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Abstract

Exploration in decentralized cooperative multi-agent rein-
forcement learning faces two challenges. One is that the nov-
elty of global states is unavailable, while the novelty of local
observations is biased. The other is how agents can explore
in a coordinated way. To address these challenges, we pro-
pose MACE, a simple yet effective multi-agent coordinated
exploration method. By communicating only local novelty,
agents can take into account other agents’ local novelty to
approximate the global novelty. Further, we newly introduce
weighted mutual information to measure the influence of one
agent’s action on other agents’ accumulated novelty. We con-
vert it as an intrinsic reward in hindsight to encourage agents
to exert more influence on other agents’ exploration and boost
coordinated exploration. Empirically, we show that MACE
achieves superior performance in three multi-agent environ-
ments with sparse rewards.

Introduction
Recent progress in decentralized learning theories and al-
gorithms for multi-agent reinforcement learning (MARL)
(Zhang et al. 2018; de Witt et al. 2020; Jin et al. 2021;
Daskalakis, Golowich, and Zhang 2022; Jiang and Lu 2022)
makes it feasible to learn high-performant policies in a de-
centralized way for cooperative multi-agent tasks. However,
one critical issue remains, i.e., how to enable agents to ef-
fectively explore in a coordinated way under such a learning
paradigm, especially for sparse-reward tasks where the en-
vironment rarely provides rewards.

One of the most popular exploration schemes in the
single-agent setting is novelty-based exploration (Bellemare
et al. 2016; Pathak et al. 2017; Burda et al. 2018b; Zhang
et al. 2021b), where the agent is encouraged by well-
designed intrinsic reward to visit novel states it rarely sees.
However, things could be different when migrating to de-
centralized multi-agent settings, which leads to an unsolved
problem: as only the local observation instead of the global
state is available, how should each agent measure the nov-
elty of the global state?

In decentralized settings, partial observability expands the
discrepancy between each agent’s local observation nov-
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elty and global state novelty, which makes the exploration
merely based on local novelty highly unreliable (Wang et al.
2019a; Iqbal and Sha 2019). Fortunately, communication
can help ease partial observability by providing extra infor-
mation about other agents (Jiang and Lu 2018; Das et al.
2019; Wang et al. 2019b; Ding, Huang, and Lu 2020). How-
ever, unlimited communication may incur too much com-
munication overhead, and it can indeed transform the de-
centralized setting into a centralized setting. Therefore, we
resort to decentralized learning with limited communication
to address such problems.

In addition to the challenge of novelty measurement, in
cooperative tasks, agents must also acquire the ability to co-
ordinate with each other to explore and achieve the final
goal. Ideally, the optimal exploration strategy should con-
sider others’ observations and actions. Previous work (Wang
et al. 2019a; Iqbal and Sha 2019; Liu et al. 2021) finds that
independent exploration is not efficient and redundant ex-
ploration occurs. By coordination in exploration, we mean
agents help other agents to achieve novel observations or
reach novel states together through cooperation. In other
words, an agent should be encouraged when its action en-
ables other agents to reach more novel observations.

In this paper, we propose a simple yet effective Multi-
Agent Coordinated Exploration method, namely MACE.
MACE introduces a novelty-based intrinsic reward and a
hindsight-based intrinsic reward to enable coordinated ex-
ploration in decentralized cooperative tasks. Within the con-
fines of limited communication, agents only share their local
novelties (merely a floating point number) during training.
Each agent leverages this shared information to approximate
the global novelty, which serves as the novelty-based intrin-
sic reward. This approach aims to bridge the gap between the
local novelty and the global novelty. Moreover, we encour-
age agents to exert more influence on others’ explorations
through the hindsight-based intrinsic reward, thereby boost-
ing coordinated exploration. To this end, we measure the
weighted mutual information (Guiasu 1977; Schaffernicht
and Gross 2011) between the action of the agent and the ac-
cumulated novelty obtained thereafter by others given the
local observation. The higher the weighted mutual informa-
tion value, the higher the hindsight-based intrinsic reward
the agent receives.

