: aspect prediction (AP), opinion
prediction (OP), and aspect term sentiment prediction (SP).
AP identifies aspects or features in the context (Lv et al.
2023), OP extracts expressions conveying sentiment about
the aspects (Liu et al. 2023), and SP determines the sen-
timents expressed towards each aspect (Liang et al. 2023).
Sometimes, opinion terms are not explicitly provided, re-
quiring the ALSA system to predict aspects and sentiments
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Sentences

The Windows 7 seems 
to be quite expensive. 
I asked for seltzer 
with lime, no ice.
The food is delicious –
from the specials  to 
regular menu-fare, 
the dishes are never a 
disappointment. 

(1)

food

seltzer 
with lime

Windows 7 Negative

(2) Neutral

(3) specials
regular 

menu-fare

Positive

Positive

Positive

Positive

AP SP

Sub-Task Correlation 
Strength

dishes

Figure 1: Examples of ALSA tasks from real-world datasets.
The aspects are framed by rectangles and opinion words are
marked in blue. And the greater the number of five-pointed
stars, the stronger the correlation.

directly from the context without predefined opinion terms.
In this study, we concentrate on jointly predicting aspects
and sentiments from the sentences, as shown in Figure 1.

The initial approach to ALSA is employing a two-stage
approach (Fan et al. 2019; Hu et al. 2019). Firstly, it ac-
complishes the AP and is subsequently followed by another
model to perform SP. Nevertheless, this strategy could po-
tentially disrupt the interaction between aspects and senti-
ments and may also lead to error propagation problems.

Recent efforts aim to achieve the two sub-tasks co-
hesively, predicting aspects and corresponding sentiments
jointly or interactively through a unified methodology (Lin
and Yang 2020; Lv et al. 2021; Chen et al. 2022b; Zhang
et al. 2022c; Liang et al. 2023; Cui et al. 2023). These studies
have revealed a strong mutual implication between these two
sub-tasks, and have devised some interaction strategies to fa-
cilitate the knowledge exchange. One of the extensively re-
searched and proven effective techniques in this field is reg-
ularization alignment approach (Chen et al. 2022b,a). It in-
volves two key steps: first, encoding aspect- and sentiment-
specific features for each task, and second, aligning these
task-specific features (i.e., maximize the similarity) within
the latent space. In this way, the aspect words simultane-
ously encode both aspect- and sentiment-related features,
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and vice versa. However, this approach, while effective, may
not always distinguish aspect- and sentiment-specific fea-
tures well, potentially leading to negative transfer problem.
For instance, in the movie scenario, suppose that the major-
ity of the reviews regarding Spielberg’s films tend to be posi-
tive. When predicting the aspect and sentiment of the review
“I watched a Spielberg’s film.”, the regularization approach
might amplify the associations between aspect and senti-
ment features in the semantic space due to its rigid align-
ment strategy. This may lead to aspect “Spielberg’s film”
being consistently associated with a positive sentiment, de-
spite the absence of explicit sentimental words in this sen-
tence, which could inevitably affect the prediction.

To address this issue, we present a contrast-based align-
ment framework based on contrastive learning (Oord, Li,
and Vinyals 2018), which has proven successful in other
multi-task learning tasks (Lin et al. 2022; Bai et al. 2022).
It aims to encourage learning sufficient inter-task interactive
features while mitigating negative transfer issues by pulling
closer the aspect and sentiment features in the semantic
space belonging to the same sentence, pushing away fea-
tures with different sentences. In the proposed framework,
the temperature parameter τ regulates the contrast strength
between aspect and sentiment features (Wang and Liu 2021;
Lin et al. 2022). When there is a strong correlation between
aspect and sentiment features, we assign a smaller value to τ .
Conversely, when the correlation is weak (e.g., “I watched a
Spielberg film.”), we assign it a larger value. By adeptly fine-
tuning this parameter τ , the model can alleviate the afore-
mentioned pseudo-correlation pattern to some extent, gen-
erating proper interaction features, and thereby effectively
reducing the negative knowledge transfer issue.

