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Abstract

Many real-world scenarios including fleet management and
Ad auctions can be modeled as Stackelberg mean-field games
(SMFGs) where a leader aims to incentivize a large number of
homogeneous self-interested followers to maximize her util-
ity. Existing works focus on cases with a small number of het-
erogeneous followers, e.g., 5-10, and suffer from scalability
issue when the number of followers increases. There are three
major challenges in solving large-scale SMFGs: i) classical
methods based on solving differential equations fail as they
require exact dynamics parameters, ii) learning by interacting
with environment is data-inefficient, and iii) complex inter-
action between the leader and followers makes the learning
performance unstable. We address these challenges through
transition-informed reinforcement learning. Our main contri-
butions are threefold: i) we first propose an RL framework,
the Stackelberg mean-field update, to learn the leader’s policy
without priors of the environment, ii) to improve the data ef-
ficiency and accelerate the learning process, we then propose
the Transition-Informed Reinforcement Learning (TIRL) by
leveraging the instantiated empirical Fokker-Planck equation,
and iii) we develop a regularized TIRL by employing various
regularizers to alleviate the sensitivity of the learning perfor-
mance to the initialization of the leader’s policy. Extensive
experiments on fleet management and food gathering demon-
strate that our approach can scale up to 100,000 followers and
significantly outperform existing baselines.

1 Introduction
Learning to incentivize a large population of homogeneous
self-interested followers is of great importance for extensive
real-world problems. For example, in the e-hailing driver re-
positioning (EDRP) (Shou and Di 2020), to improve order
response rate, the platform incentivizes enormous drivers
to spread across different areas of the city by taking ser-
vice charge. Other scenarios include Ad auctions (Guo et al.
2019), electronic toll collection (Qiu, Chen, and An 2019),
and mechanism design for e-commerce (Cai et al. 2018).
These scenarios can be modeled as large-scale SMFGs
where a leader, e.g., the e-hailing or Ad-exchange platform,
incentivizes enormous homogeneous self-interested follow-
ers, e.g., taxi drivers or advertisers, to maximize her utility.
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There are several works related to the problem of in-
centivizing self-interested followers including mind-aware
multi-agent management (M3RL) (Shu and Tian 2019) and
expensive coordination (Yu et al. 2020). Nevertheless, these
works consider a small number of heterogeneous follow-
ers and suffer from the scalability issue when the number
of followers increases. In contrast, Stackelberg mean-field
game (SMFG) provides a powerful tool to model the scenar-
ios with enormous homogeneous self-interested followers.
SMFGs are established with consideration of various con-
straints and there are analytical results such as the existence
and uniqueness or the explicit form of solution for special
cases (e.g., linear-quadratic) (Bensoussan et al. 2017; Fu and
Horst 2020; Huang and Yang 2020). However, these meth-
ods are infeasible in practice due to the following critical
challenges. (1) Classical methods in the previous works typ-
ically involve solving a set of differential equations, which
fail as they require exact dynamics parameters (e.g., the tran-
sition rate matrix) to derive closed-form solutions in special
cases such as the linear-quadratic model. Moreover, none of
the existing works have tried to solve the SMFGs by employ-
ing RL algorithms that can learn the policies without priors
of the environments. (2) Learning by interacting with the
environment is data-inefficient and thus, typically requires
long learning time before achieving desirable performance.
(3) The interaction between the leader and followers is com-
plex, i.e., the leader takes actions under the consideration of
the followers’ rational responses while the followers adapt
their policies given the leader’s policy, which renders the
learning performance unstable, i.e., different initializations
of the leader’s policy could result in dramatically different
learning performance.

In this paper, we address the above challenges and provide
the following three contributions. (1) We propose the first
RL framework, the Stackelberg mean-field update (SMFU),
to learn the leader’s policy without priors of the environ-
ments. (2) As the SMFU is a model-free algorithm that is
data-inefficient, which requires an excessive number of in-
teractions with the environment and thus, takes long learning
time to achieve desirable performance, we propose a novel
learning framework, the Transition-Informed Reinforcement
Learning (TIRL), to improve the data efficiency and in turn
accelerate the learning process. Specifically, we first use the
experience tuples generated by interacting with the environ-
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ment to learn the followers’ transition function and instanti-
ate the empirical Fokker-Planck (EFP) equation. Then, new
experience tuples can be generated by leveraging the EFP
equation without additional interactions with the environ-
ment. (3) To alleviate the sensitivity of the TIRL to the ini-
tialization of leader’s policy, we develop a regularized TIRL
by employing various regularizers to further improve its sta-
bility. Extensive experiments on fleet management and food
gathering scenarios show that our approach can scale up to
100,000 followers and significantly outperform baselines.

