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Abstract

We study a ubiquitous learning challenge in online principal-
agent problems during which the principal learns the agent’s
private information from the agent’s revealed preferences in
historical interactions. This paradigm includes important spe-
cial cases such as pricing and contract design, which have
been widely studied in recent literature. However, existing
work considers the case where the principal can only choose
a single strategy at every round to interact with the agent and
then observe the agent’s revealed preference through their
actions. In this paper, we extend this line of study to allow
the principal to offer a menu of strategies to the agent and
learn additionally from observing the agent’s selection from
the menu. We provide a thorough investigation of several on-
line principal-agent problem settings and characterize their
sample complexities, accompanied by the corresponding al-
gorithms we have developed. We instantiate this paradigm
to several important design problems — including Stackel-
berg (security) games, contract design, and information de-
sign. Finally, we also explore the connection between our
findings and existing results about online learning in Stack-
elberg games, and we offer a solution that can overcome a
key hard instance of previous work.

1 Introduction
Asymmetric information is a key friction in many economic
interactions. When setting a price for an item, the seller typ-
ically does not know the exact value the buyer has for the
item. In hiring and compensation decisions, the employer
does not know the work ethic of the particular employee. For
a security professional, the specific value of different poten-
tial targets to an attacker may be unknown. Note that this
information asymmetry is distinct from the standard strate-
gic considerations in these interactions. For example, even
if the security professional knows the value of all targets,
an attacker may choose to attack a low-value target in or-
der to avoid any potential defenses. However, if the security
professional does not know the value of the targets to the
attacker, it is much less likely that she will be able to imple-
ment a successful defense.
Learning from interactions where there is a single prin-

cipal (referred to as she) who acts first and then an agent
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(referred to as he) who responds, a class of problems de-
noted principal-agent problems (Myerson 1982; Gan et al.
2022), has generated significant interest in the computer sci-
ence literature (e.g., Kleinberg and Leighton 2003; Letch-
ford, Conitzer, and Munagala 2009; Haghtalab et al. 2022).
However, existing work focuses on learning the agent’s type
by using carefully chosen strategies from the possible set
of principal strategies. In the pricing of a single item ex-
ample, this would be the principal setting a price in every
round of play to narrow down the agent’s value for the item.
Specifically, the principal’s strategy space consists of offer-
ing a fixed price, p, and a probability of allocating an item,
x, to the agent who has an unknown valuation v, which is his
type. The agent can choose to purchase the item or not, pro-
viding information to the principal about the agent’s type.
In this setting, the best strategy for the principal to learn the
agent’s type exactly requires O(log(K)) rounds, where K

is the number of possible agent types.
Often, in practice, a principal does not choose a sin-

gle strategy but instead offers a menu of strategies. The
agent then chooses among the strategies, potentially reveal-
ing something about their type. Exploiting revealed prefer-

ences through offering a menu of strategies is common in
pricing. For example, a retailer may bundle goods at differ-
ent prices, or there may be different pricing based on the
quantity purchased. If the principal can offer a menu of pos-
sible strategies, can she learn significantly more efficiently?
To illustrate the type of results we demonstrate in the re-

vealed preferences setting with menus, consider the pric-
ing problem again. In this setting, instead of posting a sin-
gle price and allocation probability every round, the princi-
pal posts a menu of prices {x, p(x)}x2[0,1]. The agent then
chooses a strategy, i.e. an x, from the menu, at which point
the principal plays that strategy. In this case, the agent’s type
can be learned in a single round. Specifically, if the payment
function p(x) is strictly convex, then x⇤ = argmaxx v · x�
p(x) is uniquely determined by v, and v = rp(x⇤).

In this work, we examine, for general principal-agent
problems, the question of the sample complexity of iden-
tifying the agent’s private type. We provide a condition,
which for most common classes of principal-agent problems
is generic, that allows the principal to identify the agent’s
type in a single round. Additionally, for settings under which
the aforementioned condition does not hold, we demonstrate

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17426



improvements using menus relative to state of the art single
strategy results.

1.1 Related Work
Our setting is a generalized principal-agent problem (My-
erson 1982; Gan et al. 2022). Online learning in principal-
agent problems has been well studied in the context of pric-
ing (Kleinberg and Leighton 2003; Amin, Rostamizadeh,
and Syed 2013; Mohri and Munoz 2014; Dawkins, Han, and
Xu 2021), Stackelberg games (Letchford, Conitzer, and Mu-
nagala 2009; Haghtalab et al. 2022), security games (Bal-
can et al. 2014; Peng et al. 2019), contract design prob-
lems (Ho, Slivkins, and Vaughan 2014; Zhu et al. 2022), and
Bayesian persuasion (Castiglioni et al. 2020; Harris et al.
2023). There, the principal aims to learn the optimal strategy
against an unknown agent through repeated interactions. The
principal achieves this by posting a single principal strat-
egy in each round and observing the corresponding response
from the agent. Our results consider the setting where the
principal can post (infinitely) many principal strategies. In
Section 5.1, we provide direct comparisons to the learning
environment of a single strategy, where we solve the previ-
ous hardness example by (Peng et al. 2019).
Another area of relevant literature is the research on

