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Abstract
Recent research has demonstrated that the multi-task fine-
tuning of multi-modal Large Language Models (LLMs) using
an assortment of annotated vision-language datasets signifi-
cantly enhances their performance. Yet, during this process, a
side effect, which we termed as the “multi-modal alignment
tax”, surfaces. This side effect negatively impacts the model’s
ability to format responses appropriately - for instance, its
“politeness” - due to the overly succinct and unformatted na-
ture of raw annotations, resulting in reduced human prefer-
ence. In this paper, we introduce Polite Flamingo, a multi-
modal response rewriter that transforms raw annotations into
a more appealing, “polite” format. Polite Flamingo is trained
to reconstruct high-quality responses from their automatically
distorted counterparts and is subsequently applied to a vast
array of vision-language datasets for response rewriting. Af-
ter rigorous filtering, we generate the PF-1M dataset and fur-
ther validate its value by fine-tuning a multi-modal LLM with
it. Combined with novel methodologies including U-shaped
multi-stage tuning and multi-turn augmentation, the resulting
model, Clever Flamingo, demonstrates its advantages in both
multi-modal understanding and response politeness accord-
ing to automated and human evaluations. Code and dataset
are available at https://github.com/ChenDelong1999/polite-
flamingo

Introduction
General-purpose AI systems have attracted a significant
amount of interest due to their broad range of applica-
tions (e.g., smart assistants). They are expected to be ca-
pable of accurately perceiving the visual world, compre-
hending diverse human requests, and providing helpful
yet natural responses. Prior works towards this goal (e.g,
OFA (Wang et al. 2022a), Unified-IO (Lu et al. 2022), Uni-
Perceiver (Zhu et al. 2022)) have focused on training multi-
modal transformers via multi-task learning, but they lack the
generalization ability to unseen tasks or instructions, and
they are not capable of offering user-friendly natural re-
sponses. Recently, instruction tuning empowers Large Lan-
guage Models (LLMs) strong instruction-following and re-
sponse formatting abilities, making it more convenient and
efficient to access its encoded knowledge and complex rea-
soning ability. Many researchers attempted to connect visual
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Figure 1: Overview of our proposed approach.

representations with LLMs to transfer such powerful capa-
bility to vision-language tasks. Massive image-text data col-
lected from the Internet can be used to train the visual repre-
sentation (e.g., CLIP (Radford et al. 2021)) and the connec-
tor (e.g., Flamingo (Alayrac et al. 2022), Kosmos-1 (Huang
et al. 2023), LLaVA (Liu et al. 2023b), MiniGPT-4 (Zhu
et al. 2023)), but such supervision is usually noisy and could
not cover much fine-grained information that encourages
deeper visual understanding beyond shallow semantics. A
promising direction is introducing annotated captioning /
VQA / visual reasoning datasets, which exhibit a stronger
alignment of real-world human needs than these image-text
pairs sourced from the Internet. Concurrent works such as
InstructBLIP (Dai et al. 2023), Otter (Li et al. 2023b), PaLI-
X (Chen et al. 2023), and Ying-LM (Li et al. 2023c), have
shown encouraging results of using a collection of vision-
language datasets for visual instruction tuning.

However, there exists a significant challenge yet to be
resolved in the process of visual instruction tuning. Exist-
ing captioning, VQA, and visual reasoning datasets typi-
cally provide very concise ground truths or answers. How-
ever, as human users, we generally prefer AI assistants that
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can provide ChatGPT-style structured responses, along with
optional detailed explanations and elaborations. When us-
ing raw annotations for visual instruction tuning, their style
would also be learned by the model, even the LLM part
is kept frozen and only the connector is tuned. As a re-
sult, the InstructBLIP model, the current SoTA model on
a wide range of vision-language benchmarks, ranked sec-
ond to last (Li et al. 2023a) in Multi-Modality Arena (Xu
et al. 2023), a user rating-based evaluation platform of multi-
modal LLMs. The model with the lowest Elo rating score
is Multimodal-GPT (Gong et al. 2023), which is also tuned
with raw annotations. This phenomenon is caused by the ad-
ditional multi-modal alignment step upon LLM, which thus
can be termed as “multi-modal alignment tax”:

Definition 1. Multi-modal alignment tax ∆P{g,fLLM}
is the extra cost of enabling multi-modal perception
for LLMs via visual instruction tuning g that maps a
text-only fLLM to a multimodal LLM, i.e., g(fLLM) →
fMLLM. The cost is typically reflected as a degradation
in task performance that measures model capacity from
a certain perspective. Considering a total of n tasks
{T1, T2, ..., Tn} and their corresponding performance
measure PTi

, the multi-modal alignment tax can be quan-
tified as ∆P{g,fLLM} =

∑n
i=1 (PTi

(fLLM)− PTi
(fMLLM)).

The root cause is that: visual representations are fed as
soft prompts or prefixes to the LLM, while it is proved that
prompt tuning or prefix tuning is able to drastically change
the behavior of language models, similar to other parameter-
efficient fine-tuning (PEFT) methods such as LoRA (Hu
et al. 2022). In this paper, our goal is to prevent LLMs from
learning undesired response styles of raw vision-language
dataset annotations during visual instruction tuning, thus be-
ing a “polite” multi-modal LLM:

Definition 2. Polite multi-modal LLMs provide natural
and appropriate responses to user queries. Reduction in
politeness is a specific instance of multi-modal alignment
tax that impacts the model’s ability to maintain optimal
response styles.

To achieve this goal, we introduce a novel method that
involves converting these raw responses into natural ones,
and we then train the multi-modal LLM using this style-
transferred high-quality instruction data, thus mitigating
the multi-modal alignment tax on response politeness. As
shown in Figure 1, to obtain a rewriter that is capable of
transferring the response style, we first distort the “polite”
version of the response (e.g., GPT-4 generated contents) into
an “impolite” one, approximating the distribution of existing
vision-language dataset annotations. We fine-tune a multi-
modal LLM, OpenFlamingo-9B (Awadalla et al. 2023), to
learn the reversed mapping (i.e., impolite → polite). Sub-
sequently, we apply the learned model, referred to as “Po-
lite Flamingo”, to rewrite massive annotations in existing
vision-language datasets. After carefully filtering out low-
quality results and hallucinations, we obtain a high-quality
yet large-scale visual instruction tuning dataset PF-1M, and
use it to tune a multi-modal LLM.

Figure 2: Comparison of different visual instruction tuning
methods. LLaVA (Liu, Emerson, and Collier 2022) performs
multi-modal self-instruct (Wang et al. 2022b) using GPT-4,
which has high API cost and limited visual groundedness;
InstructBLIP (Dai et al. 2023) directly uses learn raw an-
notations, and thus suffer from multi-modal alignment tax;
M3IT (Li et al. 2023c) and MIMIC-IT (Li et al. 2023a)
employed ChatGPT-based rewriters, while we train a Polite
Flamingo to rewrite responses, which enjoys advantages of
1) multi-modality, 2) scalability, and 3) diversity.

We perform a comprehensive evaluation comparing the
resulting visual instruction-tuned model, which we called
“Clever Flamingo”, with other multi-modal LLMs, includ-
ing MiniGPT-4 (Zhu et al. 2023), LLaVA (Liu, Emerson,
and Collier 2022), InstructBLIP (Dai et al. 2023), and Ot-
ter (Li et al. 2023b). In summary, Clever Flamingo outper-
forms all of these models on detailed image captioning tasks,
and only underperforms the InstructBLIP series (Dai et al.
2023) on VQA tasks (InstructBLIP uses a 3×heavier vi-
sual backbone, 8.6×larger pretraining dataset, and +0.6M
more instruction samples). For multi-image reasoning tasks,
Clever Flamingo outperforms the Otter baseline by a sig-
nificant margin. In terms of human preference (i.e., polite-
ness), Clever Flamingo only underperforms the LLaVA se-
ries, which uses purely GPT-4-generated instructions. The
contributions of this paper are summarized as follows:

• We proposed a novel method to curate raw vision-
language datasets into visual instruction tuning data,
which enables learning from a wide range of annotated
datasets with reduced multi-modal alignment tax.