We evaluate MACE in three multi-agent environments:
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GridWorld, Overcooked (Carroll et al. 2019), and SMAC
(Samvelyan et al. 2019). All tasks in these environments are
sparse-reward and hard to explore. The experimental results
verify the effectiveness of MACE. Through ablation studies,
we show that both the approximation to global novelty and
the encouragement to influence other agents’ exploration are
indispensable in decentralized multi-agent exploration, and
our newly employed weighted mutual information works
significantly better than normal mutual information.

Preliminary
Decentralized learning. We consider an N-agent Markov
decision process (MDP) M = {S,O,A, P,R, γ}. Here, S
represents the state space while A is the joint action space;
the transition probability is defined by P (s′|s,a). In decen-
tralized learning, each agent has only access to its own local
observation oi ∈ Oi, rather than the global state, and learns
an independent policy πi to maximize the shared reward
defined by R together with other agents. Notably, decen-
tralized learning is more practical than centralized learning,
owing to its better scalability, privacy, and security (Zhang,
Yang, and Basar 2019).
Limited communication. We allow agents to communicate
during the training phase. However, in order to enhance the
practicality and adhere closely to the decentralized setting,
we impose constraints on the bandwidth of the communi-
cation channel to reduce communication overhead (Foerster
et al. 2016; Kim et al. 2018; Wang et al. 2020a). Specifically,
the message sent by one agent at each step is confined to a
floating point number. In this paper, we set agents to com-
municate their local novelties through this limited channel.
Communication is not allowed during execution.

Note that this setting differs from centralized training and
decentralized execution (CTDE) (Lowe et al. 2017; Foerster
et al. 2018; Rashid et al. 2018), where agents can use unlim-
ited extra information to ease training, such as other agents’
observations and actions, or a centralized value function.
Besides, our setting is not identical to fully decentralized
learning (Tan 1997; de Witt et al. 2020; Jiang and Lu 2022),
where communication is forbidden. On top of the fully de-
centralized learning algorithm, we will show that adding
communication of novelty during training can enable coor-
dinated exploration of agents to solve sparse-reward tasks.

Methodology
In this section, we present MACE addressing the challenges
in decentralized multi-agent exploration. MACE follows the
line of intrinsically motivated exploration (Yang et al. 2021)
that designs intrinsic rewards rint and trains agents via the
shaped reward rs = rext + rint, where rext denotes the ex-
trinsic reward given by the environment. MACE adopts the
following two parts to design intrinsic rewards: 1) To ob-
tain a more reliable novelty estimate as the novelty-based
intrinsic reward, MACE uses the summation of all agents’
novelty to approximate the global novelty. 2) To boost coor-
dinated exploration, MACE further quantifies the influence
of agents on the accumulated future novelty of other agents
and converts it into the hindsight-based intrinsic reward. The

weighted sum of these two parts is the final intrinsic reward
used in MACE.

Approximation to Global Novelty
In decentralized training, if we only take into account the
individual exploration of agent i, ui

t = novelty(oit+1) can
serve as the intrinsic reward to encourage agent i to take ac-
tions towards observations it seldom visits. When the obser-
vation space is discrete and small, such as the 2-dimension
grid (x, y), we could directly record the number of times
each observation that agent i has visited before and define
novelty(o) = 1/n(o) where n(o) denotes the visit counts. If
the observation space becomes large or continuous, methods
designed for high-dimensional input such as pseudo-count
(Bellemare et al. 2016), ICM (Pathak et al. 2017), and RND
(Burda et al. 2018b) could be used to measure the novelty.

However, ui
t only measures the local novelty of agent i.

In the multi-agent environment, given the discrepancy be-
tween the local novelty and the global novelty, ui

t may not
be able to provide accurate and sufficient information for
exploration. For example, we consider a two-agent environ-
ment where at timestep t, agent 1 is in an observation with
low local novelty, and agent 2 is in an observation with high
local novelty. From the global perspective, the two agents
are in a novel state. However, from agent 1’s perspective,
it thinks that the observation is not novel and gives itself a
low intrinsic reward, preventing it from further exploring the
current novel state.

Due to the decentralized setting, the global novelty is not
available to each agent. Therefore, we need a more appropri-
ate intrinsic reward term than ui

t to narrow the gap with the
global novelty. Thanks to the limited communication, agents
can exchange their local novelty ui

t with each other at each
timestep t. We propose a heuristic that uses the summation
of all agents’ local novelty as an approximation to the global
novelty and as the novelty-based intrinsic reward:

rinov(o
i
t, a

i
t) =

∑
j

uj
t . (1)

With the introduction of other agents’ novelty, we can avoid
the aforementioned dilemma.