learning economic parameters from revealed preferences
(Beigman and Vohra 2006; Zadimoghaddam and Roth 2012;
Balcan et al. 2014; Dawkins, Han, and Xu 2022). The main
difference between this line of research and the previous re-
search about online learning in principal-agent problems is
that these works focus on learning the agent’s utility pa-
rameter, instead of the optimal principal strategy. Similar
to us, they also consider learning the agent’s utility param-
eters. However, these previous works all focus on design-
ing learning algorithms that post a single principal strategy
at every round. In addition, we consider general principal-
agent problems and instantiate the results to multiple spe-
cific problems, including the specific pricing problem con-
sidered in this literature.
More generally, our research aligns with the general field

of learning from strategic data sources. This line of inquiry
has been explored in various contexts and domains, address-
ing diverse objectives such as spam filtering (Brückner and
Scheffer 2011), classification under incentive-compatibility
constraints (Zhang and Conitzer 2021), and examining so-
cial implications (Akyol, Langbort, and Basar 2016; Milli
et al. 2019). Finally, going beyond learning, our work sub-
scribes to the line of information elicitation, which involves
gathering relevant information from individuals to learn ef-
ficient algorithms. This literature is extensive and spans var-
ious disciplines, such as Bayesian persuasion (Dughmi and
Xu 2017; Kamenica 2019), decision making (Savage 1971;
Chen and Kash 2011), strategic data collection (Goel and
Faltings 2020; Kong et al. 2020), and reverse Stackelberg
games (Groot, De Schutter, and Hellendoorn 2012).

2 Preliminaries
We consider a generalized principal-agent problem (Myer-
son 1982; Gan et al. 2022). The one-round static version of

the problem can be characterized as a two-stage game with
two players: the principal and the agent. The agent possesses
a private type ✓, which is randomly drawn from a finite set⇥
with a prior probability distribution µ 2 �(⇥). The princi-
pal is unaware of the specific realization of ✓. Furthermore,
the agent’s action is indicated by j, which is beyond the di-
rect control of the principal. Let [n] = {1, 2, · · ·n} denote
the action space of the agent. The utility functions of the
principal and the agent are denoted asU(·) and V (·), respec-
tively, where U/V : X ⇥ [n] ! R and X ✓ Rm denotes the
strategy space of the principal. Throughout this paper, we
assume that the agent’s utility function V (·) is linear with
respect to the principal strategy x 2 X , that is,

V (x, j) = hvj ,xi+ cj , (1)

where h, i denotes the inner product, vj and cj represent the
agent’s utility parameters when he takes action j. We note
that this assumption is widely adopted by the computer sci-
ence literate studying principal-agent problems (Von Sten-
gel and Zamir 2004; Dütting, Roughgarden, and Talgam-
Cohen 2019; Gan et al. 2022). The utility information of
distinct agent types is denoted by the superscript ✓, that is,
V

✓(x, j) = hv✓
j ,xi+ c

✓
j .

Throughout, vectors are denoted by bold lowercase letters
(e.g., x,vj). The ith component of a vector is denoted in the
subscript of a non-bold letter (e.g., xi, vj,i). In addition, we
define a special relation between two vectors x,y 2 Rm.
Definition 1. Given x,y 2 Rm

, we denote x k y if there

exists a scalar � 2 R such that x = �y; otherwise, we
denote x , y.

Note that we always have x k y when x, y 2 R. Next, let
us now consider some specific instantiations of the above
generalized principal-agent problem framework.

Stackelberg Games. One widely adopted special case
of generalized principal-agent problems is the celebrated
model of Stackelberg games (Stackelberg 1934; Von Sten-
gel and Zamir 2004; Gan et al. 2023). In such games, we
commonly refer to the principal as the leader and the agent
as the follower. The leader has m available actions and the
follower has n available actions. The leader’s strategy can
be represented by a randomized strategy x 2 �m = {x :P

i2[m] xi = 1}, where xi denotes the probability of play-
ing each pure action i. The follower’s response is denoted
by action j 2 [n]. The leader/follower reward information
is represented as matrix L/F 2 Rm⇥n, where each element
Li,j/Fi,j represents the leader/follower’s reward when the
leader takes action i and the follower plays action j. As a
result, we have V ✓(x, j) =

P
i2[m] xiF

✓
i,j , where F ✓ repre-

sents the follower type ✓’s corresponding reward matrix.