• We constructed a large-scale visual instruction tuning
dataset based on response rewriting, and provide some
empirical solutions to ensure data quality.

• We further introduced a U-shaped multi-stage visual in-
struction tuning pipeline and multi-turn augmentations to
produce a strong multi-modal LLM efficiently.

• We performed comprehensive evaluations in terms of
both multi-modal understanding and response politeness
using automated evaluators, whose reliability is verified
by human evaluations.

Related Works
Visual instruction tuning for multi-modal LLM. Re-
search on enabling visual perception for powerful but blind
LLMs attracted widespread attention recently (Yin et al.
2023a). The most straightforward methodology is to inte-
grate image captioning experts via prompt engineering (e.g.,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17746



Socratic Models (Zeng et al. 2022), HuggingGPT (Shen
et al. 2023), MM-REACT (Yang et al. 2023)) . However,
this is inefficient due to the low bandwidth of natural lan-
guage communication: given the diversity of real-world vi-
sual tasks, describing all of the potential task-relevant in-
formation within a single image requires a huge amount
of language tokens. Therefore, many efforts opt to con-
nect compact latent visual representations through a dense
connector by visual instruction tuning, such as MiniGPT-
4 (Zhu et al. 2023), LLaVA (Liu, Emerson, and Col-
lier 2022), Multimodal-GPT (Gong et al. 2023), LLaMA-
Adapter (Zhang et al. 2023), Otter (Li et al. 2023b),
mPLUG-Owl (Ye et al. 2023), InstructBLIP (Dai et al.
2023). These models use linear projectors or perceivers as
the connector between visual models and LLM, thus hav-
ing a much larger information bandwidth compared to those
prompt-based natural language communications.

Data for visual instruction tuning. However, what data
is optimal for training these connectors to ensure that they
propagate visual information faithfully is unclear. Exist-
ing attempts include generating self-instruct (Wang et al.
2022b) data (i.e., LLaVA (Liu, Emerson, and Collier 2022)),
using image-text captioning datasets (e.g., COCO (Chen
et al. 2015), SBU (Ordonez, Kulkarni, and Berg 2011), CC-
3M (Sharma et al. 2018)), and unifying downstream vision-
language datasets (e.g., VQA and visual reasoning datasets).
Although GPT-4 generated LLaVA dataset enjoy very high
quality, its scale remains insufficient, and it could not en-
courage fine-grained vision-language alignment, as it does
not “make V in VQA matter” (Goyal et al. 2017). On the
other hand, using captioning datasets only would result in
degenerated QA capabilities, as a soft prompt that encour-
ages image captioning is implicitly learned by the connector,
then the model would prefer to give an image caption even
if the instruction asks it to answer a certain question.

Multi-modal alignment tax. Therefore, many efforts
have been focused on utilizing downstream vision-language
datasets, including Multimodal-GPT (Gong et al. 2023), Ot-
ter (Li et al. 2023b), InstructBLIP (Dai et al. 2023), M3IT (Li
et al. 2023c), LAMM (Yin et al. 2023b). Unfortunately, the
multi-modal alignment tax (Definition 1) becomes a seri-
ous side effect that destroys the response formatting ability
of the resulting multi-modal LLMs. To avoid such cost, the
earliest work Multimodal-GPT (Gong et al. 2023) simply re-
moved vision-language datasets that contain short answers.
InstructBLIP (Dai et al. 2023) adds additional prompts such
as “provide your answer as short as possible” to the instruc-
tion, but still could not mitigate the short answer bias due
to the imbalance of response style – most responses in the
training data are very short so the model just ignores these
additional prompts.

