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Abstract

Cross-Lingual Summarization (CLS) involves generating a
summary for a given document in another language. Most of
the existing approaches adopt multi-task training and knowl-
edge distillation, which increases the training cost and im-
proves the performance of CLS tasks intuitively but unex-
plainably. In this work, we propose Cross-Attention Rein-
forcement (CAR) module and incorporate the module into
the transformer backbone to formulate the CAR-Transformer.
The CAR module formulates a pseudo-summary policy pa-
rameterized by the cross-attention weights reinforced by the
ground-truth monolingual summary without introducing ex-
tra model parameters. Our approach demonstrates more con-
sistent improvement across CLS tasks compared to traditional
multi-task training methods and outperforms the fine-tuned
vanilla mBART by 3.67 and the best-performing multi-task
training approach by 1.48 in ROUGE-L F1 score on the Wik-
iLingua Korean-to-English CLS task.

Introduction
Cross-lingual summarization (CLS) refers to the process of
generating a summary in a different language for a given
document. There are two main categories of methods, which
are pipeline methods and end-to-end methods, for cross-
lingual summarization. Pipeline methods involve breaking
down CLS into two sub-tasks, namely Monolingual Sum-
marization (MS) and Machine Translation (MT), and exe-
cuting them sequentially (Leuski et al. 2003; Lim, Kang,
and Lee 2004; Orǎsan and Chiorean 2008; Wan, Li, and
Xiao 2010). Although these approaches may seem intuitive,
they are hindered by several limitations, including error ac-
cumulation, reliance on external data/models, and high in-
ference latency, as noted in Wang et al. 2022. In an effort
to address these limitations, end-to-end approaches based
on neural networks have been proposed (Zhu et al. 2019;
Cao, Liu, and Wan 2020; Bai, Gao, and Huang 2021; Takase
and Okazaki 2022; Liang et al. 2022). In particular, multi-
lingual pre-trained transformers have emerged as a notewor-
thy development, achieving state-of-the-art performance on
CLS tasks. Some approaches involve training these trans-
formers on a multilingual corpus (Liu et al. 2020; Tang et al.
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2021; Xue et al. 2021), while others introduce cross-lingual
training objectives to enhance performance on downstream
cross-lingual seq2seq tasks (Xu et al. 2020; Chi et al. 2020;
Ma et al. 2021).

Cross-lingual summarization (CLS) datasets typically
consist of a document paired with multiple parallel sum-
maries in different languages (Ladhak et al. 2020; Bhat-
tacharjee et al. 2021; Perez-Beltrachini and Lapata 2021).
Among these summaries, there is usually one that corre-
sponds to the same language as the source document, re-
ferred to as the monolingual summary. The monolingual
summary plays a crucial role in existing CLS approaches
as it is widely utilized to enhance performance. To lever-
age the monolingual summary, various techniques, such as
multi-task training and knowledge distillation, have been
adopted. Multi-task training involves jointly performing MS
and CLS, while knowledge distillation entails extracting
knowledge from a pre-trained MS model (Wang et al. 2022).
Although these approaches can improve CLS performance
by utilizing the monolingual summary, they do introduce ad-
ditional modules and/or training samples, which come at a
cost. Furthermore, while multi-task training and knowledge
distillation have shown intuitive improvements in CLS per-
formance, they often lack interpretability. Recognizing this
limitation, Duan et al. 2019 propose a more explainable ap-
proach by distilling cross-attention weights from a teacher
model. However, this approach still incurs costs due to the
utilization of knowledge distillation. Another approach, put
forth by Liang et al. 2022, suggests the adoption of hier-
archical structures for translation and summarization. Al-
though this approach shows promise, it introduces multi-
ple additional encoders for Machine Translation (MT) and
Monolingual Summarization (MS), leading to a significant
increase in training and inference costs.

