
Improved Anonymous Multi-Agent Path Finding Algorithm

Zain Alabedeen Ali1, Konstantin Yakovlev2, 3

1 Moscow Institute of Physics and Technology, Moscow, Russia
2 Federal Research Center for Computer Science and Control of the Russian Academy of Sciences, Moscow, Russia

3 AIRI, Moscow, Russia
ali.za@phystech.edu, yakovlev@isa.ru

Abstract
We consider the Anonymous Multi-Agent Path-Finding
(AMAPF) problem where the agents are confined to a graph,
a set of goal vertices is given, and each of these vertices has
to be reached by some agent. The problem is to find an as-
signment of the goals to the agents as well as the collision-
free paths, and we seek to find the solution with the minimal
makespan. A well-established approach to solving this prob-
lem is by reducing it to a special type of graph search prob-
lem, i.e. to the problem of finding a maximum flow on an aux-
iliary graph induced by the input one. The size of the former
graph may be very large, and the search on it may become
a bottleneck. To this end, we suggest a specific search algo-
rithm that leverages the idea of exploring the search space not
through considering separate search states but rather bulks of
them simultaneously. That is, we implicitly compress, store,
and expand bulks of the search states as single states, reduc-
ing the runtime and memory consumption. Empirically, the
resultant AMAPF solver demonstrates superior performance
compared to the state-of-the-art competitor and is able to
solve all publicly available MAPF instances from the well-
known MovingAI benchmark in less than 30 seconds.

Introduction
The Multi-Agent Path Finding (MAPF) problem is a prob-
lem which generally asks to find a set of collision-free paths
for a set of agents that operate in a shared environment and
have to reach predefined goal locations from the current
(start) ones. MAPF has many applications, including auto-
mated warehouses, autonomous vehicles, and video games
and is being widely studied in the literature. Depending on
the application, many variants of MAPF have been pro-
posed (Stern et al. 2019) and numerous solutions have been
already presented. One variant is the Anonymous MAPF
(AMAPF). In AMAPF, the agents are interchangeable and
each agent may be assigned to any goal, assuming that, in
the end, all goal locations will be reached (in case the num-
ber of goal locations is smaller than or equal to the number
of agents) or each agent will arrive to one goal location (oth-
erwise). This problem naturally arises in such environments
where the tasks can be performed by any agent, e.g. iden-
tical robots carrying packages/inventory pods in automated
warehouses.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this work we aim to solve the AMAPF problem op-
timally w.r.t makespan cost function, which is the arrival
time of the last agent. In other words, our task is to find a
solution where the last agent arrives at its goal location as
early as possible. State-of-the-art optimal AMAPF solvers
are reduction-based, i.e. the initial problem is reduced to an-
other one and the latter is solved with an off-shelf solver. In
the case of AMAPF, the common reduction is the following.
Based on the input graph, another one is constructed. Then a
maximum flow problem on this auxiliary graph, called a net-
work, is formulated and solved. The latter can be interpreted
as finding several paths (subject to certain constraints) on the
reduced network. The major bottleneck here is that the size
of the network is much larger, both in the number of ver-
tices and edges, compared to the initial AMAPF graph, and,
therefore, finding paths on it is burdensome. Moreover, the
AMAPF reduction scheme, in general, assumes that numer-
ous networks may be consecutively constructed (each one
being larger than the previous one) and the search should be
repeated.

To this end, we present an improved optimal AMAPF
solver that follows the reduction-to-the-flow-problem ap-
proach while utilizing a novel search method to find paths
on the (flow) networks. The crux of our search method is the
concept of bulk states and implicit expansions. In brief, in-
stead of generating and expanding numerous search states,
we compress them into the bulks that form a sequence, ex-
ploiting the special structure of the underlying network, and
explicitly store in the search tree only the certain represen-
tatives of those bulks (while implicitly reasoning about all
other states in the bulk). On the theoretical side, we show
that our search method, dubbed Bulk Search, is complete.
On the practical side, we compare our improved AMAPF
solver that utilizes Bulk Search with the state-of-the-art op-
timal AMAPF solver and show that our algorithm notably
scales better to large maps (due to significantly lower num-
ber of expansions when finding the paths on the flow net-
works) and outperforms the competitor on all maps of the
well-known MAPF benchmark from (Stern et al. 2019).