Stackelberg Security Games. The Stackelberg Security
Games (SSGs) have been studied for security resource al-
location problems in many scenarios such as the Federal
Air Marshal Service, the US Coast Guard, and the wildlife
protection (Tambe 2011; An, Tambe, and Sinha 2017). The
principal, known as the defender, has r resources to protect n
targets from the attacker. Thus, the principal’s defense strat-
egy can be represented by x 2 Rn where each xt represents
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the probability that target t 2 [n] is protected by the de-
fender and

P
t xt  r. When a covered target t 2 [n] is

attacked, the attacker gets penalty P
a
t and the defender gets

reward R
d
t ; If an uncovered target is attacked, the attacker

gets reward R
a
t and the defender gets penalty P

d
t . We as-

sume the reward is preferred to the penalty, i.e., Rd
t > P

d
t

and R
a
t > P

a
t for all t. The attacker’s utility function is

V
✓(x, t) = xtP

a,✓
t +(1�xt)R

a,✓
t , where each type ✓ has a

corresponding penalty/reward (i.e., P a,✓
t /R

a,✓
t ) for target t.

Contract Design Problems. Another instance of the
principal-agent problem is the Nobel prize-winning research
on contract theory (Hart and Holmstrm 1986). In a con-
tract design problem, the agent has n actions that the prin-
cipal cannot directly observe or control. Instead, the prin-
cipal observes the m different possible outcomes and re-
ceives the reward ri 2 R associated with each outcome
i 2 [m]. We denote r 2 Rm as the reward vector for all
outcomes. Each action of the agent j 2 [m] induces a cer-
tain distribution of outcomes pj 2 �m at cost cj . The prin-
cipal’s strategy is to design a contract x 2 Rm that speci-
fies the payment based on each possible outcome to incen-
tivize the agent to take certain actions. As a result, we have
V

✓(x, j) =
P

i2[m] xip
✓
j,i�c

✓
j , where each agent type ✓ has

a corresponding cost c✓j for playing action j with a realiza-
tion probability p✓

j over the m outcomes.

Information Acquisition Games. In an information ac-
quisition problem (Savage 1971; Li et al. 2022; Chen et al.
2023), we consider a stochastic environment with a princi-
pal and an agent. There exists a hidden state w 2 ⌦ that in-
fluences the principal’s utility but remains unknown to both
the agent and the principal until the interaction ends. We de-
note �(⌦) as a probabilistic belief over the hidden state.
The principal initiates the process by offering a scoring rule
S : �(⌦) ⇥ ⌦ ! R to the agent. The agent chooses an ac-
tion j 2 [n]with a cost cj and receives an observation o 2 O

related to the hidden state w with probability Pr(o, w|j).
They then provide a refined belief report �o 2 �(⌦) via
the Bayesian rule (i.e., �o(w) = Pr(o, w|j)/Pr(o|j)), en-
abling the principal to make an informed decision. Finally,
the hidden state w is revealed, and the principal determines
the agent’s payment based on the scoring rule. As a result,
we have V ✓(x, j) =

P
w,o S(�

o
, w)Pr✓(w, o|j)�c

✓
j ,where

�
o 2 �(⌦), w 2 ⌦, Pr✓(w, o|j) represents the agent ✓’s

probability of observing o if the hidden state is w and the
action taken is j, and c

✓
j represents the corresponding cost.

3 When is a Single Round Sufficient?
In this section, we demonstrate the feasibility of learning the
agent’s private type within a single round, given the follow-
ing assumption on the agent’s finite type set ⇥.
Assumption 3.1. Given a finite-type set ⇥ and ✓, ✓

0 2 ⇥
such that ✓ 6= ✓

0
, we assume that v✓

j , v✓0

j for every action

j 2 [n], where v✓
j = rV

✓(x, j).

Note that this assumption is one of nondegeneracy. To be
precise, each principal-agent problem instance is specified

by the principal and agent utility parameters. This can be
thought of as a point in a high-dimensional space, one di-
mension for every parameter. As a result, we can think of
every point in this high-dimensional space being a problem
instance. The assumption holds with probability 1 since the
game instances that violate the assumption in this space form
a zero-measure set. Given this assumption, we are prepared
to present the key findings of this section.
Theorem 1. Suppose ⇥ satisfies assumption 3.1, we can

construct a menu of principal strategiesM ✓ X that learns

the agent’s private type ✓ 2 ⇥ in a single round.

Proof. For every agent type ✓, we can always separate the
principal’s strategy space X into at most n sub-regions,
where each sub-region consists of principal strategies that
have the same agent best response (i.e., the agent response
that maximizes his utility under the principal’s strategy).

Figure 1: An example where |⇥| = 2, X ✓ R2, and n = 3.
For each specific agent type, the principal’s strategy space
can be divided into three sub-regions, where the agent’s best
response action remains the same at each sub-region. In this
example, there exist six sub-regions where all agent types’
best responses are fixed for principal strategies in each sub-
region, though those fixed best responses could be different
across different agent types.