Generally, the temperature parameter τ is assumed to be
fixed in contrast-based alignment method. While manually
adjusting τ can yield satisfactory results across datasets,
the correlation strength between aspect and sentiment fea-
tures still manifests differently across various sentences. In-
tuitively, the more sentimental words there are in a sentence,
the stronger the mutual implications between aspect and sen-
timent features, as sentimental words are often associated
with specific domains or types of aspects. Take Figure 1
for example, (1) in the 1st sentence, the appearance of word
“expensive” in the laptop dataset would likely be related to
some electronic product, helping the AP task in predicting
aspect “windows 7”. (2) However, in the 2nd sentence with
neutral sentiment, due to there is an absence of obvious sen-
timental words, each sub-task may rely more on contextual
clues. (3) Additionally, in the 3rd sentence, where several
sentiment words are directly related to aspects, these mutu-
ally indicative cues can assist in predicting the correspond-
ing aspects and sentiments more quickly. These examples
illustrate it is necessary to design distinct correlation inten-
sities between task-specific features for different sentences.

Towards this end, we further propose a sentiment-aware
contrastive learning framework to explicitly model adap-
tive feature interactions, named AIFI. More specifically, we
have observed the significant role of sentiment information
in indicating the aspect-sentiment correlations, thus, we es-
tablish a feature correlation network to predict the correla-

tion intensity between task-specific features. This enables us
to adaptively set the temperature for contrastive learning in a
fine-grained manner, improving the capture of inter-task cor-
rections. The experimental results on three datasets show our
model’s effectiveness. Overall, this work contributes to three
major aspects: (1). We propose a novel contrast-based align-
ment method based on contrastive learning, which is able to
learn sufficient inter-task interactive features while avoiding
negative transfer issues. To the best of our knowledge, this
is the first work that applies contrastive learning to address
the problem of joint aspect-sentiment prediction. (2). We es-
tablish a feature correlation network to predict the contrast
strength. This allows us to dynamically adjust the correla-
tion intensity in a highly detailed manner, thereby enhancing
the ability to capture inter-task correlations. Besides, our ap-
proach can be generally extended to other multi-task learn-
ing (MTL) problems as well. (3) Experimental results on
three real-world datasets show that the proposed framework
achieves state-of-the-art performances.

Related Work
In this section, we provide a brief overview of the rele-
vant literature, focusing on two areas: aspect-level sentiment
analysis and contrastive learning.

Aspect-Level Sentiment Analysis. ALSA requires ex-
tracting the aspect terms with their corresponding sentiment
polarities in the sentence, which is an active research topic
in recent years. Early studies treat them as two separate
tasks and use some prevalent algorithms such as Condi-
tional Random Fields (CRF) (Li and Lu 2017), Long Short-
Term Memory (LSTM) (Chen et al. 2020) and Bidirectional
Encoder Representations from Transformers (BERT) (Yang
et al. 2020) to complete the task. Meanwhile, some re-
searchers have explored end-to-end solutions for aspects and
sentiments extraction using the multi-task learning frame-
work (Luo et al. 2019; Lin and Yang 2020; Chen et al.
2022b; Liang et al. 2023). They emphasize the close re-
lationship between aspect and sentiment and propose var-
ious interaction approaches, such as shared-private feature
interaction. (Lin and Yang 2020), feature combination in-
teraction (Lv et al. 2021), and task-regularization interac-
tion (Chen et al. 2022b). Although successful, most of these
methods overlook the varying degree of feature correla-
tions in different sentences, making it challenging to transfer
knowledge effectively across tasks. Recently, large language
models have had a profound impact on the entire NLP com-
munity due to their impressive representation abilities (Zhou
et al. 2023). Large models like ChatGPT are trained using
general-purpose data and possess strong generalization abil-
ities. However, in low-resource ALSA task, while they may
outperform fine-tuned BERT in certain cases, they still lag
behind state-of-the-art (SOTA) models (Wang et al. 2023).