ChatGPT-based text-only rewriter. Another attempt to
mitigate the multi-modal alignment tax is to use ChatGPT
to rewrite the short answer, as adopted in concurrent works
M3IT (Li et al. 2023c) and MIMIC-IT (Li et al. 2023a).
We compare our method with them in Figure 2. Since our
Polite Flamingo is a multi-modal rewriter, it can fuse vi-
sual perception with text semantics to rewrite, as opposed
to these ChatGPT-based blind models that can only rely

on the answer information. Polite Flamingo is also much
lighter, cheaper, and does not require any API cost, lead-
ing to better scalability1. Moreover, Polite Flamingo is spe-
cially trained on 255k diverse rewriting examples, while
ChatGPT can only perform zero-shot or few-shot rewrit-
ing. As an example of its limitation, M3IT (Li et al. 2023c)
used a single in-context rewriting demonstration to prompt
ChatGPT, which resulted in limited diversity – 96% rewrit-
ten samples within its A-OKVQA subset have the sen-
tence pattern of “{rational}, so the answer is
{answer}”. Finally, our work also shares some similari-
ties with FuseCap (Rotstein et al. 2023) and LaCLIP (Fan
et al. 2023) and RemoteCLIP (Liu et al. 2023a) that gener-
ate/rewrite image captions to train vision language models.

Polite Flamingo: a Multi-modal Instruction
Response Rewriter

To learn a rewriter for raw annotations of vision-language
datasets, the most straightforward way could be to train a
model to directly predict a “polite” version from the cor-
responding raw annotations. Unfortunately, careful annota-
tion of such translations is highly expensive and hard to
scale. To overcome this limitation, we design a surrogate
task that trains the rewriter to learn the style from exist-
ing high-quality instruction data, such as the LLaVA self-
instruct dataset (Liu et al. 2023b). Specifically, we first trans-
fer the style of these high-quality responses into low-quality
ones, approximating the distribution of the raw annotations
in the vision-language dataset that needs to be rewritten.
Then, we train the model to reconstruct the original high-
quality response from given distortions, as shown in Fig-
ure 3.

Our methodology is inspired by denoising AutoEncoder-
style image enhancement models. These systems automati-
cally introduce distortions, such as random noise or down-
sampling, to the original images, and then the model is
trained to reconstruct the original images. The resulting
model can then be applied to image denoising or super-
resolution. The key assumption of these image enhancement
models, as well as our Polite Flamingo is that the distortion
module should produce samples i.i.d. to the input samples
during inference (i.e., noise/low-resolution images, or raw
annotations) so that the train-test domain divergence is small
and these denoising AutoEncoders can generalize well.

Response Distortion
To approximate the distribution of raw vision-language
dataset annotations that would be used for Polite Flamingo
inference, we develop the following three strategies for re-
sponse distortion. Resulting examples can be found in the
Appendix2.

• LLM-instructed Distortion. Representative patterns of
raw annotations include short answers (e.g., VQA-

1Polite Flamingo can be run on consumer GPUs: BF-16 infer-
ence roughly takes 18 GB GPU memory.

2The appendix can be found at https://arxiv.org/pdf/2307.
01003.pdf
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Step 1
Response Distortion

<s> A chat between a curious human and an 
artificial intelligence assistant...
### Human: 
{Instruction} <image>
### Assistant: 
(Drafted Response) {Distorted Response}
(Revised Response) {Original Response} </s>

Step 2
Rewriter Training
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Figure 3: Training pipeline of Polite Flamingo. We distort
original high-quality responses into the corresponding low-
quality version, then train a multi-modal LLM to predict the
original response. This model is then used to rewrite raw
annotations of a wide range of vision-language datasets and
derive a PF-1M dataset for visual instruction tuning.

v2 (Goyal et al. 2017)), lacking punctuation or capitaliza-
tion (e.g., MS-COCO Captions (Chen et al. 2015)), not
being coherent (e.g., A-OKVQA (Schwenk et al. 2022)),
etc., and we prompt an LLM to produce responses simi-
lar to these patterns. For each sample, we append another
round of conversation, asking the model to transfer the
original response into a “impolite” one. Furthermore, we
randomly sample a distortion command from a pool con-
taining a total of 24 alternatives and add it to the prompt
with a probability of 50

• Random Text Augmentations. This distortion is much
cheaper compared to LLM-based distortion, and we in-
troduce it to further increase the diversity of the Po-
lite Flamingo training set. Specifically, We use the
NLPAUG library to perform character-level, word-level,
and sentence-level text augmentation. Every level of aug-
mentation is applied with a probability of 50