Given a finite set ⇥, we can pre-compute the separating
hyper-planes from all types as in the example in Figure 1.
There always exists a principal strategy x̂ that is an inte-

rior point such that all agent types’ best responses are fixed
around this principal strategy. Then the principal can post a
menu of strategies centered at x̂ with a small radius ✏ (i.e.,
M = {x : |x � x̂|2  ✏} ⇢ X ) such that all x 2 M have
the same best response for every agent type. Such a menu
M always exists given a small enough ✏ and that x̂ is the in-
terior point of some sub-region. Suppose the agent chooses
x⇤ 2 M and responds with action j.
First, we can exclude those agent types whose best re-

sponse with respect to x̂ is not j. As for the remaining pos-
sible types, we can simulate the agent’s choice of x⇤ 2 M
through the following optimization program.

maxx2M V
✓(x, j)

s.t.
P

i(xi � x̂i)2  ✏.
(2)

Let us write the Lagrangian function of program (2) as
L(x,�, µ) = V

✓(x, j) + �
�
✏�

P
i(xi � x̂i)2

�
and its cor-

responding Karush–Kuhn–Tucker (KKT) conditions:

v
✓
j,i � 2�x⇤

i + 2�x̂i = 0, 8i 2 [m]

�(✏�
P

i(x
⇤
i � x̂i)2) = 0,
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✏ �
P

i(x
⇤
i � x̂i)2,

x⇤
,� � 0.

By solving the above KKT conditions, we have x
⇤
i (✓) =

p
✏v✓

j,i

kv✓
j k2

+x̂i, for all i. According to assumption 3.1, it follows

that v✓
j , v✓0

j , resulting in x⇤(✓) 6= x⇤(✓0) for all ✓, ✓0 2 ⇥
and ✓ 6= ✓

0. As a result, we can learn the agent’s type ✓ 2 ⇥
in a single round since each agent type ✓ has a unique choice
of x⇤(✓) given our menu of principal strategiesM.

We remark that assumption 3.1 does not hold when m =
1, since we always have v✓j k v

✓0

j when v
✓
j , v

✓0

j 2 R. Thus,
the menu of principal strategies M we constructed for The-
orem 1 does not hold for m = 1. Specifically, we have
x
⇤(✓) =

p
✏v

✓
j /|v✓j |+x̂ 2 {x̂+

p
✏, x̂�

p
✏}, which does not

depend on ✓, when m = 1. As a result, when |⇥| > 2, there
must exist two agent types that share the same preference
for x⇤ when presented with the given menu of strategiesM,
because x

⇤(✓) only has two possible choices. In Section 4,
we will introduce effective algorithms that address this chal-
lenge and facilitate the learning of the agent’s type specifi-
cally in scenarios where the principal action space is limited
to one dimension. Next, we apply the generalized principal-
agent framework to specific principal-agent problems.

3.1 Stackelberg Games
Our first instantiation is the Stackelberg game, where we
show a corollary of Theorem 1. According to the defini-
tion of follower utility in a Stackelberg game, we have
v
✓
j,i = rV

✓
i (x̂, j) = F

✓
i,j .

Corollary 1. Suppose ⇥ satisfies assumption 3.1, we can

construct a menu of leader strategies M ✓ X that learns

the follower’s private type ✓ 2 ⇥ in a single round.

The proof is straightforward based on the proof of The-
orem 1. However, a special aspect of Stackelberg games is
that when m = 2, the leader’s strategy space is X = {x :
x1 + x2 = 1} ✓ R and the follower’s utility function is
v
✓(x, j) = (v✓j,1 � v

✓
j,2)x1 + v

✓
j,2. In other words, the actual

dimension of the principal’s strategy space is 1 whenm = 2
in a Stackelberg game. In this case, Theorem 1 does not hold
as we discussed before, and it is not possible to learn the fol-
lower’s private type within a single round.
Proposition 1 (Impossibility of Single-round Learning).
There exists a finite set of follower types ⇥ such that it is

impossible to learn the follower’s type within a single round

when the leader has 2 actions and |⇥| > 2.

Proof. We prove this by contradiction. Suppose the
agent has K possible types (i.e., ⇥ = {✓1, · · · , ✓K})
and we can construct a menu of leader strategies
M such that there exists K unique {x✓k}✓k2⇥ where
x
✓k = argmaxx2M V

✓k(x). The agent’s utility func-
tion V

✓k(x) = maxj V ✓k(x, j) is a piece-wise lin-
ear strictly convex function. By convexity, we have
argmaxx2M V

✓k(x) 2 {min(M),max(M)}, for all type
✓k, contradicting the fact there exists k > 2 unique choices
of all follower types.