Contrastive Learning. Recently, numerous studies have
been applying contrastive learning techniques to NLP tasks,
yielding promising results (Giorgi et al. 2021; Zhang et al.
2022a,d,a; Rethmeier and Augenstein 2023; Lingling et al.
2023). In the task of aspect-level sentiment classifica-
tion, several insightful researchers have explored incorpo-
rating contrastive learning into the model training process.
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Liang (Liang et al. 2021) employ contrastive learning to cap-
ture aspect-invariant and aspect-dependent features, thereby
distinguishing the roles of valuable sentiment features and
achieving sentiment classification. Xiong (Xiong et al. 2022)
propose a triplet contrastive learning network that effectively
coordinates syntactic and semantic information. They con-
struct an aspect-oriented sub-tree to replace the syntactic
adjacency matrix, and then introduce a sentence-level con-
trastive learning scheme to emphasize the features of senti-
ment words. To the best of our knowledge, there is no exist-
ing work that integrates contrastive learning into aspect and
sentiment extraction. Thus, in this work, we propose an in-
novative adaptive contrastive learning framework aimed at
jointly predicting aspects and sentiments.

Methodology
In this section, we introduce our proposed approach AIFI for
joint aspect-sentiment prediction in Figure 2. First, we in-
troduce the task formulation and the backbone architecture.
Then, we present the adaptive learning method. Finally, we
show the optimization details.

Problem Formulation
In this work, we aim to tackle the task of jointly predict-
ing aspects and their corresponding sentiments. As shown
in prior studies (Chen et al. 2022b; Liang et al. 2023; Liu
et al. 2023), AP and SP are highly related when applied to
the same sentence, and thus a MTL solution can potentially
benefit for both sub-task. It is important to note that our ap-
proach is not restricted to these two sub-tasks alone, but can
be generally extended to other MTL problems as well.

Formally, given an input sentence x = {w1, w2, . . . , wn},
wherewi represents the ith word in the sentence, and n is the
sentence’s length. Our goal is to identify and extract aspects
mentioned in the sentence, along with their corresponding
sentiment labels (i.e., positive, negative, or neutral), denoted
as O = {(a1, s1) , (a2, s2) , . . . , (am, sm)}, where ai repre-
sents the i-th aspects, and si represents the sentiment label
associated with ai, m is the aspect number of a sentence.

Base Structure
Following (Chen et al. 2022b; Lv et al. 2023), we adopt pre-
trained BERT language model (Devlin et al. 2019) as the un-
derlying encoder to generate contextualized clause represen-
tations. Given a sentence x = {w1, w2, . . . , wn}, the output
of sentence representation is h = {e1, e2, . . . , en} ∈ Rn×d,
where d represents the embedding size.

After obtaining the embedding representation h, we lever-
age an expert network (Ma et al. 2018) to capture task-
specific features for each branch hap and hsp. This allows
our model to possess increased flexibility in capturing intri-
cate patterns of relatedness across tasks. Specifically, each
standalone task is optimization via:

p̂s, p̂e = fap(g(·)),
ŷ = fsp(g(·)), (1)

where fap, fsp and g(·) indicate the AP-specific layer, SP-
specific layer and expert network respectively. In this equa-
tion, p̂s and p̂e represent the probability of being an aspect

boundary (i.e., start and end position) in AP task. Once ob-
taining the aspect boundary probabilities, we can employ
a heuristic extraction algorithm (Lin and Yang 2020; Chen
et al. 2022b) to extract the corresponding aspects. ŷ repre-
sents the predicted sentiment probabilities in SP task.

Learning Objective. In training phase, each task has its
own learning objective. For AP, we need to minimize the
cross-entropy loss of aspect boundary:

Lap = CrossEntropy(ps, p̂s) + CrossEntropy(pe, p̂e), (2)

where ps and pe are the ground truths of the start and end
boundaries (i.e., 0-1 vectors), p̂s and p̂e represent the pre-
dicted boundary scores. Besides, for SP, the parameters are
learned based on:

Lsp =−
N∑
i=1

m∑
j=1

yi,j log ŷi,j , (3)

where ŷi,j represents the predicted sentiment class and yi,j
represents the corresponding ground truth. N is the training
samples and m is the number of sentiment polarities.

Actually, capturing task correlations between AP and SP
can be challenging, and merely optimizing the loss functions
described in Eq. (2) and Eq. (3) is insufficient. It’s essential
to find the right balance between sharing information across
tasks and preserving task-specific elements. Over-sharing
information might lead to interference or negative impact
between the sub-tasks, while sharing too little information
could limit the potential benefits derived from the inter-task
relationships. Based on the base structure, we next present
our solution by further modeling the inter-task interactions
in an adaptive and fine-grained manner.