• Retrieve Captions & Bounding Boxes. In the LLaVA
dataset (Liu et al. 2023b), GPT-4 is used to produce high-
quality detailed captions for visual instruction tuning,
given five captions and all bounding box annotations of
each image. However, possibly due to the high API cost,
there are only 23k samples of such detailed descriptions.
Here we would like to distill such capability into the Po-
lite Flamingo, and extrapolate it into the remaining MS-
COCO samples, as well as other datasets with multiple
captions (e.g., Flicker-30k) or bounding box annotations
(detection datasets). We retrieve the original captions and
object bounding boxes in the LLaVA-detailed-23k
dataset and use them as the distorted version with respect

to the original detailed descriptions. We also insert the
description of “The followings are specific object loca-
tions...” which was used for prompting GPT-4, to help
Polite Flamingo understand bounding box annotations.

Training a Rewritter
We gathered a total of 255k samples to train the Polite
Flamingo (see Appendix for details). We initialize the model
from OpenFlamingo-9B (Awadalla et al. 2023), and insert a
LoRA (Hu et al. 2022) adapter (initialized from the QLoRA
of Guanaco-7B (Dettmers et al. 2023)) into its LLaMA-
7B (Touvron et al. 2023) language model. We tune the
LoRA weights only, and keep other parameters (i.e., lan-
guage model, ViT, perceiver, X-ATTN layers (Alayrac et al.
2022)) frozen to prevent overfitting. As shown in Figure 3,
we provide the instruction, image, and distorted response to
the Polite Flamingo, and ask it to predict the original re-
sponse. Language modeling loss is only applied to the to-
kens corresponding to the original response.

Scale Up Visual Instruction Tuning with Polite
Flamingo

Source Datasets
To scale up the vision-language instruction tuning data thus
improving the visual understanding capability of the multi-
modal LLM, we leverage the trained Polite Flamingo to
rewrite the raw annotations of numerous vision-language
datasets into polite responses. Similar to several concur-
rent works (Dai et al. 2023; Li et al. 2023c,a), we stan-
dardize them into a unified instruction-response format. The
adopted datasets can be roughly divided into two main
groups: captioning datasets, which task the model with pro-
viding detailed descriptions of image content, and VQA
datasets, which require the model to accurately answer spe-
cific queries. We adopted a total of 37 datasets, see the ap-
pendix for a detailed summarization.

Filtering Strategies
Our rewriter, Polite Flamingo, is based on LLaMA-7B (Tou-
vron et al. 2023), which is a relatively small language model.
Through empirical observation, we have identified that Po-
lite Flamingo is not a flawless response rewriter. It occa-
sionally leaves the answer unchanged, produces repetitive
patterns, or even changes the original answer and intro-
duces hallucinated content. We design an automatic filter-
ing pipeline to mitigate these problems and guarantee the
quality of visual instruction tuning data. We use several rule-
based filters, and several newly introduced model-based fil-
ters to measure the semantics of rewritten response, includ-
ing a Semantic Textual Similarity (STS) model-based filter,
a Natural Language Inference (NLI) model-based filter, and
a CLIPScore-based hallucination filter. Please see Appendix
for more details.

U-shaped Multi-stage Visual Instruction Tuning
We first leverage the Polite Flamingo to rewrite the re-
sponse of source datasets (Section ), obtaining 1.17M sam-
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Detailed Image Description Visual Question AnsweringMethod #Instruction Visual
(#Params)

Connector
(#Samples)

LLM
(#Params) COCO TextCaps Img2P OK-VQA VSR Grid-3D

7B 14.4 15.5 14.7 10.4 14.0 19.0MiniGPT-4 3.5k ViT-g (1.0B) Linear (5M) 13B 23.1 19.2 23.7 23.8 24.6 20.0
7B 23.8 21.1 23.6 32.1 36.1 20.8LLaVA 177k ViT-L (0.3B) Linear (595k) 13B 23.1 20.7 23.2 30.9 34.1 22.5
7B 23.7 22.2 22.2 51.5 48.5 28.9InstructBLIP

(Vicuna) 1.6M ViT-g (1.0B) BLIP-2 (129M) 13B 23.5 19.7 22.1 52.2 48.9 27.5
Otter 2.8M 7B 22.6 19.7 22.4 28.7 28.7 13.5
Ours 1.0M ViT-L (0.3B) OF-9B (15M) 7B 24.3 24.1 24.7 43.3 43.6 29.0
±∆ -1.8M - - - +1.7 +4.4 +2.3 +14.6 +14.9 +15.5