Related Works
In a conventional MAPF formulation (Stern et al. 2019) a
set of agents is given as well as the specification where
each agent starts and the goal it should reach. Even when

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17291

both the time is discretized into time steps and workspace
is discretized into a graph (which are the two default as-
sumptions in MAPF), obtaining an optimal solution w.r.t.
one of the most widely-used objectives, e.g. the makespan or
the sum-of-costs, is known to be NP-hard (Yu and LaValle
2013b). Surprisingly, the AMAPF problem, which is a com-
bined problem of both MAPF and goal assignment, can
be optimally solved w.r.t. makespan (but not the sum-of-
costs) in polynomial time (Yu and LaValle 2013a). The
seminal method, introduced in (Yu and LaValle 2013a), is
based on the reduction of AMAPF to a series of specific
graph-search problems, i.e. the problems of finding a maxi-
mum flow (Ford Jr and Fulkerson 2015) on a graph of spe-
cial structure (network) induced by the input MAPF graph.
For the sum-of-costs objective an adaptation of the seminal
MAPF solver, Conflict-Based Search (CBS) (Sharon et al.
2015) was suggested in (Hönig et al. 2018). Indeed, this al-
gorithm is not polynomial. Suboptimal AMAPF was studied
in (Okumura and Défago 2022); several computationally ef-
ficient algorithms were proposed in this work which were
empirically shown to provide high-quality solutions. How-
ever, no bound on sub-optimality was theoretically guaran-
teed. A variant of the AMAPF problem with some addi-
tional practically inspired assumptions, i.e., that the number
of goals exceeds the number of agents and thus agents have
to move to the new goals upon completing the current ones,
was explored in (Nguyen et al. 2017) and solved using the
Answer Set Programming (ASP).

More involved variants of AMAPF were studied in (Ma
and Koenig 2016; Barták, Ivanová, and Švancara 2021). It
was assumed that the agents are partitioned into the teams
(colors) and each team is assigned a set of interchangeable
targets (of the same color). In (Ma and Koenig 2016), a com-
bination of CBS and min-cost max-flow algorithm (Ford Jr
and Fulkerson 2015) was suggested to solve this Colored
MAPF problem. Barták, Ivanová, and Švancara (2021) pro-
posed several solvers that utilize reduction to SAT. Indeed,
AMAPF can be viewed as a special instantiation of the Col-
ored MAPF problem (i.e. the one when there exists only a
single team of agents of the same color as all the goals).

Among the other problems that are closely related to
AMAPF, one can name Lifelong MAPF (LMAPF) (Li et al.
2021) and Multi-agent Pickup and Delivery (MAPD) (Ma
et al. 2017). These MAPF variants assume that the agents
continuously operate in the environment reaching the speci-
fied goals (associated with certain pickup-and-delivery tasks
in the case of MAPD). However, the assignments of goals
(tasks) to agents is commonly assumed to be realized by an
external procedure and, thus, the assignment sub-problem is
not typically considered as part of the LMAPF/MAPD prob-
lem. Still, there are papers that consider a combined prob-
lem (Chen et al. 2021; Xu et al. 2022).

Finally, a body of works studies AMAPF in continuous
domains, i.e. not assuming that the agents are confined to a
given graph but are rather allowed to freely move in the (geo-
metric) workspace (Adler et al. 2015; Solovey and Halperin
2016).