We admit that (1) still deviates from the global novelty in
some cases. For example, agent 1 and agent 2 are in low-
novelty observations while the global state is novel, which
occurs when agent 1 and agent 2 seldom visit current ob-
servations simultaneously. Nevertheless, the gap with the
global novelty cannot be closed entirely due to the limited
information, and experimental results prove empirically that
(1) works better than the local novelty ui

t, as shown in the
subsequent experimental section. One may argue that an al-
ternative is to use the maximum of all agents’ novelty as
the intrinsic reward, but our preliminary experiment demon-
strates that (1) works better.

Influence on Other Agents’ Exploration
To boost coordinated exploration in multi-agent environ-
ments, each agent should consider its influence on other
agents’ exploration so that it could find some critical states
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state 1
act reward probability

a1

p(r = 1 | a1) = 0.1
p(r = 5 | a1) = 0.8
p(r = 9 | a1) = 0.1

a2

p(r = 1 | a2) = 0.8
p(r = 5 | a2) = 0.1
p(r = 9 | a2) = 0.1

state 2
act reward probability

a1

p(r = 1 | a1) = 0.1
p(r = 5 | a1) = 0.8
p(r = 9 | a1) = 0.1

a2

p(r = 1 | a2) = 0.1
p(r = 5 | a2) = 0.1
p(r = 9 | a2) = 0.8

Table 1: Action and reward probability of two illustrative
states.

(Yang et al. 2021). Critical states here mean that in these
states, the action taken by one agent affects other agents’
exploration progress, e.g., one agent steps on a switch and
thus opens a door that blocks another agent’s way. So en-
couraging agents to explore these critical states would help
them learn to cooperate effectively. We first discuss how to
quantify one agent’s influence on other agents’ exploration.

Suppose there are two agents, agent i and agent j, in the
environment. To estimate agent i’s influence on agent j’s
exploration in a specific observation, we could use mutual
information, a common measure used in MARL (Li et al.
2022), to quantify the dependence between agent i’s action
ait and agent j’s accumulated novelty zjt =

∑
t′=t γ

t′−tuj
t′

given agent i’s observation oit:

I
(
Ai

t;Z
j
t |oit

)
= Eai

t,z
j
t |oit

[
log

p(ait, z
j
t |oit)

p(ait|oit)p(z
j
t |oit)

]
.

Here we use agent j’s accumulated novelty zjt instead of its
immediate novelty uj

t to measure the long-term dependence.

However, mutual information ignores the magnitude of
agent j’s accumulated novelty zjt . So it would give similar
measurements for observation oi1 where ait is related to some
low-value zjt , and observation oi2 where ait is related to some
high-value zjt . To illustrate the statement intuitively, we de-
vise two states with two actions and three different rewards,
described in Table 1. Action and reward here can be seen as
ait and zjt respectively. As shown in Figure 1(a), with differ-
ent p(a1), state 1 and state 2 always keep the same mutual
information. But state 2 is more critical to coordinated ex-
ploration because the action (a2) taken by agent i in state 2
can lead agent j to high accumulated novelty (r = 9) more
likely. Although agent i’s action in state 1 has an influence
on agent j’s accumulated novelty to the same extent as that
in state 2 measured by mutual information, it is more likely
to result in lower accumulated novelty (r = 1 or r = 5).
Therefore we need a more effective measure to estimate the
influence of agent i’s action ait on agent j’s accumulated
novelty zjt , while taking into account the magnitude of zjt .