Table 1: Performance comparison of with different multi-modal LLMs. We use Rouge-L as the metric for detailed image
description tasks, and we use an NLI-based evaluator for VQA datasets. Blue numbers are results on unseen datasets (i.e.,
zero-shot), and black numbers are results on unseen samples (i.e., validation split of datasets seen during training). The bottom
row (±∆) compares our Clever Flamingo with Otter, which uses the same OF-9B (OpenFlamingo) as the base model.

ples. After filtering, 0.97M samples remained, which we re-
fer to as the PF-1M dataset. In addition to PF-1M, we also
adopt several high-quality text-only instruction datasets,
since our base model OpenFlamingo-9B is based on the
vanilla LLaMA-7B which is not instruction-tuned. Recent
studies have shown that data quality is of vital importance
during instruction tuning. Motivated by this, we consider the
following datasets: UltraChat (Ding et al. 2023), ShareGPT,
OASST-1 (Köpf et al. 2023), Alpaca-GPT-4 (Peng et al.
2023), GPTeacher, and InstructionWild (Xue et al. 2023).
Together with PF-1M and LLaVA-instruction-177k, we have
a total of 1.5M instruction data.

However, the samples in this dataset collection provide
benefits to the model from very different perspectives. Text-
only instructions enable the model to comprehend human
requests and generate helpful responses in a proper style,
while PF-1M data primarily facilitate the model in improv-
ing precise visual perception. To enhance training efficiency,
we propose a U-shaped visual instruction tuning approach
that encompasses three stages:

Stage 1 focuses on improving the instruction-following
ability of the model by tuning only the language model
(with LoRA). We utilize a total of 0.77M samples, which
include all text-only instructions, LLaVA instructions, and
10% samples (97k) from PF-1M, and trained the model for
a single epoch. The model is trained with a large context
window of 1024 tokens. Stage 2 shifts to improving the vi-
sual understanding capability of the model. We freeze the
LoRA adapter and exclusively tune the connector using the
entire PF-1M dataset. To enhance training efficiency, we use
a smaller context window of 196 tokens. Stage 3 uses the
same setting as Stage 1, but we adjust the learning rate to
10× lower. The objective of Stage 3 is to fine-tune the model
to recover the optimal politeness of the responses. This ad-
justment is necessary as the PF-1M dataset used in Stage 2 is
generated by a 7B language model, which has lower quality
than larger LLM-generated text-only instructions.

Multi-turn Augmentation
Given the diversity of instruction data, the length of each
sample varies a lot. When using a large context window,
short instruction samples would append many <PAD> to-

kens and waste a lot of computation. To address this,
we introduce multi-turn augmentation, which involves ran-
domly selecting instruction samples and concatenating them
to form a multi-turn conversation. In this augmentation
scheme, only the tokens corresponding to the response in
each turn are considered when calculating the language
modeling loss. This multi-turn also encourages the model to
attend to the correct image for multi-turn multi-image con-
versations.

Evaluations
Evaluation of PF-1M Dataset
We analyze the improvement of “politeness” of Polite
Flamingo rewriting (from raw annotations to PF-1M)
through a quantitative evaluation. We assume that a reward
model which is trained on human-labeled user preference
data is able to provide an estimation of politeness. Results3

show that Polite Flamingo significantly boosts the politeness
of raw dataset annotations (from -2.42 to -0.50), and the
resulting PF-1M outperforms the recently proposed large-
scale instruction tuning dataset M3IT (Li et al. 2023c) by a
notable margin. Unfortunately, PF-1M cannot match those
datasets produced by much larger LLM, especially those
generated by GPT-4 (i.e., LLaVA (Liu et al. 2023b) and
Alpaca-GPT-4 (Peng et al. 2023)). But on the other hand,
PF-1M is approximately 6× larger than the LLaVA dataset,
and many LLaVA instructions are QA conversations under
the theme of the image. In comparison, the PF-1M dataset is
derived from annotated vision-language dataset and involves
challenging samples that encourage fine-grained visual un-
derstanding. In addition, we also provide a qualitative eval-
uation of Polite Flamingo’s rewriting in the Appendix.