3.2 Contract Design Problems
We also consider the special contract design problem where
v
✓
j,i = rV

✓
i (x, j) = p

✓
j,i, which represents the probability

to achieve outcome i 2 [m] when the agent takes action
j 2 [n]. Next, we apply Theorem 1 and show a corollary
result for the contract design problem.

Corollary 2. Suppose ⇥ satisfies assumption 3.1, we can

construct a menu of principal contractsM ✓ X that learns

the agent’s private type ✓ 2 ⇥ in a single round.

3.3 Information Acquisition Games
Another special case of the generalized principal-agent
problem is the information acquisition problem. From
the definition of agent utility function, we have v

✓
j,i =

rV
✓
i (x, j) = Pr✓(w, o|j) where i denotes a pair of vari-

ables (w, o), w 2 ⌦, o 2 O. Thus, v✓
j in the information

acquisition game represents a vector of length |⌦|⇥ |O|. We
can also apply Theorem 1 for the following corollary.

Corollary 3. Suppose ⇥ satisfies assumption 3.1, we can

construct a menu of principal scoring rules M ✓ X that

learns the agent’s private type ✓ 2 ⇥ in a single round.

3.4 Stackelberg Security Games
Finally, we consider the specific Stackelberg security game.
Recall that the attacker’s utility to attack target j only de-
pends on the defender’s coverage probability of protecting
target j, that is,

V
✓(x, j) = P

a,✓
j xj + (1� xj)R

a,✓
j . (3)

As a result, the actual dimension of the defender’s strategy
space in V

✓(x, j) is 1 (i.e., xj the probability of defending
target j), and the result from Theorem 1 cannot be applied.
Intuitively, when presented with a menu of defender strate-
gies, all agent types would favor the one with the lowest
protection probability for target j, given that their best re-
sponse with respect to all strategies from this menu is fixed
to attack this particular target j. The underlying reason is
v
✓
j,i = rV

✓(x, j) = P
a,✓
j �R

a,✓
j 2 R. As a result, assump-

tion 3.1 cannot hold for more than two attacker types in a
security game, and Theorem 1 is also not applicable.

4 When is a Small Number of Rounds
Sufficient?

As discussed, our single-round results do not hold when the
effective dimensionality of the principal’s strategy space is
1 (see Proposition 1). In the following section, we intro-
duce algorithms designed to learn the private agent type effi-
ciently with a small number of rounds in this particular sce-
nario, i.e., X ✓ R. For the sake of simplicity, we can as-
sume that X = [0, 1], as the principal’s strategy can always
be rescaled within this range without loss of generality.
First, we present an algorithm for the principal to learn

the agent’s type within log |⇥| rounds under the following
assumption on the finite type set ⇥.
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Assumption 4.1. Given a finite type set ⇥, we assume for

every type ✓ 2 ⇥, there does not exist j 2 [n] such that

V
✓(x, j) � V

✓(x, j0), 8x, j0 6= j (4)

Assumption 4.1 is a statement that no agent type has a dom-
inant action. This ensures there is sufficient variation in the
agent’s behavior for the principal to learn the agent’s type.
Theorem 2. When m = 1 and ⇥ satisfies assumption 4.1,

there exists an algorithm to learn the agent’s type in log |⇥|
rounds where the principal posts a menu of principal strate-

gies per round.

Proof. We propose the following algorithm 1 to learn the
agent’s true type ✓ 2 ⇥ in log |⇥| rounds.

Algorithm 1: LEARNING-VIA-MENU

Input: Agent’s type set: ⇥ = {✓1, · · · , ✓K}
Output: Agent’s true type ✓
1: Let V ✓k(x) = maxj V ✓k(x, j), 8✓k 2 ⇥.
2: Compute x

✓k = argminx V
✓k(x), 8✓k 2 ⇥, let x =

sorted([x✓1 , · · · , x✓K ])
3: while len(x) > 1: do
4: n = len(x);mid = bn

2 c; x1, x2 = x[mid],x[mid+1]
5: Provide a menu M = (x1, x2) of two principal

strategies to the agent
6: if the agent chooses x1 then
7: x = x[mid + 1 :] (deleting all the elements

x[0], · · · , x[mid] from x)
8: else
9: x = x[: mid] (deleting all the elements x[mid +

1], · · · , x[n� 1] from x)
10: end if
11: end while
12: return the only x

✓k in x, where ✓k is the agent’s type

The correctness of the proof of this algorithm relies on a
key insight that V ✓k(x) is a convex function since it is the
maximum over a set of linear functions. Thus, given two
principal strategies x1, x2 where x1 < x2, if the agent ✓
prefers x1, then the agent’s x✓ = argminx V

✓(x) must be
on the right of x1 by the convex property of agent’s utility
function. A similar argument holds when the agents prefer
x2. As a result, in each round we can eliminate half of the
types from the agent’s type set, leading to a log |⇥| sample
complexity.
However, there is still one more case we need to consider.