Problem Statement
We follow a classical approach (Stern et al. 2019) to define
the problem under investigation – AMAPF. We consider a
graph G = (V,E), whose vertices correspond to the loca-
tions in the environment and edges – to the transitions be-
tween them. k agents are confined to this graph, i.e., initially
each agent occupies a (distinct) vertex – si, the start vertex,
and at each time step of the discretized timeline, it can ei-
ther wait in its current vertex or move to an adjacent one.
The duration of both types of actions (move or wait) is 1
time step. k goal vertices, g1, ..., gk, are also distinguished.
It is assumed that any agent can reach any goal, i.e., there is
no pre-defined assignment of agents to the goals.

A plan for an agent, π(s, g), is a sequence of (move/wait)
actions, s.t. it begins at vertex s and ends at vertex g; each
action in the plan starts where the the previous one ends. The
cost of the plan is the time step by which g is reached. Two
plans are said to contain a vertex (similarly, an edge) conflict
if the agents following them occupy the same vertex (use the
same edge) at the same time step.

The problem now is to find a set of plans Π =
{π1, ..., πk}, s.t. (1) each pair of plans is conflict-free and
(2) all goals are reached. Essentially, this problem is a com-
bination of the assignment problem, where one needs to de-
cide which agent goes to which goal, and the (multi-agent)
pathfinding problem, where one needs to construct a set of
conflict-free plans.

We consider the following cost objective:
makespan(Π) = maxi∈1,...,k(cost(πi)), where cost(π)
is the cost of the individual plan (i.e. the earliest time
step when the agent reaches a goal vertex and never
moves away). In this work, we are interested in obtain-
ing makespan-optimal solutions of the problem at hand
(AMAPF).

Background
Network Flow
Generally, network flow problem might come in differ-
ent flavors; see (Ahuja, Magnanti, and Orlin 1995) for an
overview. Here we focus on a specific variant of the prob-
lem needed for solving AMAPF problems.

A network is a tuple N = (G, cap, s, g), where G =
(V,E) is a directed graph, cap : E → Z+ is the mapping
defining the capacities of the edges, s ∈ V is the source
vertex, and g ∈ V is the sink vertex. For vertex v ∈ V , let
σ+(v) (resp. σ−(v)) denote the set of edges of G going to
(resp. leaving) v. A feasible s, g-flow on the network is map-
ping f : E → Z+ that satisfies three types of constraints:
edge capacity constraints:

∀e ∈ E, f(e) ≤ cap(e), (1)

the flow conservation constraints at non-terminal vertices:

∀v ∈ V \ {s, g},
∑

e∈σ+(v)

f(e)−
∑

e∈σ−(v)

f(e) = 0, (2)

and the flow conservation constraints at terminal vertices:

F (f) =
∑

e∈σ−(s)

f(e) =
∑

e∈σ+(g)

f(e). (3)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17292

The quantity F (f) is called the value of the flow f . An-
other interpretation of the flow is that the flow is a set of s-g
paths (possibly overlapping or even duplicating), where each
path caries a unit of flow from s to g, such that the sum of
units passing through any edge does not exceed its capacity.

The standard single-commodity maximum flow problem
asks the following question: Given a network N , what is the
maximum F (f) that can be pushed through the network?
Alternatively, find a set of s-g paths that carry the maximum
units of flow through the network.

From AMAPF to Network Flow
In (Yu and LaValle 2013b), the authors reduced the T -steps
AMAPF problem, i.e. the one that allows any agent to do at
most T actions, to a maximum flow (MF) problem. Specif-
ically, it was proven that a T -steps AMAPF problem has a
solution iff the reduced MF problem has a flow equal to the
number of agents. The makespan for an AMAPF instance
can therefore be found by finding the smallest T such that
T -steps AMAPF instance has a solution. We now explain
the suggested reduction with a slight modification suggested
by (Liu et al. 2019) that simplifies it.