Modeling Adaptive Inter-Task Interactions
Inter-task Feature Alignment In this section, we aim to
enhance the inter-task interactions. As mentioned above,
the expert network is a component of a multi-task learning
model that aims to leverage shared knowledge across differ-
ent tasks while allowing each task to have its own specific
features. Besides the expert network, we further learn the
alignment relation between aspect-specific and sentiment-
specific features for knowledge transfer across tasks.

A straightforward way to implement this is to di-
rectly align aspect- and sentiment-related features in latent
space (Chen et al. 2022b) through a regularization strategy,
such as KL divergence or mean squared error (MSE). Al-
though this regularization alignment strategy is commonly
used in existing multi-task learning framework (Lee, Yang,
and Hwang 2016; Huang et al. 2023), it doesn’t ensure
proper discrimination between aspect and sentiment fea-
tures, potentially leading to the negative transfer problem.

Thus, to address this issue, we propose to model the
inter-task feature interactions using a more precise align-
ment approach based on contrastive learning. In comparison
to regularization-based strategy, contrastive learning proves
to be more potent and flexible in establishing associations
across distinct representation spaces (Wang and Isola 2020).
Specifically, when presented with a sentence representation
hx, we exchange its output representations with those from
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Figure 2: The architecture of our proposed framework AIFI. The red double arrow indicates that the gradient is cut-off.

another task as positive pairs. Meanwhile, we consider the
output representation from a different sentence representa-
tion hx′ as a negative pair. To implement this, we utilize
in-batch negatives for contrastive learning:

Lcl = −
∑
x∈D

log
exp (sim(hap

x · hsp
x )/τ)∑

x′∈B exp (sim(hap
x · hsp

x′)/τ)
, (4)

where sim(·) measures the similarity between two vectors,
which is set as cosine similarity function, D denotes the
dataset, and B symbolizes a dataset batch. τ is a temperture
coefficient that regulates the contrast strength between two
representations.

In this equation, τ is usually set as a fixed value. In fact, it
is important to note that the strength of feature correlations
between AP and SP varies across different sentences. As a
result, our subsequent objective involves exploring a more
adaptive approach to establish the temperature coefficient.

Adaptive Inter-Task Feature Alignment Essentially,
two representations of data in contrastive learning are com-
pared based on a similarity metric, and the temperature pa-
rameter plays a crucial role in this process. The smaller the
temperature used in this process, the more strict the con-
straint becomes, and vice versa (Wang and Liu 2021; Zhang
et al. 2021). Consequently, our goal is to find an optimal
balance in the temperature parameter in an adaptive manner.
We want the model to be sensitive enough to capture similar-
ities between task-specific features, while also being robust
enough to avoid overgeneralization and negative knowledge
transfer. Hence, we propose to construct a feature correlation
network and utilize the estimated relatedness to adaptively
adjust the temperature coefficient.

Particularly, we first obtain the task-specific representa-
tions (hap and hsp) for AP and SP respectively. The hap

aims to summarize the aspect-relevant features from the sen-
tence, while hsp captures the sentiment-related information

in the embedding space. Then, the feature combinations will
be subsequently transformed by MLP layers and a softmax
function to generate the predicted correlation strength:

r̂ = softmax (MLP (hap ⊗ hsp)) , (5)
where ⊗ represents element-wise product. r̂ is the predicted
relatedness score.

Intuitively, the greater the number of emotional words in
a sentence, the stronger the mutual implications between as-
pect and sentiment features, as such words are commonly
linked to distinct domains or types of aspects. For this rea-
son, we adopt the sentiment polarity of each sentence as
the ground truth for correlation model. More precisely, we
gauge the correlation of task-specific features by assess-
ing the quantity of positive and negative sentiment polarity
within the sentence. Formally, the ground truth is defined as:

rla =

m∑
i=1

(I [si = pos] + I [si = neg]) , (6)

where m is the number of aspect in each sentence. I is an
indicator function, which returns 1 if the value is true, and
0 otherwise. si = pos indicates the sentiment of aspect i is
positive. However, the label range covered by rla may quite
extensive (i.e., some sentences contain more than a dozen
aspect words related to non-neutral sentiments), which may
impede network optimization. To expedite this process, we
handle the predicted scores greater than two separately:

r =

 0, if rla = 0
1, if rla = 1
2, if rla ≥ 2.