When two agent types ✓k, ✓k0 have the same x
✓k = x

✓k0

in Line 2, they will always choose the same strategy for
any menu of two strategies from Line 4. In this case, the
principal can distinguish these two agent types by observ-
ing the agent’s corresponding response to the chosen prin-
cipal’s strategy. By assumption 4.1 there does not exist a
dominant action for any agent type. Therefore, every agent
type has more than one best response at x✓k . We follow the
convention that when the agent is indifferent between mul-
tiple responses, we can specify the tie-breaking rule (Letch-
ford, Conitzer, and Munagala 2009; Peng et al. 2019), ensur-
ing that different types respond with different actions. Thus,

the principal can still distinguish these different agent types
according to different responses specified by different tie-
breaking rules.

What is more, we also consider the scenario where the
principal cannot offer a menu of principal strategies, but
only a single principal strategy. This setting has been ex-
tensively studied in the literature where m > 1 (Letchford,
Conitzer, and Munagala 2009; Blum, Haghtalab, and Pro-
caccia 2014; Peng et al. 2019). Next, we show an efficient
algorithm when m = 1, which can learn the agent’s private
type in log |⇥| rounds as our previous results. Though our
next algorithm achieves the same log |⇥| complexity as our
previous result in Theorem 2, it requires the following ad-
ditional assumption on the finite agent type set ⇥ since the
principal now has less flexibility and can only post a single
strategy per round.
Assumption 4.2. Given a finite type set⇥, we assume there

does not exist ✓, ✓
0 2 ⇥, x 2 X and j, j

0
, j

00 2 [n] such that

V
✓(x, j) = V

✓(x, j0) and V
✓0
(x, j) = V

✓0
(x, j

00
) (5)

where ✓ 6= ✓
0
, j 6= j

0
, and j 6= j

00
.

At a high level, assumption 4.2 requires that there do not
exist two agent types who not only have the same break-
point in their piece-wise linear convex utility functions but
also change from the same best response to different best
responses at this breakpoint. In Figure 2, we provide an il-
lustration of the utility functions associated with two agent
types. It is important to observe that instances failing to sat-
isfy assumption 4.2 require not only the breakpoints of two
piece-wise linear convex functions to coincide, which forms
a zero measure set in the entire strategy space, but also ne-
cessitate the transition from the same response to different
responses for these piecewise linear functions (e.g., j✓1 = j

✓0

1
in Figure 2). Hence, we emphasize that assumption 4.2 is
a nondegeneracy assumption since any randomly generated
instance will satisfy this assumption with probability 1.

Figure 2: An example of agents’ utility functions V
✓ and

V
✓0
when principal strategy x 2 R.

Theorem 3. When m = 1 and ⇥ satisfies assumptions 4.1

& 4.2, there exists an algorithm to learn the agent’s type in

log |⇥| rounds where the principal only posts a single strat-

egy per round.

Proof. We propose the following algorithm 2 to learn the
agent’s true type in log |⇥| rounds.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17430



Algorithm 2: LEARNING-VIA-SINGLE-STRATEGY

Input: Agent’s type set: ⇥ = {✓1, · · · , ✓K}
Output: Agent’s true type ✓
1: Let V ✓k(x) = maxj V ✓k(x, j), 8✓k 2 ⇥.
2: while |⇥| > 1: do
3: For all j 2 [n], compute nj

x=0 as the number of agent
types who best respond to x = 0 with j.

4: Denote nj⇤

x=0 = maxj n
j
x=0.

5: if nj⇤

x=0 > b |⇥|
2 c then

6: Compute x⇤ 2 (0, 1] such that nj⇤

x=x⇤ = b |⇥|
2 c

7: Principal plays strategy x⇤:
8: if Agent responds with j

⇤ then
9: Remove agent types whose best response to x

⇤

is not j⇤ from ⇥
10: else
11: Remove agent types whose best response to x

⇤

is j⇤ from ⇥
12: end if
13: else
14: Principal plays strategy x⇤ = 0:
15: if Agent responds with j

⇤ then
16: Remove agent types whose best response to x

⇤

is not j⇤ from ⇥
17: else
18: Agent responds with j

0

19: Remove agent types whose best response to x
⇤

is not j0 from ⇥
20: end if
21: end if
22: end while
23: return ⇥

The proof of this algorithm relies on a key insight that when
n
j⇤

x=0 >
|⇥|
2 , we can always find a principal strategy x⇤ such

that the number of agent types responding to x
⇤ with j

⇤ is
b |⇥|

2 c (i.e. Line 6). The reason is as follows. Given any agent
action j 2 [n], we denote nj

x=0 and n
j
x=1 as the number of

agent types who respond to x = 0 and x = 1 (i.e., the left-
most and right-most principal strategy in principal’s strategy
space) with action j.
According to assumption 4.1, there does not exist a dom-