Consider a T -steps AMAPF instance with the graph G =
(V,E). We first create 2T +1 copies of V and mark them as
follows: 0, 1, 1′, 2, 2′, ..., T ′; see Fig. 1. Hereinafter, we will
use the term vertices to denote the elements of the original
AMAPF graph and the term nodes to denote the elements
of the constructed network. We will also call copies t′ (with
apostrophe) and copies t for t = 0, 1, ..T as outer and in-
ner copies, respectively. The copied vertices of the original
graph form the nodes of the network. Each node is identified
by (v, h), where h stands for the copy, alternatively referred
to as height. Indeed, the node (v, h) (as well as (v, h′)) cor-
responds to the state of an agent located in vertex v at time
step h.

Then, for each edge e(u, v) in the original graph, we con-
nect the nodes (u, h′) and (v, h+1) for h > 0, and also con-
nect (u, 0) and (v, 1). These edges correspond to the move
actions, and we call them the move edges. Then, we add the
wait edges that connect the nodes (u, h′) and (u, h + 1) for
h > 0 and the nodes (u, 0) and (u, 1). Additionally, we add
the edges between the nodes (u, h) and the (u, h′). These
edges do not denote any action but are added to forbid any
two s-g paths in the network from sharing any node and,
therefore, to avoid node-collisions. We call them the restric-
tion edges. Finally, we add the source s and sink g nodes
and connect s to all nodes (u, 0) where u is a start vertex,
and connect g to nodes (v, T ′) where v is a goal vertex. The
capacity of any edge is fixed to be 1.

Hereinafter, whenever a path in a network is mentioned
we will mean the s-g path. The matching between the
AMAPF and MF is now straightforward. Each plan for an
agent can be matched to a path in the network by match-
ing the agent actions to the move or wait edges and us-
ing the restriction edges to connect between them. Simi-
larly, a path in the network is matched to a plan for an
agent where the move/wait edges are matched to move/wait
actions. See Fig. 1 for a self-contained example. It was
proven that there are no shared nodes in any two paths in

A

B

C

s
0 1 1' 2 2'

0 1 1' 2 2'

0 1 1' 2 2' T'

T'

T' D

0 1 1' 2 2' gT'

A
B
C
D

Figure 1: Example of the flow network (left) for a T -steps
AMAPF instance (right). Each line in the flow network rep-
resents the copies of a single vertex in the original AMAPF
graph. The diagonal, solid horizontal, and dashed horizon-
tal edges in the network denote move, wait, and restric-
tion edges, respectively. In this example, the AMAPF in-
stance has two start vertices A,B and two goal vertices
C,D, so the source node s in the network is connected
to the nodes (A, 0), (B, 0) and the sink g is connected to
(C, T ′), (D,T ′). The example also shows the matching be-
tween the plans for the agents and the s-g paths in the net-
work (green and yellow edges).

the network (that form the solution to the MF problem),
which infers that all matched plans have no node-collisions.
An edge-collision may happen if two paths pass the edges
((u, h′) → (v, h + 1)) and ((v, h′) → (u, h + 1)) as these
two different edges in the network refer to the same edge in
the original graph. However, using the approach suggested
in (Liu et al. 2019), these collision can be eliminated in the
following fashion. Instead of two conflicting agents moving
to their next vertices, they swap plans and continue moving
by the other’s plan. As a result, the AMAPF solution can be
obtained by finding the maximum number of paths (maxi-
mum flow) in the described network.

Solving Maximum Flow
Ford-Fulkerson algorithm (Ford and Fulkerson 1956) was
suggested in (Yu and LaValle 2013b) to solve the maximum
flow problem. The algorithm is simple and easy to imple-
ment; its complexity on the reduced networks is O(kEV)
(formulated in (Yu and LaValle 2013b)), where E, V stand
for the number of nodes and edges in the original graph.
Since, in our MF problem, all the edges have a capacity of
one and the value of the flow is bounded by the number of
agents (as each path is to be matched to an agent’s plan),
Ford-Fulkerson can be considered as one of the most effi-
cient solvers for our case (see (Cruz-Mejı́a and Letchford
2023) for more details about Maximum Flow algorithms).