Consider a human editor proficient in multiple languages.
We require the editor to generate parallel summaries in dif-
ferent languages, ensuring that the meanings of the sum-
maries remain the same for a given document. Intuitively,
whether to summarize the document in which language,
the editor will pay attention to similar parts of the docu-
ment. Fortunately, most existing fundamental seq2seq mod-
els employ a cross-attention mechanism, which describes
the attention from the target sequence (i.e., the summary)
to the source sequence (i.e., the document) (Bahdanau, Cho,
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and Bengio 2014; Vaswani et al. 2017; Lewis et al. 2019).
Therefore, a straightforward solution is to establish cross-
attention alignment, specifically aiming to maintain simi-
larity between cross-attentions used in cross-lingual sum-
marization and those used in monolingual summarization.
This alignment enables both Cross-Lingual Summarization
(CLS) and Monolingual Summarization (MS) to attend to
corresponding words in the source document.

The direct implementation of cross-attention alignment
within the context of machine translation entails the
need to undertake the costly process of MS training,
which significantly amplifies both the temporal and spa-
tial training requirements. In order to tackle these chal-
lenges, we propose the CAR-Transformer (Cross-Attention
Reinforcement Transformer) framework, which commences
by formulating a pseudo-summary policy based on the
cross-attention weights without introducing extra learn-
able parameters. This policy facilitates the generation of
a pseudo-summary in the monolingual language by select-
ing words from the source document, with higher prob-
abilities assigned to words that have accumulated greater
cross-attention weights. The policy is subsequently trained
by incentivizing it to generate a summary that closely ap-
proximates the ground-truth monolingual summary. During
training, policy gradient methods (Williams 1992) are em-
ployed due to the non-differentiability of the summary sim-
ilarity computation. As a result, words that appear more fre-
quently in the ground-truth monolingual summary will ex-
hibit higher accumulated cross-attention scores. We refer to
the training process as cross-attention reinforcement since
the policy is parameterized by the cross-attention weights
and optimized through policy gradient.

Our approach surpasses the vanilla mBART fine-tuning
approach and three common multi-task training approaches,
i.e., CLS-MS (Zhu et al. 2019), CLS-MT (Zhu et al. 2019),
and 2-step (Ladhak et al. 2020), on WikiLingua (Ladhak
et al. 2020), GlobalVoice (Nguyen and Daumé III 2019),
and CrossSum (Bhattacharjee et al. 2021) datasets. Specifi-
cally, our approach outperforms the best multi-task training
approach to our knowledge by 1.55, 1.04, 0.50, and 1.04 in
ROUGE-L on Korean, Hindi, Czech, and Turkish to English
summarization, respectively.

This work makes the following main contributions:

• We are the first, to the best of our knowledge, to ad-
dress the challenge of cross-attention alignment in cross-
lingual summarization tasks where parallel ground-truth
summaries are available.

• We present cross-attention reinforcement, a lightweight
(no extra parameters) and explainable auxiliary training
objective, which effectively enhances the performance of
the Cross-Lingual Summarization (CLS) task.

• We demonstrate significant and consistent improvements
compared to three commonly adopted multi-task training
approaches on CLS tasks involving eight different lan-
guages.

Related Work
Attention Relay
Our work is to some extent relevant to the attention re-
lay mechanism proposed in (Duan et al. 2019) for teach-
ing the student model the attention weights of the teacher
model in knowledge distillation. Both our work and atten-
tion relay share the idea of optimizing the cross-attention
weights to enhance the performance of the CLS task in a
more explainable manner. However, attention relay relies on
teacher models trained on the MS corpus and machine trans-
lation (MT) to facilitate knowledge distillation, which leads
to increased training costs. In contrast, our approach offers
a more lightweight alternative by directly manipulating the
cross-attention weights without the need for external mod-
els.

Multilingual Pre-Trained Transformers
Multilingual pre-trained transformers have demonstrated re-
markable performance on CLS tasks (Wang et al. 2022).
One straightforward approach to pre-training these multi-
lingual transformers is to adapt the pre-training objective
used in monolingual transformers by replacing the mono-
lingual training corpus with a multilingual corpus. For in-
stance, mBART (Liu et al. 2020) and mBART50 (Tang et al.
2021) are two variations of the BART model (Lewis et al.
2019). Both mBART and mBART50 employ the denoising
pre-training objective, which is the same as that used in the
BART model. They utilize a training corpus consisting of
25 languages and 50 languages, respectively. Another ex-
ample is mT5 (Xue et al. 2021), which is a variant of the T5
model (Raffel et al. 2020). mT5 uses a training corpus en-
compassing 101 languages and adopts the same corruption
pre-objective as the T5 model.