2 Related Works
Our work is closely related to Stackelberg mean-field game
and model-based reinforcement learning.
Stackelberg Mean-Field Games (SMFGs). Learning to in-
centivize self-interested followers has received increasing
attention recently. The reinforcement mechanism design ap-
plies RL to mechanism design in e-commerce (Cai et al.
2018). M3RL (Shu and Tian 2019) considers the optimiza-
tion of the manager’s strategy against rule-based followers.
The setting is extended by (Yu et al. 2020), which proposes a
Stackelberg Markov game to model the interaction between
the leader and RL-based followers and abstraction-based
algorithms to compute the leader’s strategy. Nevertheless,
these works consider a small number of heterogeneous fol-
lowers and suffer from the scalability issue when the num-
ber of followers increases since the learning takes place in
the product space of state and action spaces across follow-
ers such that the complexity of finding leader’s optimal pol-
icy grows exponentially with the number of followers. In
many real-world scenarios such as EDRP and Ad auctions,
the leader needs to incentivize a large number of homoge-
neous followers, which can be modeled as SMFGs. In (Ben-
soussan et al. 2017), the SMFG is established and the opti-
mal control of the leader is derived for the linear-quadratic
case. The SMFG with terminal state constraints is consid-
ered in (Fu and Horst 2020), and dynamic programming is
employed to determine the equilibrium strategy in (Huang
and Yang 2020). In addition, the SMFG is applied to model
the epidemic control problem in (Aurell et al. 2022). How-
ever, these works require exact dynamics parameters and
hence, are infeasible in practice when no prior of environ-
ment is available. Moreover, in contrast to the mean-field
game where RL has been widely adopted (Guo et al. 2019;
Subramanian and Mahajan 2019), none of the existing works
have tried to solve the SMFGs by employing RL algorithms.
In this work, we propose the first RL framework which we
call the Stackelberg mean-field update (SMFU) to learn the
leader’s policy without priors of environments.
Model-Based RL. MBPO (Janner et al. 2020) and
MuZero (Schrittwieser et al. 2020) achieve the asymptotic
performance similar to the state-of-the-art model-free algo-
rithms. However, these works focus on single-agent environ-
ments which are contrary to our setting with the presence
of multiple players. For multi-agent settings, in (Krupnik,
Mordatch, and Tamar 2020), the MBRL with latent vari-
able models is extended to multi-agent settings. In (Kamra
et al. 2020), the interaction graph-based trajectory predic-
tion methods are suggested. In (Zhang et al. 2021), a decen-

tralized MBRL method is proposed with consideration of
multiple opponent models. Unfortunately, these works either
consider zero-sum games or treat the players as atomic and
learn separate models for the players which could be com-
putationally expensive. To overcome the difficulties, we pro-
pose Transition-Informed Reinforcement Learning (TIRL).
The key insight is that, instead of predicting a single state for
each follower which is atomic, TIRL directly computes the
followers’ new state distribution by using the learned transi-
tion function, which is, on the contrary, a non-atomic (Au-
mann and Shapley 2015) approach.

3 Stackelberg Mean-Field Game
In this section, we present the definition and an illustrative
example of our game model.

3.1 Game Formulation
Let us start with the case of finite followers. Consider the
leader-follower game played between one leader and N fol-
lowers indexed by N = {1, · · · , N}. Let X/U and S/A
denote the leader’s and followers’ state/action spaces, re-
spectively, where S and A are finite and identical to the
followers. Let H = {0, 1, · · · , H} denote the time index
set. At time h ∈ H, the leader’s and follower i’s states
are xh ∈ X and sih ∈ S , respectively. Let GN

h (k) =
N−1

∑
i∈N 1k(s

i
h) denote the empirical state distribution

of the followers, where 1k(s
i
h) is an indicator function:

∀k ∈ S , 1k(s
i
h) = 1 if sih = k and 0 otherwise. Note that

GN
h ∈ ∆(S), the space of probability measures on S . The

transitions of states are determined by continuous functions
PL : X × U × ∆(S) → ∆(X ) and P : S × A → ∆(S).
Observe that P does not depend on the state distribution as
is common in the literature (Lasry and Lions 2007; Perolat
et al. 2022; Perrin et al. 2020). Consider for the leader and
each follower i the Markov policies µ ∈ Υ and πi ∈ Π
where µ : X → ∆(U) and πi : S → ∆(A). Υ and Π are
the spaces of the leader’s and followers’ all Markov policies,
respectively, where Υ is assumed to be compact, i.e., closed
and bounded. The leader takes an action uh ∼ µ and then,
the follower i takes an action aih ∼ πi. Their states change
to xh+1 ∼ PL and sih+1 ∼ P , respectively. The reward
functions of the leader and follower i are rL(xh, uh,GN

h )
and ri(uh, s

i
h, a

i
h,GN

h ), respectively, which are assumed to
be known and continuous. The goals of the leader and fol-
lowers are to maximize their value functions:

V L(µ, (πi)i∈N ) = E
[∑H

h=0
rL(xh, uh,GN

h )
∣∣∣x0 ∼ ρL0 ,

uh ∼ µ, xh+1 ∼ PL
]
,

V i(µ, (πi)i∈N ) = E
[∑H

h=0
ri(uh, s

i
h, a

i
h,GN

h )
∣∣∣uh ∼ µ,

si0 ∼ ρ0, a
i
h ∼ πi, sih+1 ∼ P

]
,

where ρL0 and ρ0 are respectively the initial state distribu-
tions for the leader and followers.

Given that all the followers are homogeneous (i.e., share
the same state and action spaces as well as the transition
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and reward functions), when N → ∞, mean-field game
(MFG) (Guo et al. 2019; Huang et al. 2006) can be used
to model the interactions among them. The MFG consists
of the same elements as the finite followers case. However,
instead of modeling N followers separately (each follower i
uses a distinct policy πi), it models a representative follower
and collapses all other followers into their statistical state
distribution, which is called the mean-field and denoted by
mh ∈ ∆(S). Formally, GN

h converges to mh as N → ∞
due to the strong law of large numbers: ∀k ∈ S ,

mh(k) = lim
N→∞

GN
h (k) = lim

N→∞

1

N

∑
i∈N

1k(s
i
h). (1)

Let m = (mh)h∈H ∈ M, where M is the space of all mean-
fields. With the mean-field, we will focus on a representative
follower and omit the follower index i henceforth. Then the
rewards for the leader and followers are rL(xh, uh,mh) and
r(uh, sh, ah,mh), which depend on mh. We adopt the set-
ting in (Lasry and Lions 2007; Perrin et al. 2020; Perolat
et al. 2022) where r satisfies the following conditions. (1)
Separability: ∀h ∈ H, u ∈ U , r(u, s, a,mh) = r̃(s, a) +
r̄(u, s,mh). That is, the reward for a follower consists of two
parts: the first part is only related to her own state and action
and the second part is determined by the leader’s action and
her state as well as the mean-field of the followers. It is a
natural depiction of various systems, e.g., in EDRP scenario,
r̃(s, a) is the cost of taking action a in state s and r̄(u, s,mh)
is the order price. (2) Monotonicity: ∀m1

h,m
2
h ∈ ∆(S),∑

s∈S(m
1
h(s) − m2

h(s))(r̄(u, s,m
1
h) − r̄(u, s,m2

h)) < 0.
That is, given leader’s action u ∼ µ, the reward of a follower
decreases with the increase of the number of other followers
presenting in the same state. It shows followers’ aversion to
crowded areas (e.g., the zones with more drivers in EDRP
scenario), which is a common phenomenon in practice. We
will show that these conditions are satisfied in our experi-
mental environments (see the Appendix for discussion).

Given π and the initial mean-field m0 ∈ ∆(S), the mean-
field induced by this policy is defined by the Fokker-Planck
(FP) equation: ∀k ∈ S ,

mπ
h+1(k) = Φ(π,mπ

h)(k)

=
∑

l∈S

∑
ah∈A

mπ
h(l)π(ah|l)P (k|l, ah).

(2)

Given (µ, π,m) and the initial states of the leader x0 ∼ ρL

and the representative follower s0 ∼ m0, the value functions
for the leader and the representative follower are:

V L(µ, π,m) = E
[∑H

h=0
rL(xh, uh,mh)

∣∣∣x0 ∼ ρL,

uh ∼ µ,mπ
h+1(k) = Φ(π,mπ

h)(k), ∀k ∈ S
]
,

V (µ, π,m) = E
[∑H

h=0
r(uh, sh, ah,mh)

∣∣∣uh ∼ µ,

s0 ∼ m0, ah ∼ π,mπ
h+1(k) = Φ(π,mπ

h)(k), ∀k ∈ S
]
.