(7)

Based on the predicted score r̂ and ground truth r, we lever-
age the CrossEntropy loss to optimize the softmax classifier:

Lre =−
N∑
i=1

j=3∑
j=1

ri,j log r̂i,j , (8)
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Algorithm 1: Training Process
Input: Training sample D, learning rate α, inter-task

feature relatedness parameters Φ,
task-specific parameters Θ

1 while Converged == False do
2 for B in Dataloader(D) do
3 Obtaining model prediction:
4 Obtain p̂s, p̂e and ŷ via Eq. (1);
5 Obtain r̂ via Eq. (5);
6 Select task representation hap and hsp;
7 Optimization parameter Φ:
8 Constructe r based on Eq. (7);
9 Calcuate Lre based on Eq. (8);

10 Update Φ = Φ− α∇ΦLre ;
11 Optimization parameter Θ:
12 Calcuate Lap and Lsp via Eq. (2) and Eq. (3);
13 Calcuate Lcl via Eq. (10) ;
14 L = Lap + Lsp + Lcl;
15 Update Θ = Θ− α∇ΘL ;
16 end
17 end

where N is the number of sentence.
However, the correlation strength is positively correlated

with r̂, which contradicts the definition of the temperature
parameter in Eq. (4). Furthermore, r̂ is a discrete value
and cannot be directly applied to the temperature parame-
ter in contrastive learning. Accordingly, after obtaining the
predicted relatedness score r̂, we utilize linear interpola-
tion (Blu, Thévenaz, and Unser 2004; Lin et al. 2022) to
adjust the temperature parameter within a reasonable range:

τr = τmin + (τmax − τmin)× (1− E(r̂)

2
), (9)

where τmin and τmax represent the minimum and maxi-
mum pre-set values for the temperature parameter, respec-
tively. E(r̂) is the expectation of predicted relatedness score.

With the learned τr, Eq. (4) can be rewritten as:

Lcl = −
∑
x∈D

log
exp (sim(hap

x · hsp
x )/τr)∑

x′∈B exp (sim(hap
x · hsp

x′)/τr)
. (10)

Overall Optimization
We train the proposed framework by jointly minimizing the
sum of the aforementioned four losses:

L = Lap + λ1Lsp + λ2Lre + λ3Lcl, (11)

where λ1, λ2 and λ3 are hyperparameters to control corre-
sponding strengths. In the training phase, it’s worth noting
that the gradients produced by the contrastive loss solely up-
date task-specific parameters, while the optimization of the
feature correlation model is governed by Lre. Algorithm 1
depicts the entire optimization process.

Dataset #Sentences #Pair #POS #NEG #NEU
DR 3900 6603 4134 1538 931
DL 1869 2936 1326 900 620
DT 2350 3243 703 274 2266

Table 1: Statistics of three datasets. “Pair” denotes the num-
ber of aspect-sentiment pair.

Experiment
In this section, we conduct experiments to address the fol-
lowing five research questions:

RQ1. How do the proposed method AIFI perform when
compared to baseline methods? RQ2. Do AIFI model really
help in the effective prediction of aspect and corresponding
sentiments? RQ3. Which part of the AIFI model majorly
contributed to the effective prediction of optimal ALSA?
RQ4. Is it possible to achieve improved performance by
manually fine-tuning τ in real-world situations? RQ5. Do
adaptive interactions between task-specific facilitate settling
the challenging that are mentioned above?

Datasets
We conduct experiments on three publicly available datasets,
i.e., DR, DL, and DT. The DR is a combination of restau-
rant review sets from SemEval2014, SemEval2015, and Se-
mEval2016 (Pontiki et al. 2014, 2015, 2016). The DL dataset
comprises customer reviews in the electronic product do-
main, which were collected from the SemEval Challenge
2014 (Pontiki et al. 2014). The DL consists of twitter posts
from different users (Mitchell et al. 2013). For DR and DL
datasets, we maintain the official data division for the train-
ing, validation, and testing sets. The results reported are the
averaged scores of 10 runs. As there is no standard train-
test split available for DT, we follow (Chen et al. 2022b) and
report the ten-fold cross-validation results. The statistics of
these three datasets are presented in Table 1.