We refer the reader to the original paper for the detailed
description of Ford-Fulkerson while briefly describing how
the algorithm works specifically for the reduced network. In
particular, the following two steps are sequentially repeated.
First, we find a path p from s to g in the network. Second,
we reverse all edges of p. We keep repeating these two steps
until no path can be found. The found paths form the max-
imum flow in the network (in our case, they form the plans
of the agents in the original AMAPF problem) 1.

1Arxiv version of this paper contains an illustrative example.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17293

Solving MF Efficiently On The Introduced
Networks

The maximum value of T needed to solve an AMAPF prob-
lem can be up to k + V − 2, as shown by (Yu and LaValle
2013b). This implies that the network size may be quadratic
in the number of vertices of the original graph. Therefore,
finding an s-g path may become a bottleneck when solving
AMAPF instances involving large input graphs. To this end,
we propose an algorithm that takes advantage of the specific
structure of the reduced network and, as a result, is able to
solve AMAPF problems much faster.

First, we present some definitions to use in the algorithm
description. In our algorithm, the search state corresponds to
the network node. We will use n(v, h) to denote the search
state. Recall that the network node is defined by the ver-
tex in original graph, v, and the height (copy) h (a higher
node means a higher copy, and h′ is higher than h). Let us
define a connected-sequence as a sequence of nodes with
the same vertex in which we can achieve the last node from
the first node using only wait and restriction not-reversed
edges, and it cannot be extended in either side (i.e., it has
the maximum length). An example is shown in Fig. 2. Ini-
tially, for each vertex v of the original graph, we have only
one connected-sequence (v, [0, T ′]) i.e. the one that starts
with the node with height 0 and ends with height T ′ (shown
by yellow crossbars). After a path (green path) is found,
its edges are reversed (red edges in the lower graph). As
a result, some connected-sequences disconnect which leads
to several connected-sequences at the same vertex (see the
lower network).

Idea The suggested algorithm is a graph traversal algo-
rithm where the order of the search states in OPEN (the set
of nodes that are the candidates to be expanded at the next it-
eration of the algorithm) is determined by their heights, i.e.,
the states with the lower heights are expanded first. The cru-
cial idea of the algorithm is to expand states in bulks while
searching. That is, instead of expanding one search state, i.e.
generating its successors and marking it as visited (adding
it to CLOSED), in each search iteration, we (implicitly) ex-
pand a bulk of states at once. Such bulk expansion can be
effectively implemented using the introduced notion of the
connected sequence, resulting in the reduction of the ex-
pansions number, time and memory compared to expanding
states individually. Next, we describe how we can form the
bulks of states and how the successors can be found com-
pactly and fast.

We note that a similar but more specific concept was used
in (Phillips and Likhachev 2011) and (Gonzalez, Dorn-
bush, and Likhachev 2012) to implicitly compress and ex-
pand the states generated by the wait actions of agents 2.
Let us assume that while traversing the graph naively by

2The mentioned algorithms were originally tailored to graph-
based pathfinding in the presence of dynamic obstacles where each
vertex of the graph had to be annotated with the (safe) time inter-
vals and the search utilized implicit move-then-wait actions. Our
algorithm on the other hand handles explicit graphs, and the notion
of connected-sequence in general is not obligated to relate to the
time dimension, as will be shown later in the paper.

single nodes, we are to expand a state (v, h) located in a
connected-sequence (v, [hmin, hmax]). We can note that the
nodes with the higher heights inside the connected-sequence
(i.e. the nodes (v, x) : x ∈ [h + 1, hmax]) are all achiev-
able from (v, h) via the wait and restriction edges. Hence,
the idea is to directly (and implicitly) generate all of these
states ((v, x) : x ∈ [h + 1, hmax]), form an implicit bulk
consisting of these states (including the originally picked-up
node (v, h)), and expand them all at once (instead of expand-
ing only (v, h)). We will refer to the described mechanism
of generating the sequential successors of states that uses
only wait and restriction edges as straightforward genera-
tion. Note that it is enough to store the vertex and the height
bounds of the bulk to define it. So, technically, when form-
ing a bulk (for future expansion), we only need to find the
last straightforwardly achievable state (i.e. the highest state
in the connected-sequence).