Multi-Task Training in CLS
Multi-task training is an approach that involves jointly opti-
mizing the training objectives of multiple tasks, leveraging
the potential benefits of inter-task interaction during train-
ing. One commonly cited explanation for the effectiveness
of multi-task training is that the simultaneous training of
multiple tasks helps prevent each individual task from over-
fitting. In the context of the CLS task, Monolingual Sum-
marization (MS) and Machine Translation (MT) are often
employed as auxiliary training objectives. For instance, Zhu
et al. 2019 propose a bi-decoder approach where two de-
coders are utilized to perform CLS and MS/MT jointly, aim-
ing to enhance the performance of the CLS task.

Similarly, Ladhak et al. 2020 propose a 2-step training
procedure that involves performing MT first and then per-
forming CLS. The motivation behind incorporating MS and
MT as auxiliary objectives is intuitive since the CLS task
requires both translation and (monolingual) summarization
abilities. However, it is important to note that the bi-decoder
approach introduces additional training parameters, while
the 2-step approach increases the number of training steps,
thereby raising the overall training cost. Furthermore, al-
though the improvements observed with the inclusion of
auxiliary tasks are intuitive, the underlying reasons behind
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Figure 1: Overview of CAR-transformer.

these improvements may not be fully explainable. In other
words, while the benefits of incorporating auxiliary tasks are
evident, the precise mechanisms by which they contribute to
enhanced performance may not be entirely comprehensible.

CAR-Transformer
Problem Formulation
Given the source document x = (x1, x2, · · · , xS), the ob-
jective of CLS is to generate its summary in another lan-
guage y = (y1, y2, · · · , yT ). Taking the vanilla transformer
architecture (Vaswani et al. 2017) as an example, we for-
mulate the training process of generating the cross-lingual
summary y from the source document x in detail.

The encoder E takes the source document x as input and
outputs the encoder hidden states h, as shown in Equation
1. In order to distinguish from the encoder hidden states, we
denote the output hidden states of the l-th decoder layer as
vl and define v0 as the output of the embedding layer. The
self-attention layer of the l-th decoder layer Dl

self takes the
output of the previous decoder layer as input and outputs
an intermediate state cl, as shown in Equation 2. Then, the
cross-attention weight matrix of the l-th layer Al is com-
puted as in Equation 3, and output hidden states are further
computed as in Equation 4. Here, WQcl, WKh, and WV h
respectively denote the query, key, and value, dk is the di-
mension of queries and keys, and FFN is the feed-forward
network (Vaswani et al. 2017). Finally, the distribution of the
output token is computed as in Equation 5, where L is the

max number of decoder layers, WO is the parameter of the
final linear layer, and vLi denotes the i-th output hidden state
of the last decoder layer.

h = E(x) (1)

cl = Dl
self(v

l−1), l = 1, 2, · · · , L (2)

Al = softmax

(
(WQcl)(WKh)T√

dk

)
(3)

vl = FFN(Al(WV h)) (4)

pi = softmax(WOvLi ) (5)

The training objective is to minimize the cross-entropy
loss between the predicted token distribution pi and the
ground-truth target token, as shown in Equation 6, where
XE denotes the cross-entropy loss function.