Methods Evaluated
We compare our model with the following baselines:

SPAN-BERT (Hu et al. 2019) propose a pipeline model
for ALSA. It employs BERT as its backbone network, and a
multi-target extractor is utilized to detect the aspect bound-
aries. Subsequently, a polarity classifier is applied to de-
termine the sentiment polarity of each aspect. DOER (Luo
et al. 2019) present a dual cross-shared recurrent neural net-
work for ALSA. which incorporates a cross-shared unit to
effectively analyze the interplay between AP and SP, thus
achieving promising results. SPRM (Lin and Yang 2020) is
a span-based model to address AP and SP simultaneously.
It utilizes a combination of private and shared representa-
tions (i.e., expert network) to address the ALSA task, with
the objective of capturing the interconnections between the
tasks. S-AESC (Lv et al. 2021) is a shared span-based learn-
ing framework that utilize both dual gated recurrent units
and an interaction layer to model the inter-task correlations.
HI-ASA (Chen et al. 2022b) develop a hierarchical multi-
task framework that integrates expert interactions and task-
level regularization interactions to enhance the associations
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Dataset Method Precision Recall F1

DR

DOER� 0.8032 0.6654 0.7278
S-AEAC� 0.7826 0.7050 0.7418

SPAN-BERT� 0.7614 0.7334 0.7492
SPRM† 0.7754 0.7945 0.7846

HI-ASA† 0.7859 0.7942 0.7879
ChatGPT† 0.7023 0.6531 0.6762

AIFI (Ours) 0.7919∗ 0.8065∗ 0.7991∗

DL

DOER� 0.6143 0.5931 0.6035
S-AEAC� 0.6687 0.6492 0.6588

SPAN-BERT� 0.6946 0.6672 0.6806
SPRM† 0.6854 0.6872 0.6851

HI-ASA† 0.6877 0.6872 0.6871
ChatGPT† 0.4921 0.4832 0.4872

AIFI (Ours) 0.7019∗ 0.6909∗ 0.6963∗

DT

DOER� 0.5554 0.5479 0.5137
S-AEAC� 0.5586 0.5374 0.5473

SPAN-BERT� 0.6072 0.5502 0.5769
SPRM† 0.6002 0.5825 0.5912

HI-ASA† 0.6140 0.5879 0.6004
ChatGPT† 0.4325 0.4114 0.4216

AIFI (Ours) 0.6322∗ 0.5953∗ 0.6130∗

Table 2: Overall performance comparison on three datasets.
The results with � are taken from their original papers. The
† means that we reproduce the models using released code
with original parameters on the dataset. And the bold indi-
cates the best results, ∗ denotes the statistical significance
for p-value ≤ 0.05 compared with HI-ASA.

between AP and SP. It is the current state-of-the-art model
for joint aspect-sentiment prediction. ChatGPT (Wang et al.
2023) is a recently launched large language model (LLM),
which has shown superior performance in various natural
language processing (NLP) tasks. In this study, we employ
ChatGPT as aspect extractor and sentiment classifier to re-
trieve the semantic information from the raw text corpus. We
carefully develop task-specific prompts (i.e., few-shot learn-
ing) to activate its comprehension capabilities.

Evaluation Measures and Configurations
Following previous studies, we employ precision, recall, and
F1 to assess the ALSA performance of our model. For AP
task, F1 is also utilized as the evaluation metric. Addition-
ally, we adopt accuracy as the metric for SP.

In the experiment setting, we employ the BERT-Large
model as the basic network architecture, comprising 24
transformers with a hidden size of 784. We adopt the Adam
optimizer (Kingma and Ba 2014) with a learning rate of 3e-
5, a batch size of 64, and a dropout probability of 0.1. Be-
sides, we set τmax to be 1 and τmin to be 0.05. We tune the
λ1, λ2 and λ3 in the range [0,1].