Given µ ∈ Υ, we call π∗
µ a Nash Equilibrium of the follow-

ers induced by µ if V (µ, π∗
µ,m

∗
µ) ≥ V (µ, π,m∗

µ), ∀π ∈ Π,
i.e., no follower has an incentive to deviate (Muller et al.
2022). For notation simplicity, we use m∗

µ = mπ∗
µ , then the

mean-field of the followers following π∗
µ. Then, the Stackel-

berg Nash Equilibrium (SNE) is defined as follows.

Definition 1. (µ∗, π∗
µ∗) is an SNE if it satisfies: i) leader’s

optimality: µ∗ ∈ argmaxµ∈Υ V L(µ, π∗
µ,m

∗
µ), where π∗

µ
is the NE induced by µ and m∗

µ is the mean-field of the
followers following π∗

µ; ii) followers’ NE induced by µ∗:
V (µ∗, π∗

µ∗ ,m∗
µ∗) ≥ V (µ∗, π,m∗

µ∗), ∀π ∈ Π, with m∗
µ∗ be-

ing the mean-field of the followers following π∗
µ∗ .

In other words, in SNE, the leader chooses an optimal pol-
icy, given that the followers will reach the corresponding NE
induced by her optimal policy.

A conclusion is that for any given leader’s policy µ ∈ Υ,
there exists a unique NE of the followers π∗

µ (i.e., no tie-
breaking rule is involved). This follows the convergence of
a well-defined fictitious play process and the uniqueness is
derived by the monotonicity of r (see the Appendix).

With the above result, the leader can get rid of the equi-
librium selection problem, which is one of the challenges in
game theory (Samuelson 1997). Let d be some distance met-
ric defined on Υ×Π, (µ1, π∗

µ1) and (µ2, π∗
µ2) be two differ-

ent policy profiles with m∗
µ1 and m∗

µ2 being the correspond-
ing mean-fields. Then, if V L is concave w.r.t. µ, we can get
that: V L(µ1, π∗

µ1 ,m∗
µ1) ≥ V L(µ2, π∗

µ2 ,m∗
µ2) implies that

d((µ1, π∗
µ1), (µ∗, π∗

µ∗)) ≤ d((µ2, π∗
µ2), (µ∗, π∗

µ∗)). In other
words, for any policy profile (µ, π∗

µ), the higher (or equal)
leader’s value means the closer (or equal) distance of this
profile to the SNE under the concavity of V L. This moti-
vates our method for evaluating any leader’s policy µ: we
fix µ and then re-calculate the followers’ policy such that
they achieve the unique NE π∗

µ, after which we report the
leader’s performance. Such an evaluation method is simi-
lar to that in Stackelberg security games where the defender
maximizes her utility given that the attacker best responds
to her strategies (Kar et al. 2017). As we aim to find a good
leader’s policy, such evaluation is reasonable in our work.

To facilitate the understanding of this work, we summa-
rize some key notations in Table 1.

Notation Description

xh/X , uh/U Leader’s state/state space, action/action space
sih/S , ai

h/A Follower i’s state/state space, action/action space
GN

h Followers’ empirical state distribution
PL/P Leader’s/Followers’ transition function
µ/πi, Υ/Π Leader’s/Follower i’s policy, policy space
rL/ri Leader’s/Follower i’s reward function
V L/V i Leader’s/Follower i’s value function
mh/M Followers’ mean-field/mean-field space

Table 1: Summary of notations. The notations for the repre-
sentative follower are similar and hence, omitted here.

3.2 Example: E-hailing Driver Re-Positioning
We use the e-hailing driver re-positioning (EDRP) to intu-
itively illustrate the game model presented in the previous
section. Consider a city partitioned into different districts.
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Each district is denoted as a node, and the adjacent relation-
ship between nodes is represented by edges. Then the city is
abstracted as a graph G = (V,E) where V and E are the sets
of nodes and edges, respectively. The leader is the e-hailing
platform such as Uber and Lyft, and the followers are the
taxi drivers who compete for orders through the platform.