When the bulk is ready, it is expanded in the following
fashion. First, let us assume the naive expansion of a bulk
when, for every node that resides in it, we generate all of
its immediate successors. Now observe that, as a result of
such procedure, we are likely to have numerous successors
that are characterized by the same graph vertex and differ-
ent heights. Moreover, many of these successors may belong
to the same connected-sequence. Thus, instead of explic-
itly generating them, we generate only the ones with lower
heights in their sequences. The other search states from these
sequences will be straightforwardly generated later on (i.e.,
when the search state with the lowest copy is picked for ex-
pansion and its bulk is formed as described above).

In other words, to expand a bulk of states (v, [hl, hu]), we
do the following. We iterate over all connected-sequences in
neighbor vertices of v, in which we can achieve at least one
node (from a node (v, x) : x ∈ [hl, hu]). Then, we only gen-
erate the accessible node with the minimum height in each
of these connected-sequences. The periodic structure of the
reduced networks allows us to quickly find the node with
the minimal height (as we will show later). As the number
of connected-sequences is much less than that of individual
nodes, it leads to a high reduction in the number of gener-
ated states. We call the algorithm that utilizes the described
concepts Bulk Search (BS). Next, we describe the details of
the implementation.

Details Algorithm 1 shows the pseudo-code of a graph
traversal algorithm with our modifications. First, we order
the states inside the search set (OPEN) by their height, i.e.,
we always choose the state with the minimum height for the
expansion. This will help us reduce the number of expan-
sions as will be shown later. The second change is that when-
ever we need to check whether a chosen state was expanded
before, we additionally check if the state can be straight-
forwardly generated from the previously opened states. In
this case, we do not need to expand it, as we assume that it
was implicitly expanded before and its successors were al-
ready generated and inserted into the search set. This can
be done by checking if any state in the same connected-
sequence and lower height was expanded before (i.e. stored
in the CLOSED set) (lines 11-14). This check should also

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17294

Algorithm 1: Bulk Search

Input: Network N(G, cap, s, g)
Output: Path from s to g if exists
1: OPEN← ϕ, CLOSED← ϕ
2: insert s→ OPEN
3: while OPEN ̸= ϕ do
4: remove n(v, h) with the minimum h from OPEN
5: if n = g then
6: return path from s to n
7: end if
8: if n ∈ CLOSED then
9: continue

10: end if
11: x(v, h′)← the state from CLOSED in the same connected-

sequence of n and minimum height
12: if x exists and h′ <= h then
13: continue
14: end if
15: succ← getSuccessors(n)
16: for n′(u, h′) in succ do
17: if n′ ∈ OPEN ∪ CLOSED then
18: continue
19: end if
20: x(u, h′′) ← the state from OPEN ∪ CLOSED in the

same connected-sequence of n′ and minimum height
21: if x exists and h′′ <= h′ then
22: continue
23: end if
24: insert n′→ OPEN
25: end for
26: end while
27: return no answer

Algorithm 2: Generating successors

Input: Network N(G, cap, s, g), Node n(v, h)
Output: The successors of n(v, h)
1: if n = s then
2: return all neighbor nodes of n in G
3: end if
4: succ← ϕ
5: [hmin, hmax] ← height bounds of the connected-sequence

where n is located
6: if h = hmin then
7: insert all neighbor nodes of n in G→ succ
8: end if
9: insert all neighbor nodes of node (v, hmax) in G→ succ

10: for each connected-sequence cs(u, [hl, hu]) with vertex u is a
neighbor of v do

11: c′from ← the height of the minimum outer copy in
[max(hmin + 1, h), hmax − 1]

12: cto ← the height of the minimum inner copy in [hl, hu]
13: if c′from + 1 <= hu and cto − 1 <= hmax then
14: cmin ← max(cto, c

′
from + 1)

15: insert (u, cmin)→ succ
16: end if
17: end for
18: return succ

be done when inserting new states into the OPEN set (lines
20-23).