To this end, we newly introduce weighted mutual infor-
mation (Guiasu 1977; Schaffernicht and Gross 2011) be-
tween agent i’s action ait and agent j’s accumulated novelty

0.0 0.2 0.4 0.6 0.8 1.0
p(a1)

0.0

0.1

0.2

0.3

state 1
state 2

(a) MI

0.0 0.2 0.4 0.6 0.8 1.0
p(a1)

0.0

1.0

2.0

(b) WMI

Figure 1: (a) Mutual information (MI) between action and
reward in state 1 and state 2. (b) Weighted mutual informa-
tion (WMI) between action and reward in state 1 and state 2.

zjt given agent i’s observation oit:

ωI
(
Ai

t;Z
j
t |oit

)
= Eai

t,z
j
t |oit

[
ω(ait, z

j
t ) log

p(ait, z
j
t |oit)

p(ait|oit)p(z
j
t |oit)

]
(2)

where ω(·, ·) denotes the weight placed on the pair of ait and
zjt . By introducing weights, pairs of ait and zjt would have
different informativeness. We set ω(ait, z

j
t ) = zjt , mean-

ing that relational mappings between ait and higher zjt carry
more significance than others. To illustrate how it works,
Figure 1(b) shows weighted mutual information of state 1
and state 2 with different p(a1). We can see that the weighted
mutual information of state 2 is always higher than that of
state 1, consistent with what we expected. To summarize, (2)
evaluates an observation oit based not only on whether agent
i’s action has an influence on agent j’s exploration, but also
on whether agent i’s action could lead to a high accumulated
novelty of agent j.

Intrinsic Reward in Hindsight

To encourage each agent i to visit observations with high
weighted mutual information, we define an intrinsic reward
riwmi of its observation oit as:

riwmi(o
i
t) =

∑
j ̸=i

ri→j
wmi(o

i
t) =

∑
j ̸=i

ωI(Ai
t;Z

j
t |oit). (3)

ri→j
wmi denotes the intrinsic reward given to agent i corre-

sponding to its influence on agent j’s exploration measured
by weighted mutual information. Agent i’s intrinsic reward
riwmi is the summation of all ri→j

wmi , representing its total in-
fluence on other agents’ exploration. However, it is nontriv-
ial to compute ri→j

wmi according to (2), because it is an ex-
pectation over all actions and accumulated novelty. So we
decompose the intrinsic reward (3) onto each action:

ri→j
wmi(o

i
t, a

i
t) = Ezj

t |oit,ai
t

[
zjt log

p(ait, z
j
t |oit)

p(ait|oit)p(z
j
t |oit)

]
. (4)
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Further, we can continue to decompose (4) and get a
hindsight-based intrinsic reward:

ri→j
hin (oit, a

i
t, z

j
t ) = zjt log

p(ait, z
j
t |oit)

p(ait|oit)p(z
j
t |oit)

. (5)

Here p(ait|oit) is the current policy πi(ait|oit) of agent i. With

Bayesian rule p(ait|oit, z
j
t ) =

p(ai
t,z

j
t |o

i
t)

p(zj
t |oit)

, we can rewrite the
logarithmic term in (5) and have:

ri→j
hin (oit, a

i
t, z

j
t ) = zjt log

p(ait|oit, z
j
t )

πi(ait|oit)
, (6)

which is the form of the hindsight-based intrinsic reward we
use in the paper. The term ‘hindsight’ reflects the difference
between (6) and normal reward functions: (6) uses informa-
tion obtained in future, i.e., agent j’s accumulated novelty
zjt , which is not available until the end of the episode.

The logarithmic term in (6) is the pointwise mutual in-
formation between ait and zjt . Pointwise mutual information
measures the association between two random variables,
commonly used in natural language processing (NLP).
Therefore, (6) could be interpreted as encouraging action as-
sociative with the high accumulated novelty of agent j. If an
ait co-occurs with a high zjt at timestep t but there is no as-
sociation between them, the logarithmic term in (6) will be
around zero and agent i will not receive a high intrinsic re-
ward, despite the high zjt .

Note that ri→j
hin (oit, a

i
t, z

j
t ) keeps the following relation-

ship with the original ri→j
wmi(o

i
t):

ri→j
wmi(o

i
t) = Eai

t|oit

[
ri→j
wmi(o

i
t, a

i
t)
]

= Eai
t,z

j
t |oit

[
ri→j
hin (oit, a

i
t, z

j
t )
]
, (7)

thus using ri→j
hin (oit, a

i
t, z

j
t ) could be regarded as a Monte

Carlo method for estimating ri→j
wmi(o

i
t). Agent i needs agent

j’s accumulated novelty zjt and the posterior distribution
p(ait|oit, z

j
t ) to calculate ri→j

hin (oit, a
i
t, z

j
t ) at each timestep t.