The state space of the followers is the set of nodes S =
{1, 2, · · · , |V |} where |V | is the number of nodes. The set of
available actions for a representative follower in state sh =
v ∈ S is denoted by Av ⊆ V . At time h ∈ H, the leader ob-
serves the followers’ state distribution GN

h and maximizes
the order response rate (ORR) of the city by placing service
charge in the nodes which are oversupplied by the followers.
The leader first takes an action uh and then, the representa-
tive follower selects the next node ah = w ∈ Av that she
will travel to based on her current state sh = v. Then, the
follower changes to a new state. The leader and follower re-
ceive rL(xh, uh,GN

h ) and r(uh, sh, ah,GN
h ), respectively.

In real-world scenarios, the number of followers could be
extremely large (e.g., ∼13,000 taxis in Manhattan) and they
share the same state/action space and transition/reward func-
tion. Therefore, SMFG can be used to model this scenario in
which the interaction between the leader and followers is
modeled as a Stackelberg game and the interaction between
the followers is captured by an MFG.

4 Approaches
In this section, we first propose an RL framework which we
call the Stackelberg mean-field update (SMFU) to learn the
leader’s policy. Then, as the SMFU is a model-free algo-
rithm which is data-inefficient, we propose a novel learning
framework, the transition-informed reinforcement learning
(TIRL), that improves the data efficiency and in turn accel-
erates the learning process. Finally, we propose to use regu-
larization techniques to further improve the stability.

4.1 Stackelberg Mean-Field Update
Classical methods for solving the SMFG typically require
exact dynamics parameters (e.g., the exact transition rate
matrix) which are unavailable in many real-world scenar-
ios and hence, are infeasible in practice. On the contrary, as
RL can learn the equilibrium without any prior of environ-
ments, it has been widely used to solve complex multi-agent
problems. However, none of the existing works have tried
to solve the SMFG by using RL algorithms. In this section,
we propose the first RL framework for solving the SMFG.
Suppose that the leader’s policy is parametrized by ω ∈ Ω
and the followers’ is parametrized by θ ∈ Θ. Moreover, the
leader’s and followers’ initial states come from the initial
distributions dL0 and d0, respectively. Then the leader’s and
followers’ expected performance is given by1:

JL(ω, θ,mθ) = Ex0∼dL
0
V L(ω, θ,mθ),

J(ω, θ,mθ) = Es0∼d0V (ω, θ,mθ).

Let ∇ωJ
L(ω, θ,mθ) and ∇θJ(ω, θ,m

θ) be the unbiased
estimators of ∂JL(ω, θ,mθ)/∂ω and ∂J(ω, θ,mθ)/∂θ, re-
spectively. Then, the learning rule for computing leader’s

1For simplicity, we use ω and θ to represent µω and πθ .

policy, which we refer to as the Stackelberg mean-field up-
date (SMFU), is given as follows:

ωh+1 = ωh + αh∇ωJ
L(ωh, θh,m

θh), (3)

θh+1 = θh + βh∇θJ(ωh, θh,m
θh), (4)

mθh
h ≈ GN,θh

h , (5)

where αh and βh are the learning rates. In practice, the gra-
dients of ω and θ are estimated by sampling experiences
from interactions with the environment (simulator). Take the
leader as the example, an unbiased estimator is:

∇ωJ
L(ω, θ,mθ) =Eµω

[
∇ω log µω(uh|xh)×∑H

z=0
rL(xh+z, uh+z,m

θ
h+z)

]
.

As for mθ
h, according to Eq.(1), we can approximate it by

GN,θ
h , the followers’ empirical state distribution at h ∈ H.

4.2 Transition-Informed Reinforcement Learning
Since the SMFU is a model-free learning algorithm, it suf-
fers from the issue of data inefficiency. On one hand, model-
free learning typically requires an excessive number of in-
teractions of the players with the environment to generate a
large amount of data before achieving satisfied performance.
Though the availability of a large number of followers that
explore the environment can generate the desired data, the
simulation of the behaviors of a large population of follow-
ers is computationally resource-intensive and could be time-
consuming. On the other hand, the experience tuples gener-
ated by interacting with the environment are ignored after
each update of ω and θ. However, in fact, extra information
can be extracted from the data, which can be used for fa-
cilitating the future updates of the policies. This motivates
our novel learning framework, the Transition-Informed Re-
inforcement Learning (TIRL), which is shown in Figure 1.