The third change is how we generate the successors of all

s

0 1 1' 2 2'

0 1 1' 2 2'

T'

T'

0 1 1' 2 2' gT'

A

B

C
s

0 1 1' 2 2'

0 1 1' 2 2'

T'

T'

0 1 1' 2 2' gT'

A

B

C

A

B

C

Figure 2: Example showing connected-sequences on the net-
work. Yellow crossbars denote the connected-sequences on
each vertex. Initially, we have the connected-sequences as
shown in the upper figure. After a path (green one) is found
and its edges are reversed, the connected-sequences are di-
vided as shown in the lower figure.

states (the taken one from OPEN along with its straightfor-
wardly generated states) fast. The pseudo-code is presented
in Algorithm 2. Firstly, (lines 1-3), if the node is the source
node s, we have only one node as input (i.e. no implicit
states), and, thus, we need to only generate neighboring
successors (i.e. connected nodes in the network) and return
them. Otherwise, let the input node n(v, h) (which is not s
or g) located in the connected-sequence (v, [hmin, hmax]),
then we should generate the successors of all states n(v, x) :
x ∈ [h, hmax]. This can be done as follows. If the state (v, h)
is located at the beginning of the connected-sequence (i.e.
h = hmin), this state may have reversed edges, so we always
generate all neighboring nodes of this state in the network.
The same thing is applied on (v, hmax) where we also gen-
erate all its neighboring nodes in the network. Other nodes
(i.e. nodes (v, x) : x ∈ [max(hmin+1, h), hmax−1]) have
only move edges to connect to nodes in other connected-
sequences, so we can do the following (lines 10-17) to gener-
ate their successors. We iterate over all connected-sequences
cs in neighbor vertices of v. We then check whether we
can achieve at least one node in cs (from nodes (v, x) :
x ∈ [max(hmin + 1, h), hmax − 1]). As shown in lines
11-13, this can be done by checking whether there is at
least one move edge which starts from an outer copy in
[max(hmin + 1, h), hmax − 1] and ends at inner copy in
cs. If so, we generate the node with the minimum accessible
height in cs and add it to the successors set (lines 14-15).

As a result, any achievable node beginning from the
source node is either explicitly or implicitly (from a node
with lower height in the same connected-sequence) ex-
panded. Therefore, we can immediately state the following
theorem.
Theorem 1. BS is a complete algorithm.

Theoretical analysis The search states inside the search
set are sorted according to the height. This helps to reduce
the number of expansions as the lower-height states implic-
itly expand the higher-height states in the same connected-
sequence, but the opposite is not applicable. In theory, mul-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17295

01 10 20 30
Time (s)

0.0

25.0

50.0

75.0

100.0

SR
 p

er
ce

nt
ag

e
(%

)

flow-BS
flow

Figure 3: The (normalized) number of instances solved by a
certain time cap.

tiple single states in one connected-sequence may be ex-
panded individually, e.g., if they have been opened in the
descending-height way. This is possible even if we order the
states according to the heights as we have reversed edges
which generates states with a lower height. However, in
practice, only few states are expanded in each connected-
sequence, and, thus, the algorithm’s performance mainly de-
pends on the number of connected-sequences. Fortunately,
the number of connected-sequences is much smaller than
the size of the network. Initially, we have a number of
connected-sequences equals V , the number of original graph
vertices. After each path is found and reversed, T new re-
versed edges, and therefore, T new connected-sequences
appear. As a result, in the whole search for all k agents,
the number of the appearing connected-sequences equals∑i=k

i=1 |V |+ T (i− 1) = k|V |+Tk(k−1)/2. Therefore, we
have a theoretical reduction in the number of nodes (com-
paring with k|V |T , the number of nodes without compress-
ing in connected-sequences) equals min(|V |/k, T/2) (i.e.
(k|V | + Tk(k − 1)/2) ∗ min(|V |/k, T/2) <= k|V |T 3).
This reduction is significantly high, which allows us to ob-
tain the fastest full success (to our knowledge) in optimally
solving all public MAPF benchmarks for a MAPF-family
problem, as will be shown in the next section.