Experiment Results
Overall Performance (RQ1). Table 2 presents the com-
parison results of ALSA between AIFI and the baseline
models. Evidently, the proposed AIFI model consistently
achieves state-of-the-art results on three real-world datasets

Sub-Task Method DR DL DT

AP

SPAN-BERT 0.8238 0.8335 0.7528
S-AEAC 0.8420 0.8519 0.7604
SPRM 0.8665 0.8425 0.6960

HI-ASA 0.8592 0.8573 0.7621
AIFI (ours) 0.8701 0.8597 0.7523

SP

SPAN-BERT 0.8995 0.8139 0.7516
T-GCN] - 0.8179 0.7803
SPRM 0.9035 0.8150 0.7834

HI-ASA 0.9246 0.8375 0.8382
AIFI (ours) 0.9284 0.8486 0.8549

Table 3: Sub-task results on three real-world datasets.The ]
means the results are from (Tian, Chen, and Song 2021).

when compared to existing methods. According to the sig-
nificance test, the model demonstrates excellent perfor-
mance with p-value ≤ 0.05. More precisely, AIFI outper-
forms the HI-ASA model (the current best method) by
+1.22%, +0.92% and +1.26% in F1 score on DR, DL,
and DT, respectively. This advantage primarily stems from
the inter-task contrastive learning paradigm, which explic-
itly captures proper knowledge across tasks, thereby en-
hancing representation learning for AP-SP. Additionally, the
adaptive temperature parameter aids in the contrastive rep-
resentation integration, enabling better capturing of task-
relatedness when compared to other interaction models.

Furthermore, to validate ChatGPT’s performance on
ALSA tasks, we offer demonstration examples in the in-
put to fully exploit the capabilities of ChatGPT through in-
context learning. We perform few-shot prompting experi-
ments on ALSA using various examples. However, the re-
sults indicate that ChatGPT still lags significantly behind
state-of-the-art models on three datasets. This suggests that
enhancing performance in these low-resource domains con-
tinues to be a challenging task.

Results for Individual Sub-Task (RQ2). To further in-
vestigate the effectiveness of AIFI in sub-tasks, we con-
ducted a comparative analysis between AIFI and previous
methodologies developed for both sub-tasks. The results are
presented in Table 3. Basically, our model has achieved good
results, especially in the SP task, with performance improve-
ments of +0.38%, +1.11%, and +1.67% on three datasets,
respectively, demonstrating the effectiveness of AIFI. How-
ever, the performance in AP task is lower than HI-ASA
model on DT. This happened because the sentence length
in Twitter reviews is relatively short, which may limit the
contextual information contained in the text. It is challeng-
ing to estimate the correlation strength between task-specific
features due to this limited context.

Ablation Study (RQ3). For detailed model analysis, an
ablation study is performed, to study and observe the con-
tribution and feasibility of different parts of the AIFI model.
From Table 4, the observation can be made that all the parts
of the AIFI model positively contributed to enhancing the
ALSA performance. But the greatest contribution comes
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Task Method DR DL DT

AP
-w/o CL 0.8644 0.8068 0.7373

-w/o Adaptive CL 0.8647 0.8248 0.7436
AIFI (ours) 0.8701 0.8378 0.7523

SP
-w/o CL 0.9214 0.8202 0.8344

-w/o Adaptive CL 0.9270 0.8407 0.8288
AIFI (ours) 0.9284 0.8486 0.8549

ALSC
-w/o CL 0.7931 0.6602 0.5887

-w/o Adaptive CL 0.7955 0.6847 0.6086
AIFI (ours) 0.7991 0.6963 0.6130

Table 4: Ablation study results on three datasets. “- w/o CL”
means without contrastive learning, and “- w/o adaptive CL”
means without adaptive contrastive learning.

from the contrast-based alignment strategy: when the con-
trastive learning module is removed, there is a significant
drop in the model’s performance. This demonstrates that
contrast-based alignment strategy highly influence the per-
formance and encourage learning proper interaction features
between two sub-task through contrastive learning. The pre-
vious alignment strategies fail to distinguish task-specific
features, resulting in suboptimal performance.

Effect of Parameter τ (RQ4). In AIFI, the parameter τ
is crucial. We derive it through a correlation prediction net-
work but wondered if manual tuning across datasets could
enhance performance. To validate this hypothesis, we exper-
iment with three datasets (as illustrated in Figure 3). Specif-
ically, we adjust τ in the range [0,1] for three datasets.