Performance Comparison
We verify the performance of the Clever Flamingo by com-
paring it with other existing multi-modal LLMs. We focus
on answering the following questions: 1) how well does it
perform on vision-language tasks, 2) how does it general-
ize to unseen datasets, and 3) whether it produces human-

3The visualization of reward score distribution can be found at
https://arxiv.org/pdf/2307.01003.pdf
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Spot-the-Diff Image-editing NLVR2Model STS Rouge STS Rouge STS Rouge
L.B. 31.6 0.119 13.9 0.023 7.0 0.012
Otter 39.5 0.129 33.2 0.136 11.5 0.069
Ours 46.1 0.185 37.0 0.156 28.2 0.155
±∆ +6.6 +.057 +3.9 +.020 +16.7 +.085

Table 2: Multi-image reasoning tasks. “STS” means seman-
tic textual similarity. The lower bound performance (L.B.)
comes from a single-image model (InstructBLIP). Blue
numbers indicates unseen datasets and black numbers cor-
respond to results on unseen samples (i.e., validation split).
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Figure 4: Win rate matrix of model A beat model B in terms
of reward model score. For example, Clever Flamingo has a
62.1% win rate against Otter. Our model has a >50% win
rate against other multi-modal LLMs despite the LLaVA se-
ries, which is trained on purely GPT-4 generated data.

preferred responses (i.e., being polite). We first compare it
with other models on image captioning and VQA tasks, then
we present the evaluation of multi-image reasoning tasks,
and finally, we analyze the politeness of these multi-modal
LLMs.

Image Captioning and VQA Table 1 summarized the
evaluation results comparing Clever Flamingo with other
multi-modal LLMs on detailed image captioning and vi-
sual question answering . We use Rouge-L as the metric
for captioning datasets and use an NLI model-based auto-
mated evaluator for VQA datasets (see appendix for more
details). As our work is concurrent with InstructBLIP (Dai
et al. 2023) and Otter (Li et al. 2023b), the dataset splitting
(i.e., assignments of held-in training datasets and held-out
unseen testing datasets) is not fully aligned. We marked the
held-in datasets with black and marked the held-out datasets

with blue.
In summary, Clever Flamingo outperforms other counter-

parts on all three detailed image description datasets and the
Grid-3D dataset, and only underperforms the InstructBLIP
series on OK-VQA and VSR. Importantly, the settings (e.g.,
the base model and training data amount) of these compar-
isons are not aligned. For InstructBLIP, a BERT-based Q-
Former is firstly trained with BILP-generated and filtered
129M samples for two stages (about 3-4 epochs), then the
model is instruction-tuned on a 1.6M collection of down-
stream data. In comparison, our Clever Flamingo, as well
as the Otter model, is tuned from OpenFlamingo-9B, which
uses a 3×smaller visual encoder, a lighter perceiver as the
connector, and much less pre-training image-text data (15M)
and training steps (single epoch) . When come to a fair com-
parison between Clever Flamingo and Otter (despite instruc-
tion data, Clever Flamingo uses 1.8M fewer data), our model
outperforms Otter on every dataset, both held-in and held-
out, by a significant margin.

Multi-image Reasoning Now we analyze the perfor-
mance on multi-image reasoning tasks. We compare Clever
Flamingo with Otter (Li et al. 2023b), which is also tuned
from OpenFlamingo-9B – the only currently publicly avail-
able base multi-modal LLM that can process interleaved
image-text data. The following three datasets are used for
evaluation: 1) Spot-the-diff (Jhamtani and Berg-Kirkpatrick
2018), a change captioning dataset for surveillance camera
imagery, 2) Image-editing-requests (Tan et al. 2019), which
requires the model to infer image editing requests (e.g, Pho-
toshop editing) given image pairs, and 3) Natural Language
Visual Reasoning-2 (NVLR2) (Suhr et al. 2019), where the
model needs to reason whether a statement holds true given
two images.