Lxe =
1

T

T∑
i=1

XE(pi, yi) (6)

Model Architecture
In the CAR-transformer architecture, the design is based on
the vanilla transformer (Vaswani et al. 2017). Before div-
ing into the detailed design, let’s provide an overview of
the model architecture. As shown in Figure 1, the encoder-
decoder architecture constitutes the modules outside the red
dotted square. The encoder takes the source document as in-
put, while the decoder takes the ground-truth cross-lingual
summary as input and generates the predicted summary. The
red dotted square represents the cross-attention reinforce-
ment (CAR) module, which plays a crucial role in the CAR-
transformer. It consists of three key components: the aware-
ness computation, represented by the green dotted square;
the pseudo-summary policy , denoted by the yellow dotted
square; and the self-critical baseline, also depicted by the
yellow dotted square. In this module, r(ỹ) represents the re-
ward obtained from the pseudo-summary policy, while r(ȳ)
corresponds to the reward obtained from the self-critical
baseline. The reward normalized by the self-critical baseline
is denoted as r(ỹ) − r(ȳ). To train the CAR-transformer,
the gradient of the normalized reward is estimated and back-
propagated, as illustrated by the black dashed line in Figure
1. In the upcoming sections, we will provide detailed expla-
nations of the training process of the CAR module.

Cross-Attention Alignment
Before delving into cross-attention reinforcement, let’s dis-
cuss Cross-Attention Alignment (CAA) and its purpose.
CAA aims to make the cross-attention weight matrix of
one encoder-decoder model somewhat similar to that of
another model. To perform CAA, we start by training a
Monolingual Summarization (MS) model using the source
documents and the corresponding ground-truth monolingual
summaries. Once the MS model is trained, we move on to
training a Cross-Lingual Summarization (CLS) model while
aligning its cross-attention with the MS model. In the CLS
model, the cross-attention weight matrix of the last decoder
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layer can be represented as A ∈ RT×S , where T denotes the
length of the target sequence (summary) and S denotes the
length of the source document. To compute the awareness
vector, denoted as β, we sum the cross-attention matrix A
along the query axis. In other words, for each source token
xi, we compute βi as in Equation 7, where aki represents
the attention weight between the k-th token in the target se-
quence and the i-th token in the source document. The re-
sulting vector β captures the level of attention that the entire
target sequence pays to each source token. Hence, we refer
to β as the awareness vector, with βi indicating the aware-
ness of source token xi. Figure 1 illustrates the process of
computing the awareness vector based on the cross-attention
weights. This step is an important component of CAA and
sets the stage for cross-attention reinforcement, which we
will discuss in detail later.

βi =
1

T

T∑
k=1

aki (7)

To align the cross-attention between the CLS model and
the trained MS model, the goal is to minimize the differ-
ence between the awareness vector β of the CLS model and
the awareness vector β′ of the MS model. This alignment
encourages the CLS model to attend to the same or similar
source tokens as the MS model during the summarization
process. Mathematically, this objective can be expressed as:

Lcaa = ∥β − β′∥2

=
1

S

S∑
i=1

( 1

T

T∑
k=1

aki −
1

K

K∑
k=1

a′ki

)2 (8)

In this context, the trained MS model serves as a teacher for
the CLS model, providing guidance on attending to the cor-
rect source tokens. By minimizing the difference between
β and β′, the CLS model learns to align its cross-attention
with that of the MS model, enhancing its ability to capture
important information from the source document during the
summarization process. This alignment contributes to the
overall performance improvement of the CLS model.

Cross-Attention Reinforcement
The computation of the CAA loss entails training an MS
model, which results in increased temporal and spatial
training costs. To address this issue and provide a more
lightweight solution for cross-attention alignment, we pro-
pose an alternative approach called cross-attention rein-
forcement. Since the MS task serves as an auxiliary task
within the CLS framework, it is not necessary to obtain
an accurate monolingual summary during training. There-
fore, we can formulate a pseudo-summary policy (mono-
lingual) based on the awareness vector β derived from the
CLS cross-attentions, eliminating the need for an additional
MS decoder. Specifically, we regard the awareness βi as
the probability of xi being selected as the pseudo-summary.
We denote the pseudo-summary distribution in Equation
9, where σ represents a binary selection vector indicating
whether each token is selected, with σi = 1 denoting that xi

is chosen as part of the pseudo-summary. Consequently, the
pseudo-summary ỹ = (ỹ1, · · · , ỹM ) is generated based on
the selection vector, as shown in Equation 10, where ι(σ, i)
denotes the index of the i-th one-element in the binary vector
σ and M =

∑S
i=1 σi represents the count of one-elements

in σ. The process of sampling the pseudo-summary ỹ from
the policy parameterized by β is depicted within the green
dotted square in Figure 1.