The former is computed at the end of the episode by accu-
mulating agent j’s novelty uj

t that agent i obtained through
communication. Note that this does not require additional
communication, and each agent still communicates only lo-
cal novelty at each timestep. The latter could be estimated
from trajectory samples. To fulfill (7), samples used to es-
timate p(ait|oit, z

j
t ) and compute ri→j

hin (oit, a
i
t, z

j
t ) should be

on-policy because the expectation follows the distribution
over zjt , determined by the current policies of all agents. So
our proposed intrinsic reward is more suitable for on-policy
reinforcement learning algorithms.

MACE

We combine the novelty-based intrinsic reward (1) and the
hindsight-based intrinsic reward (6) to get the final shaped

reward:

ris(o
i
t, a

i
t, {z

j
t }j ̸=i)

= rext + rinov(o
i
t, a

i
t) + λ

∑
j ̸=i

ri→j
hin (oit, a

i
t, z

j
t )

= rext +
∑
j

uj
t + λ

∑
j ̸=i

zjt log
p(ait|oit, z

j
t )

πi(ait|oit)
, (8)

where λ is a hyperparameter that denotes the weight of
the hindsight-based intrinsic reward. In other words, λ con-
trols the weight between encouraging agents to visit glob-
ally novel states and encouraging agents to influence other
agents’ exploration. Since the calculation of the hindsight-
based intrinsic reward requires on-policy samples, we use in-
dependent PPO (IPPO) (Schulman et al. 2017; de Witt et al.
2020) as the base RL algorithm and train each agent i with
shaped reward (8). To guarantee scalability, we additionally
propose a scalable hindsight-based intrinsic reward using
weighted mutual information between the agent’s action and
the summation of all other agents’ accumulated novelty.

Related Work
Single-agent exploration. Advanced RL algorithms have
been developed to improve exploration. Providing the agent
with a manually designed intrinsic reward has been proven
effective in environments with sparse rewards like Mon-
tezuma’s Revenge (Brockman et al. 2016). Typically, the in-
trinsic reward is set to be the novelty of the state, e.g., the
inverse of the visit count: rint(s) = novelty(s) = 1/n(s),
to encourage the agent to take action towards states it sel-
dom visits. However, states in real problems are usually
high-dimensional, meaning that n(s) is impossible to count
in most cases. Count-based methods solve this problem by
introducing pseudo-count (Bellemare et al. 2016) or hash-
ing to discretize states (Tang et al. 2017). Other methods
measure novelty from different perspectives, including pre-
diction error of transition model (Pathak et al. 2017; Burda
et al. 2018a; Kim et al. 2019), prediction error of state fea-
tures (Burda et al. 2018b), policy discrepancy (Flet-Berliac
et al. 2020), state marginal matching (Lee et al. 2019), de-
viation of policy cover (Zhang et al. 2021a), uncertainty
(Houthooft et al. 2016; Pathak, Gandhi, and Gupta 2019),
and TD error of random reward (Ramesh et al. 2022). Re-
cent work places an episodic restriction on intrinsic reward,
where the intrinsic reward obtained by an agent visiting a re-
peated state within an episode will be reduced (Badia et al.
2019; Raileanu and Rocktäschel 2019; Zhang et al. 2021b;
Henaff et al. 2022).
Multi-agent exploration. Exploration in multi-agent envi-
ronments requires intrinsic reward that is different from that
in single-agent environments. Iqbal and Sha (2019) pro-
posed several types of intrinsic reward which take into con-
sideration the novelty of agent i’s observation from the per-
spective of agent j. EITI/EDTI (Wang et al. 2019a) focuses
on encouraging the agent to states or observations where
the agent influences other agents’ transition or value func-
tion. EMC (Zheng et al. 2021) uses the summation of the
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prediction errors of local Q-functions as the shared intrin-
sic reward. MAVEN (Mahajan et al. 2019) improves multi-
agent exploration by maximizing the mutual information be-
tween the trajectory and a latent variable, by which agents
are encouraged to visit diverse trajectories. CMAE (Liu et al.
2021) combines the goal-based method with a state space di-
mension selection technique to adapt to the exponentially in-
creased state space. MASER (Jeon et al. 2022) selects goals
from the observation space instead of the state space.