Leader
𝑢ℎ~𝜇𝜔

EFP

𝔾ℎ+1
𝑁,𝜃 = Φ𝜼 𝜃,𝔾ℎ

𝑁,𝜃

Environm
ent

Instantiated EFP
Followers

𝑟𝐿 ∙,∙, 𝔾ℎ
𝑁,𝜃

(𝑠ℎ, 𝑎ℎ, 𝑠ℎ+1)

Training Data

Transition Function
Follower

𝑟 𝑢ℎ,∙,∙, 𝔾ℎ
𝑁,𝜃

𝑎ℎ~𝜋𝜃

Supervised 
Learning

𝔾ℎ+1
𝑁,𝜃 = Φ 𝜃,𝔾ℎ

𝑁,𝜃

Figure 1: Overview of TIRL.

Roughly speaking, there are two stages in TIRL: i) in ad-
dition to training the leader’s and followers’ policies, we use
the experience tuples generated by interacting with the en-
vironment to learn the followers’ transition function, and ii)
train the leader’s and followers’ policies based on the empir-
ical Fokker-Planck (EFP) equation (defined below) instanti-
ated with the learned transition function. More details on the
learning process can be found in the Appendix. To formally
describe the TIRL, we introduce the EFP equation under the
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parameterized policy πθ: ∀k ∈ S ,

GN,θ
h+1(k)

=
∑

l∈S

∑
ah∈A

GN,θ
h (l)πθ(ah|l)P (k|l, ah).

(6)

Intuitively, Eq.(6) describes the evolution of the followers’
empirical state distribution given a large number of follow-
ers. Notice that rigorously proving the equivalence between
Eq.(6) and Eq.(2) under the parameterized policy πθ is more
involved and outside the scope of this work (please refer to
the Appendix for more discussion).

Let Pη be the neural network (NN) parameterized by η,
which acts as the approximator of the followers’ ground-
truth transition function P . Pη takes sh and ah as input and
outputs the probability distribution over the state space. Let
K be the number of episodes of the whole learning process
and K1 < K be the number of episodes for learning the fol-
lowers’ transition function. During the first K1 episodes, we
collect data of form (sh, ah, sh+1) to the training set D by
interacting with the environment and train Pη on D via neg-
ative log prediction probability loss (supervised learning):

loss(η) = −ED [logPη(sh+1|sh, ah)] . (7)

Then, for last K −K1 episodes, we generate data by lever-
aging Eq.(6) where P is replaced with Pη . Overall, we have
the following update rules: ∀k ∈ S ,

ωh+1 = ωh + αh∇ωJ
L(ωh, θh,GN,θh), (8)

θh+1 = θh + βh∇θJ(ωh, θh,GN,θh), (9)

GN,θ
h+1(k) =

{
Φ(θ,GN,θ

h )(k), e ≤ K1,

Φη(θ,GN,θ
h )(k), otherwise,

(10)

where Φη denotes the operation with Pη and 1 ≤ e ≤ K
denotes the current episode. Note that when e ≤ K1, since
P is unknown (to algorithm), Φ is implemented through in-
teractions with the environment. That is, GN,θ

h+1 is obtained
by taking statistics on sih+1, i ∈ N , the followers’ new
states resulted from interactions with the environment by
using πθ. During the last K − K1 episodes, in contrast to
the SMFU, TIRL estimates the gradients of ω and θ by di-
rectly considering the transition happened in every pair of
states (l, k) ∈ S × S . By the instantiated EFP equation,
we can directly compute GN,θ

h+1, based on which we obtain
the reward for each state transition. Specifically, when com-
puting the new state distribution of followers in state k, we
follow Eq.(10) to first multiply the current state distribution
with action probabilities and Pη(k|·, ·) which can be easily
obtained in a batch manner, and then summarize. Note that
the current state distribution and action probabilities are ex-
panded to match the dimension of Pη(k|·, ·).

Obviously, the computational complexity of TIRL is pro-
portional to the size of the followers’ state space |S|. Since
the number of states could be much smaller than that of the
followers (|S| ≪ N ), e.g., the number of districts of the city
versus the number of vehicles, TIRL can therefore scale up
to much larger settings.