π(σ;β) =
S∏

i=1

[σiβi + (1− σi)(1− βi)] (9)

ỹ = (xι(σ,1), xι(σ,2), · · · , xι(σ,M)) (10)

We introduce a reward function to evaluate the quality
of the generated pseudo-summary ỹ, as depicted in Equa-
tion 11, where frg represents a linear combination of the
ROUGE-1, ROUGE-2, and ROUGE-L F1 scores (Lin 2004)
that are commonly used metrics for assessing summarization
quality, and y′ is the ground-truth monolingual summary.
The reward function measures the similarity between the
pseudo-summary and the ground-truth monolingual sum-
mary. Our objective is to maximize the expected reward,
which is equivalent to minimizing the negative expected re-
ward shown in Equation 12, where D denotes the entire
dataset. The expression β(x,y′) indicates that β is a func-
tion of x and y′. We refer to the loss denoted in Equation 12
as the Cross-Attention Reinforcement (CAR) loss.

r(ỹ,y′) = frg(ỹ,y
′) (11)

Lcar = −
∑

(x,y′)∈D

Eỹ∼π(·;β(x,y′)) [r(ỹ)] (12)

The minimization of the negative expected reward Lcar
encourages the policy to generate pseudo summaries that are
similar to the ground-truth monolingual summaries. Given
that the policy is parameterized by the CLS awareness vec-
tor β, this minimization process also increases the aware-
ness of tokens that appear in the ground-truth monolingual
summary. We refer to this process as cross-attention rein-
forcement. Due to the non-differentiable nature of reward
computation, we estimate the gradient of Lcar with respect
to β using the policy gradient theorem (Williams 1992), as
depicted in Equation 13. Here, ỹ is sampled from the current
pseudo-summary policy. The gradient with respect to other
parts of the model can be further computed following the
chain rule.

∇βLcar ≈ −
∑

(x,y′)∈D

r(ỹ)∇β log π(ỹ;β) (13)

Self-Critical Baseline
Self-critical training, initially introduced in (Rennie et al.
2017) for image caption generation, addresses the issue of
policy gradient fluctuations by incorporating a baseline into
the reward computation. In contrast to conventional ”REIN-
FORCE with baseline” algorithms, which involve separate
sampling and training processes to estimate the baseline,
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self-critical training simplifies the procedure by using the
reward of the greedy action as the baseline. This approach
allows for more stable and effective policy gradient estima-
tion.

To define a self-critical baseline, we first establish the no-
tion of the greedy action. In the case where the policy out-
puts a multinomial distribution, also known as a categorical
distribution, the greedy action corresponds to selecting the
action with the highest probability. In our pseudo-summary
policy, we define the greedy action as choosing the top K to-
kens with the highest awareness scores from the source doc-
ument, where K represents the length of the ground-truth
monolingual summary. The resulting greedy summary can
be represented by Equation 14, where ρ(β, i) denotes the
index of the i-th largest element in β. The yellow dotted
square in Figure 1 denotes the process of taking the greedy
action ȳ under the policy parameterized by β.

ȳ = (xρ(β,1), xρ(β,2), · · · , xρ(β,K)) (14)
The self-critical baseline is defined as the reward achieved

after taking the greedy action, i.e., r(ȳ). We can now sub-
tract the self-critical baseline from the original training ob-
jective and obtain a new training objective, as depicted in
Equation 15. The black dashed arrow in Figure 1 illustrates
the process of backpropagating the gradient ∇βLsc.

Lsc = −
∑

(x,y′)∈D

Eỹ∼π(·;β) [r(ỹ)− r(ȳ)] (15)

Training and Inference
The final training objective is to minimize the cross-entropy
loss and the self-critical policy loss jointly, as shown in
Equation 16, where λ is a hyperparameter balancing the
two loss items. Since the CAR module does not introduce
any extra model parameters, the increase in spatial training
cost can be ignored. The increase in temporal training cost
mainly depends on the computation of the reward, which
cannot be done in parallel on GPU.