inated action for every agent type ✓. Thus, we must have
n
j
x=0+n

j
x=1  |⇥|. In addition, by assumption 4.2, there do

not exist two agent types that change from the same agent re-
sponse to different responses at the same principal strategy.
As a result, we must have n

j
x=0 always changes smoothly

(i.e., changes at most by 1) to n
j
x=1. Therefore, if n

j⇤

x=0 >

d |⇥|
2 e in Algorithm 2, then we must have nj⇤

x=1 < b |⇥|
2 c and

there must exist x⇤ 2 (0, 1) such that the number of agent
types responding to x

⇤ with j⇤ is exactly b |⇥|
2 c.

On the other hand (i.e., Line 13), if nj⇤

x=0  d |⇥|
2 e, then

we know there already exists such an x
⇤ = 0. This is due to

the fact that for every possible agent response action j 2 [n],
the number of agent types that responds to x

⇤ = 0 with this

action is less than or equal to d |⇥|
2 e. Thus, we can remove

at least d |⇥|
2 e possible types no matter which response is ob-

served when playing principal strategy x
⇤ = 0.

As a result, each round in the while loop (line 2) is guar-
anteed to remove at least b |⇥|

2 c possible agent types from the
⇥ set, leading to a log |⇥| rounds learning algorithm.

Finally, as we discussed in Section 3.4, the actual dimen-
sion of the defender’s strategy space is 1 in Stackelberg se-
curity games. Similarly, we can apply Algorithm 2 to learn
the attacker’s private type in log |⇥| rounds.
Corollary 4. Suppose ⇥ satisfies assumptions 4.1 & 4.2,

there exists an algorithm to learn the attacker’s private type

in log |⇥| rounds.
The proof is straightforward based on Theorem 3 and Algo-
rithm 2. The role of the defender and attacker corresponds to
the principal and agent in the Stackelberg game. Similarly,
Algorithm 2 can be applied to security games.

5 When are Polynomially Many Rounds
Sufficient?

In this section, we consider the more general case where the
principal does not have prior information (i.e., ⇥) about the
agent’s private type, and this private type can be drawn from
an infinite type space (see Letchford, Conitzer, and Muna-
gala (2009); Blum, Haghtalab, and Procaccia (2014); Peng
et al. (2019) for previous work without menus). Follow-
ing a similar argument to Theorem 1, we can construct a
menu of strategies centered at x̂ with a small radius ✏ (i.e.,
M = {x : |x � x̂|2  ✏}). Agent ✓’s best response to all
principal strategies within this menu is j 2 [n] and we de-
note the agent’s optimal choice as x⇤(✓). From the analysis
of Theorem 1, we have

x⇤
i (✓) =

p
✏v✓j,i/kv✓

j k2 + x̂i, 8i 2 [m]. (6)

As a result, from equation (6) we have

v✓j,i/kv✓
j k2 =

�
x⇤
i (✓)� x̂i

�
/
p
✏, 8i 2 [m]. (7)

From the abovem equations (7), we can compute v✓
j up to a

factor of �j 2 R, i.e., v✓
j = �j ṽ✓

j where ṽ✓
j is an unit vector

that satisfies (7). As a result, learning the private agent utility
parameters v✓

j 2 Rm is reduced to learning �j 2 R.
Before proceeding to our main result, we assume that

there is an oracle that provides the principal with a set of
strategies that induce the agent to best respond with all pos-
sible actions for some strategy in the set.
Assumption 5.1 (Agent Action-informed Oracle). There

exists an oracle that provides n principal strategies

{x̂j}j2[n] such that under principal strategy x̂j , the agent’s

best response is action j.

This assumption has been adopted by previous work (Chen
et al. 2023; Zhao et al. 2023). It is considerably less strin-
gent compared to existing online learning models in strate-
gic environments, which assumes that the principal can an-
ticipate the agent’s best response or possesses knowledge of
certain parameters of the agent’s utility function (Chajew-
ska, Koller, and Ormoneit 2001; Cesa-Bianchi and Lugosi
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2006; Shalev-Shwartz et al. 2012). In addition, this may be
a reasonable assumption in practice for certain classes of
principal-agent problems. For example, in the contract de-
sign problem, each outcome may be achieved primarily by
a specific action (e.g., a high-quality outcome is most likely
achieved by an action with high effort). Therefore, we can
induce one specific action by rewarding its corresponding
outcome while setting the reward for other outcomes as 0.
With assumption 5.1, we are now ready to present the main
result of this section.
Theorem 4. Under assumption 5.1, the agent’s private type
can be learned with O(n2

L) rounds, where L is the repre-

sentation precision.