However, these methods follow the CTDE setting, where
unlimited extra information can be used to ease training.
Some use QMIX (Rashid et al. 2018) as their backbone (Ma-
hajan et al. 2019; Zheng et al. 2021; Liu et al. 2021; Jeon
et al. 2022), while others require agents to share their local
observations and actions (Iqbal and Sha 2019; Wang et al.
2019a). In contrast, MACE is built on top of decentralized
learning algorithms and requires neither a centralized Q-
function like QMIX nor the communication of observations
and actions between agents. It only needs to pass a floating
point number, i.e., the local novelty, between agents, result-
ing in much less communication overhead than the methods
mentioned above. Thus, comparison with these multi-agent
exploration methods is out of the focus of this paper.
Decentralized multi-agent reinforcement learning. By
virtue of the advantages of decentralized learning, e.g., easy
to implement, better scalability, and more robust (Jiang and
Lu 2022), decentralized learning has attracted much atten-
tion from the MARL community. The convergence of decen-
tralized learning was theoretically studied for cooperative
games in networked settings (Zhang et al. 2018) and for fully
decentralized (without communication) stochastic games in
tabular cases (Jin et al. 2021; Daskalakis, Golowich, and
Zhang 2022), laying the theoretical foundation for decen-
tralized learning. de Witt et al. (2020); Papoudakis et al.
(2021) showed the promising empirical performance of fully
decentralized algorithms including IPPO and independent
Q-learning (IQL) (Tan 1993) in several cooperative multi-
agent benchmarks. Recently, Jiang and Lu (2022) proposed
I2Q, a practical fully decentralized algorithm based on Q-
learning for cooperative tasks, and proved the convergence
of the optimal joint policy, yet limited to deterministic en-
vironments. However, the existing work does not take into
consideration coordinated exploration and simply uses ϵ-
greedy or sampling from the stochastic policy at individual
agents. We take a step further to consider decentralized co-
ordinated exploration and thus enable decentralized learning
algorithms to solve sparse-reward tasks. As discussed be-
fore, our proposed hindsight-based intrinsic reward is more
suitable for on-policy algorithms, thus we currently build
MACE on IPPO. Combining MACE with off-policy decen-
tralized algorithms like IQL or I2Q is left as future work.

Experiments
In experiments, we evaluate MACE in three environments:
GridWorld, Overcooked (Carroll et al. 2019), and SMAC
(Samvelyan et al. 2019). We set all environments sparse-
reward. Since we consider decentralized learning, agents in
the experiments do not share their parameters and learn in-
dependently, following existing work (Jiang and Lu 2022).

Agent 2

Switch 1

Switch 2

Door 1

Target Room

Agent 1

(a) Pass

Agent 1

Agent 2

Switch 1

Switch 2

Switch 3

Switch 4

Target Room

Door 1

Door 2

Door 3

(b) SecretRoom

Agent 1
Agent 3

Agent 2

Switch 1

Switch 2

Switch 3

Switch 4

Door 1

Door 2

Door 3

Door 4

Door 5

Target Room

(c) MultiRoom

Figure 2: GridWorld: (a) Pass. (b) SecretRoom. (c)
MultiRoom.

(a) Base (b) Narrow (c) Large

Figure 3: Overcooked: (a) Base. (b) Narrow. (c) Large.

GridWorld. We design three tasks in GridWorld includ-
ing Pass, SecretRoom, and MultiRoom. Pass and
SecretRoom reference tasks in Wang et al. (2019a) and
Liu et al. (2021). In MultiRoom, the task extends to three
agents. The goal of all tasks is that all agents enter the target
room shown in Figure 2.
Pass: There are two agents in the 30×30 grid. Door 1

will open when any switch is occupied. To achieve the goal,
one agent needs to reach switch 1 to open door 1 so that
the other agent can enter the target room, then the latter
agent needs to reach switch 2 to let the former agent come
in. SecretRoom: There are two agents in the 30×30 grid.
Door k will open when switch k + 1 is occupied and all
doors will open when switch 1 is occupied. Agents need
to take the same steps as that in Pass to finish the task.
SecretRoom is harder than Pass because there are three
rooms on the right to explore but only one room is the tar-
get. MultiRoom: There are three agents in the 30×30 grid.
Specifically, door 1 will open when switch 1 is occupied;
door 3 will open when switch 2 is occupied; door 2 will
open when switch 4 is occupied; door 4 and door 5 will open
when switch 3 is occupied. More complicated coordinated
exploration is required among the three agents.