L = Lxe + λLsc (16)
During inference, the CAR module is disabled, i.e., only

the backbone transformer model is used to generate the sum-
mary. Therefore, the CAR module does not increase the in-
ference cost.

Experiments
Dataset
We use WikiLingua (Ladhak et al. 2020), GlobalVoice
(Nguyen and Daumé III 2019), and CrossSum (Bhattachar-
jee et al. 2021) for training and evaluation. For WikiLin-
gua, we directly use the parallel monolingual summaries
for cross-attention reinforcement. However, for GlobalVoice
and CrossSum, there is only the cross-lingual summary
without the corresponding parallel monolingual summary
for each article. Therefore, we use an existing open-source
mT5 model 1 that is fine-tuned on the XLSum dataset (Hasan

1https://huggingface.co/csebuetnlp/mT5 multilingual XLSum

et al. 2021) to generate a parallel monolingual summary
for each article. We would like to see the performance of
CAR-Transformer on morphologically different languages.
For WikiLingua, we choose Korean (ko-en), Hindi (hi-en),
Czech (cs-en), Chinese (zh-en), Thai (th-en), and Turkish
(tr-en) as the source article language and English as the tar-
get summary language. For GlobalVoice and CrossSum, we
choose French (fr-en) and Arabic (ar-en).

Baselines

Our proposed approach referred to as CAR (Cross-Attention
Reinforcement), serves as the focal point of our compara-
tive analysis against several baselines. To establish a base-
line, we initially employ the vanilla mBART fine-tuning ap-
proach (referred to as mBART), where we directly fine-tune
the mBART model on each CLS task without incorporat-
ing auxiliary training objectives. By contrasting the perfor-
mance of CAR with the mBART baseline, we can effectively
evaluate the extent to which the CAR module and its associ-
ated training objective contribute to enhancing the mBART
model’s performance on CLS tasks.

Furthermore, we extend our evaluation to include base-
lines that adopt multi-task training strategies. Inspired by the
work of Zhu et al. 2019, we incorporate CLS-MS and CLS-
MT as additional baselines. These two baselines utilize an
additional decoder to handle the Monolingual Summariza-
tion (MS) task and the Machine Translation (MT) task. The
CLS-MS means jointly performing the CLS task and the MS
task, while CLS-MT means jointly performing the CLS task
and the MT task. For GlobalVoice and CrossSum, we do not
train or evaluate CLS-MT since there are no parallel source
articles to be used for the MT task. Additionally, we adopt
the 2-step baseline proposed by Ladhak et al. 2020, which
involves a 2-step fine-tuning process of mBART, starting
with the MS task followed by the CLS task.

Experiment Setting

We leverage the mBART50-large model for the initialization
of our approach and all baseline approaches. Then, we con-
duct fine-tuning procedures using the aforementioned CLS
datasets. We truncate the source document to 512 tokens as
input for the encoder, while the ground-truth summary in the
target language, serving as input for the decoder, is truncated
to 128 tokens. Similarly, the supervision signal for the CAR
module, which comprises the ground-truth summary in the
source language, is also truncated to 128 tokens.

We fine-tune our approach and all baseline approaches on
each CLS task for a total of 30 epochs utilizing the train-
ing set. After each epoch of training, we evaluate the models
using the validation set and record the ROUGE-1, ROUGE-
2, and ROUGE-L F1 scores. We save the model with the
highest sum of ROUGE scores and subsequently evaluate
this saved model on the test set. The training and evaluation
procedures for each task are performed on a single NVIDIA
A40 GPU. With a training batch size of 8, we employ a gra-
dient accumulation step of 2. The training and evaluation
codes are implemented based on HuggingFace Transform-
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ko-en hi-en cs-en
mBART 27.66 8.19 22.36 30.50 9.71 24.07 25.82 6.84 20.57
CLS-MS 30.56† 9.57† 24.35† 30.09 10.25† 25.17† 25.37 6.87 20.33
CLS-MT 25.21 7.39 20.60 30.70 9.79 24.05 25.32 7.05 20.51
2-step 31.04† 9.74† 24.48† 31.27† 9.84 24.28 26.21 7.40† 21.96†