4.3 Regularized TIRL
The complex interaction between the leader and followers
makes the learning performance of the TIRL sensitive to the
initialization of the leader’s policy. We empirically demon-
strate this phenomenon in the EDRP scenario as shown in
Figure 2 (colored lines correspond to the evaluation perfor-
mance of leader’s policies learned by using TIRL under dif-
ferent random seeds and the black line for SMFU-w/o-L is
plotted for comparison, details on experimental settings can
be found in Section 5). From the results, we can see that dif-
ferent initializations of leader’s policy can result in dramati-
cally different learning performance. To alleviate this issue,
we develop a regularized TIRL (Reg-TIRL, for short).
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Figure 2: Test results of 10 seeds in EDRP with N = 1, 000.

First, to encourage the exploration of leader’s policy and
prevent it from overfitting to some of the actions, we aug-
ment the leader’s value function with an entropy term calcu-
lated as I(µω(·|xh)) = −λEuh∼µω(uh|xh) log µω(uh|xh),
where λ determines the relative importance of the entropy
term against the value function. Though entropy regulariza-
tion can improve stability, we find that it is still insufficient
to stabilize the leader’s policy training. We address this issue
by further constraining the complexity of the leader’s pol-
icy network. Specifically, we augment the leader’s objective
with the L1-norm δ∥ω∥1 where δ is a hyperparameter. Af-
ter each update, we apply weight clipping to constraint the
weights of the leader’s policy to ω = clip(ω,−c, c). Note
that the method can be also applied to SMFU (Reg-SMFU).

5 Experimental Results
We evaluate our approach on two scenarios2: the e-hailing
driver re-positioning (EDRP) and multiple-type food gath-
ering (MTFG). All experiments are run on a 64-bit worksta-
tion with 125 GB RAM, 20 Intel i9-9820X CPU @3.30GHz
processors, and 4 NVIDIA RTX2080 Ti GPUs.

5.1 Setup
First, we present the experimental setup including the eval-
uation metrics, baseline methods, and game environments.
Evaluation Metrics. For training, we focus on the runtime
of the training process. For evaluation, we concentrate on
the leader’s performance; thus, we fixed the leader’s policy
and then re-train the followers’ policy for a fixed number of

2Code is available at https://github.com/IpadLi/SMFG.
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Figure 3: Results for EDRP scenario. (Top) Training curves of different methods. x-axis is episode. (Medium) Average runtimes
of different methods, ‘h’ stands for hour. (Bottom) Evaluation performance of the leader’s policies of different methods.

N M3RL EBPG SMFU-w/o-L SMFU Reg-SMFU TIRL Reg-TIRL

300 0.84±0.03 0.81±0.01 0.76±0.00 0.79±0.02 0.81±0.00 0.82±0.02 0.81±0.01
500 0.85±0.04 0.84±0.01 0.79±0.01 0.88±0.02 0.85±0.00 0.83±0.04 0.85±0.01
800 0.84±0.05 0.85±0.03 0.80±0.01 0.86±0.04 0.87±0.01 0.85±0.04 0.87±0.01

1,000 0.88±0.04 0.87±0.03 0.81±0.01 0.86±0.04 0.88±0.01 0.83±0.04 0.88±0.01
5,000 N/A N/A 0.82±0.00 0.92±0.03 0.91±0.02 0.90±0.06 0.92±0.02

10,000 N/A N/A 0.82±0.01 0.89±0.06 0.90±0.06 0.86±0.06 0.89±0.05
50,000 N/A N/A 0.82±0.01 0.90±0.07 0.94±0.01 0.93±0.06 0.94±0.00

100,000 N/A N/A 0.82±0.00 0.88±0.07 0.88±0.07 0.90±0.07 0.94±0.00

Table 2: Quantitative values of the performance of leader’s policies in EDRP scenario. ± corresponds to the standard deviation.

episodes, after which we report the leader’s average perfor-
mance over the last 10 episodes for fair comparison.
Baselines. We consider the following methods: M3RL (Shu
and Tian 2019), EBPG (Yu et al. 2020), SMFU-w/o-L (i.e.,
without leader’s incentive), SMFU, Reg-SMFU, TIRL, and
Reg-TIRL. As M3RL and EBPG require much longer train-
ing/evaluation time, we only run them for N ≤ 1, 000, while
for the other methods, we run them up to the setting with
N = 100, 000. All the settings are run using 5 seeds. More
details can be found in the Appendix.
Environments. (1) The EDRP environment is adapted from
(Lin et al. 2018). In this scenario, the leader aims to improve
the order response rate (ORR) of the whole city, while the
followers maximize their own returns. Similar scenarios can
be found in (Varakantham et al. 2012; Nguyen, Kumar, and
Lau 2017, 2018). Moreover, similar to (Alonso-Mora et al.
2017), we extract order information from a public dataset
of taxi trips in Manhattan, which contains for each day the
time and location of all the pickups and drop-offs executed
by each of ∼13,000 active taxis. Such information can be
seen as an approximation of the real-world demand-supply
relationship in Manhattan. (2) The MTFG environment is

adapted from (Long et al. 2019). In this scenario, two types
of foods with different values are distributed over the map.
The followers gain benefits by gathering as many foods as
possible and the leader manages to improve the collection
ratio (CR) of the whole system by offering the followers in-
centives. See the Appendix for more details.