We use Rouge-L between model prediction and ground
truth as the metric. We further introduced a model-based
evaluator “STS” (semantic textual similarity), which is
measured by the cosine distance of sentence features ,
to compare high-level semantics of answer and ground
truth (Reimers and Gurevych 2019). We also provide the
evaluation result of a single-image model (InstructBLIP) as
the lower bound. The result is shown in Table 2. Again,
Clever Flamingo outperforms Otter on all three datasets by
a large margin.

Politeness We used a reward model to evaluate the polite-
ness of model responses on a total of 52k samples sourced
from the validation/test split of a collection of vision-
language downstream datasets . For each sample, we first
obtain the prediction of multi-modal LLMs, then feed the
instruction and the generated responses to a reward model
to get reward scores, and make a pairwise comparison of the
scores. In Figure 4, we visualize the average win rate – the
statics of the pairwise comparison of all 52k samples. We
also calculate the reward score of raw annotations for com-
parison.

As it can be seen, our Clever Flamingo is more likely to
be preferred by the reward model (having >50% win rate)
compared to all of the other compared multi-modal LLMs,
except the LLaVA series. This is a direct result of the differ-
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Figure 5: Results of ablation experiments on U-shaped multi-stage visual instruction tuning (left) and design choices in stage
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also report the average reward score to reflect the politeness of each alternative.

ences in instruction data: GPT-4 generated LLaVA dataset
outperforms the PF-1M dataset in terms of reward score.

Ablation Study
We now present the ablation experiments to verify the ef-
fectiveness of various design choices of Clever Flamingo.
We report the averaged NLI-based validation accuracy of
in-domain (held-in) VQA datasets and out-of-distribution
(held-out) VQA datasets, and further calculate the averaged
reward score as a measurement of politeness.

The results are shown in Figure 5. On the left side, we first
visualize the change of metrics during the U-shaped multi-
stage visual instruction tuning. It shows that stage 2 boosts
the in-domain QA accuracy, but also results in a degenerated
politeness. Stage 3 maintains the in-domain QA accuracy,
but recovers the politeness significantly. It is interesting to
observe that OOD QA accuracy also exhibits a U-shaped
curve. It seems that stage 2 led to sight overfitting to the PF-
1M data distribution, well stage 3 alleviates this problem.

The right side of Figure 5 shows ablations on the Clever
Flamingo stage 2. The observations on different alternatives
are listed as follows. 1) 224 Resolution: changing image
resolution from default 336×336 to 224×224 hurt the per-
formance, confirmed the hypothesize in (Liu et al. 2023c).
2) Unfreeze ViT: further tuning ViT in addition to per-
ceiver and XATTN failed to improve the performance sig-
nificantly, and resulted in slight overfitting. It shows that
the scale of PF-1M is still insufficient to support continual
representation learning of the visual backbone. 3) Unfreeze
LoRA: this ablation significantly improved the PF-1M in-
domain accuracy, but also hurt the generalization ability.
4) More Epochs: we doubled the stage 2 epochs from 3
to 6, and found that it significantly hurt the generalization
ability to the unseen domain. 5) No Stage 1: when skip-
ping stage 1 and directly going into stage 2 from vanilla
OpenFlamingo-9B, the OOD generalization ability further
dropped. It demonstrates that instruction samples used in
stage 1 and stage 3 can effectively boost/maintain the OOD
generalization ability. 6) Raw Annotation: when skipping

the Polite Flamingo-based rewriting and using the raw anno-
tations in PF-1M for visual instruction tuning, both held-in
and held-out accuracy got slightly improved, however, the
multi-modal alignment tax is significant – the “politeness”
dropped significantly.

Conclusion
This paper presents our solution to the multi-modal align-
ment tax problem, specifically, we want to use a diverse col-
lection of downstream vision-language datasets to improve
the visual understanding capability of multi-modal LLMs
while avoiding the unformatted raw annotations to decrease
the “politeness” of model responses. We trained a rewriter
and used it to build a large-scale visual instruction tun-
ing dataset. Incorporating U-shaped multi-stage tuning and
multi-turn augmentation, we derived a strong multi-modal
LLM , which has advantages in terms of both multi-modal
understanding and response politeness.
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