CAR (Ours) 31.17† 10.53† 26.03† 30.66 10.46† 25.32† 27.47† 8.00† 22.46†

zh-en th-en tr-en
mBART 30.64 9.32 24.70 31.47 10.27 25.24 35.41 13.11 27.94
CLS-MS 30.56 9.37 24.83 22.56 6.07 19.06 35.45 13.30 28.21
CLS-MT 30.16 9.07 24.47 32.05† 11.15† 26.85† 34.84 12.91 27.62
2-step 30.58 9.32 24.75 32.38† 10.92† 26.21† 35.61 13.21 28.07
CAR (Ours) 31.28† 9.56 25.31† 32.33† 11.20† 27.00† 36.15† 14.01† 29.11†

Table 1: ROUGE-1/2/L F1 scores of our approach and baseline approaches on the WikiLingua CLS tasks. The † superscript
means a significant performance improvement (more than 0.4) compared with the vanilla mBART fine-tuning approach.

GlobalVoice CrossSum
ar-en fr-en ar-en fr-en

mBART 24.59 6.01 18.46 29.44 9.30 22.19 28.05 6.53 21.26 29.57 9.06 22.25
CLS-MS 24.26 5.61 18.48 29.52 9.38 22.15 28.17 6.60 21.35 29.69 9.15 22.26
2-step 25.19† 6.16 19.00† 29.20 9.59 22.31 28.15 6.58 21.27 29.67 9.20 22.45
CAR (Ours) 25.42† 6.41† 19.10† 30.01† 9.77† 22.68† 28.20 6.79 21.37 29.80 9.34 22.54

Table 2: ROUGE-1/2/L F1 scores on the GlobalVoice and CrossSum tasks.

ar-en fr-en
CAR 25.42 6.41 19.10 30.01 9.77 22.68
CAR w/ CLS-MS 23.34 5.00 18.12 28.56 8.93 21.78
CAR w/ 2-step 24.96 6.60 19.27 29.96 9.95 22.99

Table 3: ROUGE-1/2/L scores of hybrid approaches on
GlobalVoice dataset.

ers 2. For the detailed experiment setting and implementa-
tion, please refer to the source code in supplementary files.

Result Analysis
The recorded ROUGE-1/2/L F1 scores for the baseline ap-
proaches and our proposed approach are presented in Ta-
ble 1 and 2. We highlight the best ROUGE scores with the
bold font and the significant improvement with the † su-
perscript. Except for the CrossSum dataset, our approach
achieves significant improvements on all other considered
CLS tasks. Although the baseline multi-task approaches can
demonstrate significant improvements on some tasks, they
fall short of delivering consistent improvement across the
entire set of tasks. For example, on the WikiLingua dataset,
the CLS-MS approach does not achieve significant improve-
ments on the cs-en and tr-en sub-tasks, and the 2-step ap-
proach does not achieve significant improvements on the tr-
en sub-task. On the GlobalVoice dataset, the 2-step approach
does not achieve significant improvements on the fr-en sub-

2https://github.com/huggingface/transformers

mBART CLS-MS CLS-MT 2-step CAR
Steps 1.0 1.0 1.0 2.0 1.0
GPU Memory 1.0 1.3 1.3 1.0 1.0
GPU Time 1.0 1.2 1.2 2.0 1.1
Total Time 1.0 1.2 1.2 2.0 1.3

Table 4: The training costs relative to mBART. The reported
training costs of each approach is averaged on 10 times of
training.

task. Note that our approach does not achieve significant im-
provements on the CrossSum dataset, but it outperforms all
other approaches on this dataset. On most CLS tasks, our
approach even outperforms the 2-step approach, which re-
quires 2x training steps as other approaches. The relative
training costs of all approaches are illustrated in Table 4.
Note that the total time of our approach is slightly higher
than mBART and the multi-task approaches because train-
ing CAR-Transformer requires reward computation, which
involves computing a ROUGE score and can only be done
on the CPU.