Proof Sketch. The high-level proof idea is as follows. Given
any menu Mj = {x : |x � x̂j |2  ✏} for all j 2 [n], we
can learn the agent’s utility parameters v✓

j up to a factor of
�j , that is, v✓

j = �j ṽ✓
j where ṽ✓

j is an unit vector that can
be computed by (7). Therefore, learning the agent’s utility
function (i.e., v✓

j , cj for all j 2 [n]) is reduced to learning
�j , cj for all j 2 [n]. Furthermore, for any principal strat-
egy x̂j,j0 that’s on the separating hyperplane between the
best response sub-regions of two actions j, j0 2 [n] (see our
Figure 1 for an example of dividing the principal’s strategy
space into multiple best response sub-regions), we have the
agent’s utility of responding with j equals to the utility of
responding with j0 under the principal strategy x̂j,j0 , that is,

�jhṽj , x̂j,j0i+ cj = �j0hṽj0 , x̂j,j0i+ cj0 . (8)

where �j ,�j0 , cj , and cj0 are unknown variables. Thus,
sampling 4 principal strategies on this hyperplane is enough
to learn these four variables. We continue this process for
all possible hyperplanes, and there are at most n2 in total.
Detailed proof can be seen in the appendix.

It is still an open question whether it is sufficient to learn
with fewer than O(n2

L) rounds. Using menus, our sample
complexity of O(n2

L) is an improvement over the current
state of the art,O(n3

L) (Peng et al. 2019), for settings where
the principal can only offer a single strategy, an improve-
ment of O(n).

5.1 Online Learning in Stackelberg Games
In this subsection, we demonstrate that the ability to offer
a menu can dramatically improve the sample complexity of
a well-known hardness example from Peng et al. (2019) for
Stackelberg games. To begin, we provide a summary of cur-
rent results on Stackelberg games as in Table 1.

Number of
rounds m = 2 m > 2

Menu log |⇥|
Theorem 2

O(1)
Corollary 1

Single strategy log |⇥|
Theorem 3

|⇥|
(Peng et al. 2019)

Table 1: Summary of the results discussed regarding the re-
quired number of interaction rounds to learn the private fol-
lower’s type from a finite type set ⇥ in Stackelberg games.

Example 1 (Lemma 8, (Peng et al. 2019)). Consider the

Stackelberg game, where the leader has m actions and the

follower has n = m + 2 actions. The utility parameters of

every follower type ✓ is

F ✓
·,j = (� 2

m�2 , · · · ,�
2

m�2| {z }
i�1

, 1,� 2
m�2 , · · · ,�

2
m�2| {z }

m�i

), 8j 2 [m];

F ✓
·,m+1 =

⇣
� 1
N3

,� 1
N3

, · · · ,� 1
N3

| {z }
m

⌘
;

F ✓
·,a⇤ =

1
N2

v✓.

where ✓ ✓ [m] with |✓| = m/2 or 0, that is, ✓ is either an

empty set or a set withm/2 elements that are drawn from set

[m] = {1, · · · ,m}. v✓ 2 {1,�N}m is a vector of lengthm

whose i-th element is 1 if i 2 ✓ and �N otherwise. There

are
� m
m/2

�
+ 1 follower types in total.

In the case of this Example 1 from Peng et al. (2019),
they show that a minimum of 2⌦(m) samples is necessary
for learning the follower’s private type from ⇥ = ; [ {✓ :
|✓| = m/2 and ✓ ⇢ [m]}. We demonstrate the follower’s
type can be learned within a single round with menus.
Proposition 2. Within a single round, a menu of leader

strategies is available to learn the follower’s private type

in Example 1.

In our proof, we construct a menu of leader strategies where
every different follower type prefers different leader strate-
gies. We refer the reader to the detailed construction of this
menu in the appendix.

6 Conclusion
Motivated by the recent research on the power of menus
in contract design (Gan et al. 2022; Castiglioni, Marchesi,
and Gatti 2022; Guruganesh et al. 2023), this paper put for-
wards a variant of the very basic online learning model in
principal-agent problems by augmenting the principal pol-
icy space with posting a menu of principal strategies instead
of a single principal strategy at every round of online inter-
action with the agent. We provide an understanding of the
learning complexities for a variety of problem settings, of-
fering dedicated learning algorithms. Furthermore, we apply
our general principal-agent framework to various concrete
game instances, including widely studied cases like the con-
tract design problem and the Stackelberg game, establishing
a connection between our results and earlier online learning
results in the literature.
There are many open questions around the power of

menus in online principal-agent problems. For example,
while our focus is to learn the agent’s private type in this
paper, it would be interesting to explore the problem of opti-
mizing the principal utility throughout the online principal-
agent interactions using menus. What is more, our model as-
sumes no constraints on the size of principal menus. A nat-
ural question would be characterizing the sample complex-
ity if the principal can only post a finite menu of strategies
whose size is upper bound by a constant.
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