The episode ends when all agents are in the target room,
and each agent receives a +100 reward. Each agent observes
its own location (x, y) and the open states of doors. These
GridWorld tasks serve as didactic examples because the crit-
ical states in which exploration of agents interact with each
other are obvious, namely the switch locations.
Overcooked. We design three tasks in Overcooked (Carroll
et al. 2019): Base, Narrow, and Large. All tasks contain
two agents, separated by an impassable kitchen counter as
shown in Figure 3. Therefore, the two agents must cooperate
to complete the task. When the soup is served, the episode
ends, and each agent receives a +100 reward. Compared to
Base, Narrow limits the area where items can be passed
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Figure 4: Learning curves of MACE compared with IPPO+r loc, IPPO+r nov, and IPPO+r hin on three GridWorld tasks.
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Figure 5: Learning curves of MACE compared with MACE-MI and MACE-Z on three GridWorld tasks.

to only the middle of the counter, and Large increases the
size of the entire environment.
SMAC. We use three maps in SMAC (Samvelyan et al.
2019) 2.4.10: 2m vs 1z, 3m, and 8m, customized to be
sparse-reward. Agents receive a +200 reward if they win the
game. In 3m and 8m, agents also receive a +10 reward when
one enemy dies so as to ease the task.
Implementation. For all tasks, we implement PPO lever-
aging GRU (Cho et al. 2014) as the policy and critic func-
tion. In GridWorld, given that the observation space is small
and discrete, we use the inverse of visit counts as the nov-
elty measurement and use a table to record each observa-
tion’s visit count. Also, we use a table to record recent dis-
cretized accumulated novelty zjt and corresponding obser-
vation oit and action ait. Then we can estimate the posterior
distribution p(ait|oit, z

j
t ) from the table. In Overcooked and

SMAC, we use RND (Burda et al. 2018b) as the novelty
measurement and use an MLP to fit the posterior distribu-
tion p(ait|oit, z

j
t ) via supervised learning.

GridWorld
We first verify the effectiveness of MACE in promoting
coordinated exploration by ablation studies. We compare
MACE with the following methods: a) IPPO+r loc: agents
are trained with rext + ui

t, only taking into consideration
the local novelty; b) IPPO+r nov: agents are trained with
rext + rinov, exploring via approximated global novelty; c)
IPPO+r hin: agents are trained with rext + ui

t + λrihin, ex-
ploring via local novelty and influence on other agents’ ex-
ploration. λ here keeps the same as that used in MACE.

The results are shown in Figure 4. Each curve shows
the mean reward of several runs with different random
seeds (5 runs in Pass, 8 runs in SecretRoom and
MultiRoom) and shaded regions indicate standard error.
IPPO+r loc is unable to solve any task because the local

novelty is unreliable and insufficient for coordinated explo-
ration. IPPO+r nov performs better than IPPO+r loc, indi-
cating that taking into account the local novelty of other
agents to approximate the global novelty is helpful for coor-
dinated exploration. MACE achieves the best performance
on all three tasks, suggesting that the hindsight-based in-
trinsic reward can further boost coordinated exploration by
finding the critical states where the agent influences other
agents’ exploration. This can also be evidenced by the fact
that IPPO+r hin achieves higher rewards than IPPO+r loc.

To further illustrate how the intrinsic rewards work, we
visualize the novelty-based and hindsight-based intrinsic re-
ward of agent 1 in the left room in Pass, averaging over
700 to 1000 PPO updates. The critical states consist of one
agent stepping on one switch because it will open the middle
door and allow the other agent to enter the target room and
explore. As shown in Figure 8, agent 1 earns higher novelty-
based intrinsic rewards at the bottom of the left room than
at the top. The hindsight-based intrinsic reward can locate
the critical states more accurately: agent 1 earns the highest
hindsight-based intrinsic reward around switch 1.