The convergence of our approach, the vanilla mBART,
and the best-performing multi-task training approach for the
subtasks in WikiLingua is depicted in Figure 2. All curves
represent the average score of all subtasks. Notably, our ap-
proach consistently exhibits the highest ROUGE-L score
convergence compared to both the vanilla mBART and the
best-performing multi-task training approach (MT), which
reinforces the effectiveness and robustness of our approach.
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Figure 2: Validation ROUGE-L scores along training epochs
on WikiLingua validation set.

Approach A A >B A = B A <B Approach B
CLS-MS 17923 13995 15265 mBART
CLS-MT 18213 13858 15112 mBART
2-step 18786 13278 15119 mBART
CAR (Ours) 18912 13228 15043 mBART

Table 5: GSB evaluation by ChatGPT. The value in the table
denotes the number of samples.

Table 3 shows the results achieved by CAR and three hy-
brid approaches, where CAR w/ CLS-MS and CAR w/ 2-
step denote the mix of CAR with the CLS-MS and 2-step
multi-task approaches, respectively. The result shows that
incorporating the CLS-MS approach harms the CLS perfor-
mance, while incorporating the 2-step approach further im-
proves the CLS performance in ROUGE-2 and ROUGE-L
scores.

Moreover, we realize that ROUGE may not reflect the
human-level quality. Therefore, we employ ChatGPT to
make a GSB (Good-Same-Bad) evaluation on the 47183 test
set samples of the six subtasks of WikiLingua. Specifically,
let ChatGPT rank the summaries generated by 5 approaches
(out of order) from best to worst with an inequality (e.g.,
3>4=2>1>5). Then, we collect all inequalities generated
by ChatGPT and count the good, same, and bad samples be-
tween mBART and other four approaches. The GSB evalua-
tion results are shown in Table 5.

Interpretability
We check the interpretability of our approach by visualizing
the cross-attention weight matrix of the fine-tuned CLS-MS
and CAR-Transformer. As shown in Figure 3, the instance
summarizes the source document ”Tato metoda se vám bude
hodit zejména pokud jste venku a šlápnete na ještě měkkou
žvýkačku. Budete potřebovat pouze trochu pı́sku a klacı́k.”
in Czech into ”Find a wooden stick and some dry sand.”
in English. The upper part is the cross-attention weight ma-
trix of the fine-tuned CLS-MS without cross-attention rein-
forcement, while the lower part is the cross-attention weight
matrix of the fine-tuned CAR-Transformer. The red squares
include the source sentence Budete potřebovat pouze trochu

Figure 3: Visualization of CLS-MS and CAR-Transformer
cross-attention weight matrix fine-tuned on the Czech-to-
English CLS task of WikiLingua.

pı́sku a klacı́k, which means All you need is some sand and
a stick in English. We emphasize this sentence since it is
highly relevant to the English summary.

We can conclude from Figure 3 that the blocks in the
lower red square have darker colors than blocks in the upper
red square, which means that the target sequence in CAR-
Transformer has higher attention to the part of the source
sequence that is highly relevant to the summary.

Figure 3 only presents the interpretability from a qualita-
tive perspective. We also provide a quantitative perspective
of the interpretability. We define the Key Awareness Ratio
(KAR) in Eq. 17, where IK is the set of positions of the key
content in the source article and S is the length of the source
article. We compute the KAR for 5 approaches in summa-
rizing the article in Figure 3, and the KAR of mBART, CLS-
MS, CLS-MT, 2-step, and CAR (Ours) are: 8.51%, 8.43%,
8.64%, 8.32%, and 9.02%, where our approach achieves the
best KAR.

KAR =

∑
i∈IK

βi∑S
i=1 βi

(17)

Conclusion
We present Cross-Attention Reinforcement (CAR) and
the CAR-Transformer, which applies the policy gradi-
ent method commonly used in reinforcement learning to
the cross-attention weights of Transformer-based encoder-
decoder models during fine-tuning. The formulation of the
pseudo-summary policy provides a novel idea of applying
policy gradient to cross-lingual summarization tasks. Our
experiments show that CAR better improves the perfor-
mance on CLS tasks than conventional multi-task training
approaches.
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