5.2 Results
EDRP. In Figure 3, we show the training curves (top), av-
erage runtimes (medium), and evaluation performance (bot-
tom) of the leader’s policies under different settings. Top:
i) In small-sized settings, TIRL and Reg-TIRL perform bet-
ter than the other methods. Intuitively, TIRL and Reg-TIRL
operate on the mean-field level (i.e., directly compute the
followers’ state distribution), which can more accurately ap-
proximate the order distribution so that they achieve bet-
ter ORR. As the number of followers increases, the train-
ing performance of the SMFU-type methods (SMFU-w/o-
L, SMFU, and Reg-SMFU) increases due to the fact that
the empirical state distribution of the followers converges
to the mean-field. ii) Using regularization techniques can
significantly improve the training stability, e.g., in the set-
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Figure 4: Results for MTFG scenario. (Top) Training curves of different methods. x-axis is episode. (Medium) Average runtimes
of different methods, ‘h’ stands for hour. (Bottom) Evaluation performance of the leader’s policies of different methods.
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Figure 5: First column is the distribution of foods (the two types of foods are equally deployed on the bottom-left and top-right
zones, respectively). The other columns are the followers’ distributions of different methods. Here, N = 1, 000.

ting with N = 50, 000, Reg-TIRL performs better than
TIRL. Similar results can be found between Reg-SMFU
and SMFU. Medium: The runtimes of M3RL and EBPG
are much longer than all the other methods. As the num-
ber of followers increases, the runtimes of the SMFU-type
methods increase quickly, while TIRL and Reg-TIRL need
shorter runtime, showing that they can scale up to larger set-
tings. Bottom: i) TIRL and Reg-TIRL achieve similar or
better ORR compared to SMFU and Reg-SMFU, respec-
tively. ii) Using regularization significantly improves learn-
ing stability, see the comparison of Reg-SMFU vs. SMFU
and Reg-TIRL vs. TIRL. In conclusion, TIRL/Reg-TIRL can
efficiently (shorter runtime) and effectively (better leader’s
performance) solve large-scale SMFGs (scale up to 100,000
followers). Quantitative values can be found in Table 2.

In addition, we also perform the ablation study on a small-
sized EDRP setting with N = 1, 000 to show that Reg-TIRL
achieves the best or similar performance compared to some
other common regularizers: L2-norm, batch normalization,
and dropout. See the Appendix for more details.
MTFG. In Figure 4, we show the training curves (top), av-
erage runtimes (medium), and the evaluation performance
(bottom) of the leader’s policies. From the results, we ob-
serve that TIRL/Reg-TIRL can efficiently (shorter runtime)
and effectively (better leader’s performance) solve large-

scale SMFGs (scale up to 100,000 followers). Quantitative
values can be found in the Appendix. Moreover, in Figure 5,
we show the distributions of the followers over the grid map,
which demonstrates the effectiveness of the leader’s policy
on incentivizing a large population of followers. Here only
the setting with N = 1, 000 is shown and more results can
be found in the Appendix.

6 Conclusions
In this work, we employ RL to address large-scale SMFGs.
The main contributions are threefold: i) we propose an RL
framework, the SMFU, to learn the leader’s policy with-
out priors of the environments, ii) we propose a transition-
informed RL framework to improve the data efficiency and
in turn, the scalability, and iii) we propose to use regulariza-
tion techniques to improve the training stability. Extensive
experiments on real-world domains demonstrate the effec-
tiveness of our approach. Some limitations of our approach
will be further investigated in future works: i) we will con-
sider multiple leaders and multiple followers, which is the
case in the labor market, and ii) we will consider the setting
with enormous multiple-type, even heterogeneous, follow-
ers (Zheng et al. 2022), such as different types of vehicles
(e.g., cars, buses, and trucks) in the EDRP scenario.
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