In the first two datasets, we observe that the average per-
formance of the latter half (i.e., τ ≥ 0.5) in the fine-tuning
method is generally lower than that of the first half. This
pattern arises because as the parameter τ increases, the cor-
relation strength in contrastive learning between aspect and
sentiment features decreases, leading to a decrease in perfor-
mance. For the DT dataset, the fine-tuning approach achieves
its highest performance with an optimal τ value of 0.8. Im-
portantly, this value exceeds the optimal values of 0.1 ob-
served in the other two datasets. This difference can be at-
tributed to the relatively high proportion of neutral reviews
in DT. Although manual adjustment of τ can yield satisfac-
tory outcomes, a notable disparity persists when compared
to our adaptive method. Our belief is that not all sentences
within a dataset inherently exhibit consistent task-related
features. So an effective approach for joint aspect and senti-
ment prediction might involve varying contrastive strengths.

Case Study and Error Analysis (RQ5). Figure 4 displays
prediction results of HI-ASA and AIFI models on some ex-
ample reviews that are selected from datasets. In the 1st re-
view, both HI-ASA and AIFI models successfully extract as-
pects and corresponding sentiments. But further, in the 2nd
review, HI-ASA model does not handle the aspect-sentiment
correlations very well in neutral review and fails to predict
the sentiment. However, our model can accurately extract
this pair “(seltzer with lime, neutral)”, which indicates that
proper interactions between AP and SP truly benefit the task.
Similarly, in the 3rd review, HI-ASA model becomes unfit

Adaptive Fine-tuning

	𝐹1

	τ

𝔻!

0.1 0.3 0.5 0.7 0.9 1

0.798

0.792

0.795

Adaptive Fine-tuning

	𝐹1

	τ

𝔻!

0.1 0.3 0.5 0.7 0.9 1

0.69

0.67

0.65

Adaptive Fine-tuning

	𝐹1

	τ

𝔻!

0.1 0.2 0.3 0.4 0.5

0.612

0.606

0.600

0.6084

Adaptive Fine-tuning

	𝐹1

	τ

𝔻!

0.6 0.7 0.8 0.9 1.0

0.612

0.606

0.600

0.6086

Figure 3: F1 results for adaptive τ and fine-tuning τ method.

Reviews

Not only was the food 
outstanding, but the little 
perks were great.
I asked for seltzer with 
lime, no ice.

I bought a protector for my 
key pad and it works great.

(1)
(food, positive)

(2)

HI-ASA AIFI (Ours)

(perks , positive)

(food, positive)
(perks , positive)

(perseltzer with lime，
positive)

(perseltzer with lime，
neutral)

(foprotector ,positive)
(works, positive)

(foprotector ,neutral)
(works, positive)

(3)

Error Analysis
I The first time the sushi 
was outstanding, the second 
time it was a little bland.

(sushi,Positive)
(none)(4)

(sushi,Positive)
(none)

I am satisfied with the com-
puter, except for the 
processor.

(computer, positive)
(processor, negative)

(computer, positive)
(processor, negative)

(5)

Figure 4: Some case studies and error analysis. Xand × de-
note correct and incorrect predictions. The aspects are out-
lined with rectangular boxes.

for detecting multiple aspects with different sentiments.
Despite the fact that the AIFI model is capable of settling

the negative transfer issues to some extent, it is necessary to
conduct error analysis to assess the constraints of the model.
In the 4th review, our model proves inadequate in identifying
multiple opinion terms linked to a single aspect, thus strug-
gling to differentiate sentiments. In the 5th review, the senti-
ment expressions of “processor” are overly implicit, leading
to the model’s inability to make accurate predictions.

Conclusion
In this paper, we explore the effective prediction of as-
pects and sentiments in reviews through the utilization of
inter-task proper interactions. We present a contrast-based
alignment framework, which is able to learn sufficient inter-
task interactive features while avoiding negative transfer is-
sues. To dynamically adjust the alignment process, we de-
vise a predictive network dedicated to estimating correlation
strength between aspect and sentiment features. Through ex-
periments conducted on three datasets, we demonstrate that
AIFI surpasses the current state-of-the-art methods.
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