The hindsight-based intrinsic reward (6) consists of two
parts: zjt , the accumulated novelty of agent j, and a log-

arithmic term log
p(ai

t|o
i
t,z

j
t )

πi(ai
t|oit)

. We test the effectiveness of
the two parts separately to verify that none of them alone
leads to MACE’s high performance. MACE-MI replaces the
hindsight-based intrinsic reward with the logarithmic term.
We name it ‘MI’ because the expectation of this term equals
the mutual information between ait and zjt given oit. The
results in Figure 5 show that MACE-MI is less effective
than MACE in all tasks, validating our claim that weighted
mutual information is a more effective measure of the in-
fluence on other agent’s exploration than mutual informa-
tion. MACE-Z, replacing the hindsight-based intrinsic re-
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Figure 8: Visualization of the averaged (a) novelty-based
and (b) hindsight-based intrinsic reward received by agent
1 at different positions in the left room. The red cross high-
lights the location of switch 1.

ward with zjt , also performs worse than MACE, indicating
that utilizing other agents’ accumulated novelty as the intrin-
sic reward, regardless of whether it is related to the agent’s
own actions, is ineffective.

Overcooked
We evauluate the performance of MACE in Overcooked
(Carroll et al. 2019) and compare it with IPPO+r loc,
IPPO+r nov, and IPPO+r hin. The results are illustrated in
Figure 6. Each curve shows the mean reward of 8 runs with
different random seeds, and shaded regions indicate stan-
dard error. MACE outperforms others, proving that MACE
also works in the high-dimensional state space where the
novelty is calculated via RND (Burda et al. 2018b) and
the posterior distribution p(ait|oit, z

j
t ) is learned via super-

vised learning. We also observe that IPPO+r nov outper-

forms IPPO+r hin in all tasks, especially in Narrow, sug-
gesting that the novelty-based intrinsic reward may play a
more critical role in such complicated tasks.

SMAC
We further examine MACE in more complex SMAC (Car-
roll et al. 2019) tasks and compare it with IPPO+r loc,
IPPO+r nov, and IPPO+r hin. The results are demonstrated
in Figure 7 for three maps: 2m vs 1z, 3m, and 8m. Each
curve shows the mean reward of 8 runs with different
random seeds, and shaded regions indicate standard error.
MACE learns faster or achieves a higher win rate than other
baselines, by which we verify the effectiveness of MACE
on sparse-reward tasks in such a high-dimensional complex
environment.

Conclusion
We propose MACE to enable multi-agent coordinated ex-
ploration in decentralized learning with limited communi-
cation. MACE uses a novelty-based intrinsic reward and a
hindsight-based intrinsic reward to guide exploration. The
former is devised to narrow the gap between the local nov-
elty and the unavailable global novelty. The latter is de-
signed to find the critical states where one agent’s action in-
fluences other agents’ exploration, measured by the newly
introduced weighted mutual information metric. Through
empirical evaluation, we demonstrate the effectiveness of
MACE in a variety of sparse-reward multi-agent tasks that
need agents to explore cooperatively. In addition, we ac-
knowledge that certain limitations exist, such as the need
for a fully-connected communication network to share nov-
elty among agents. Future work could explore ways to fur-
ther reduce the number of necessary connections besides the
bandwidth of communication channels.
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Fully Decentralized Multi-Agent Reinforcement Learning
with Networked Agents. In International Conference on
Machine Learning (ICML).
Zhang, T.; Rashidinejad, P.; Jiao, J.; Tian, Y.; Gonzalez,
J. E.; and Russell, S. 2021a. Made: Exploration via maxi-
mizing deviation from explored regions. Advances in Neural
Information Processing Systems, 34: 9663–9680.
Zhang, T.; Xu, H.; Wang, X.; Wu, Y.; Keutzer, K.; Gonza-
lez, J. E.; and Tian, Y. 2021b. Noveld: A simple yet effective
exploration criterion. Advances in Neural Information Pro-
cessing Systems, 34: 25217–25230.
Zheng, L.; Chen, J.; Wang, J.; He, J.; Hu, Y.; Chen, Y.;
Fan, C.; Gao, Y.; and Zhang, C. 2021. Episodic multi-
agent reinforcement learning with curiosity-driven explo-
ration. Advances in Neural Information Processing Systems,
34: 3757–3769.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17452