Experimental Evaluation
We have implemented the improved AMAPF solver in C++4

and compared it with the state-of-the-art AMAPF solver
that does not use the introduced Bulk Search to solve MF
but rather utilizes the standard Ford-Fulkerson as suggested
in (Yu and LaValle 2013b). The code of the competitor was
taken from public repository 5 that accompanied the pa-
per (Okumura and Défago 2022). We kept all the optimiza-
tion techniques designed by the code authors. We will de-
note these two solvers as flow-BS (ours) and flow (state of
the art). The experiments were conducted on a PC with Intel
Core i7-10700F CPU @ 2.90GHz × 16 and 32Gb of RAM.

The MAPF maps and instances were taken from the pub-
licly available MAPF benchmark (Stern et al. 2019). We use
all 33 maps available in this benchmark and all of the 25

3See Arxiv version of the paper for details.
4https://github.com/PathPlanning/AMAPF-MF-BS
5https://github.com/Kei18/tswap

Map Width Height Algorithm
flow flow-BS

empty-8-8 8 8 100% 100%
empty-16-16 16 16 100% 100%
maze-32-32-2 32 32 100% 100%
room-32-32-4 32 32 100% 100%
maze-32-32-4 32 32 100% 100%

random-32-32-20 32 32 100% 100%
random-32-32-10 32 32 100% 100%

empty-32-32 32 32 100% 100%
empty-48-48 48 48 100% 100%

den312d 65 81 100% 100%
room-64-64-8 64 64 100% 100%

random-64-64-20 64 64 100% 100%
room-64-64-16 64 64 100% 100%

random-64-64-10 64 64 100% 100%
warehouse-10-20-10-2-1 161 63 100% 100%

ht chantry 162 141 100% 100%
maze-128-128-1 128 128 3% 100%

ht mansion n 133 270 96% 100%
warehouse-10-20-10-2-2 170 84 100% 100%

lt gallowstemplar n 251 180 82% 100%
maze-128-128-2 128 128 4% 100%

ost003d 194 194 57% 100%
lak303d 194 194 44% 100%

maze-128-128-10 128 128 17% 100%
warehouse-20-40-10-2-1 321 123 91% 100%

den520d 256 257 16% 100%
w woundedcoast 642 578 1% 100%

warehouse-20-40-10-2-2 340 164 8% 100%
brc202d 530 481 1% 100%

Paris 1 256 256 256 5% 100%
Berlin 1 256 256 256 6% 100%
Boston 0 256 256 256 4% 100%

orz900d 1491 656 0% 100%

Table 1: Success rates of flow-BS and flow solvers with a
timeout of 30 seconds.

random scenarios. Each scenario on each map (except some
small ones) contains 1,000 pairs of start-goal positions. To
test a solver on a scenario, we run it with the first 1, 2, 4,
8, 16, 32, 64, 128, 256, 512, and 1,000 pairs of start-goals
sequentially. Whenever the solver fails to solve a problem
under a time limit of 30 seconds, we terminate testing on
this scenario and move to the next one.

In the first experiment, we have used a precise estima-
tor of T suggested by (Okumura and Défago 2022) (which
solves bottleneck assignment problem (Gross 1959)) to es-
timate the lower bound of the makespan. As this estimator
takes non-negligible time (up to 10 seconds) and both algo-
rithms use it, we have not accounted for its runtime.

For each map, we have collected the total number of suc-
cess instances over all scenarios. Table 1 summarizes the re-
sults. As can be seen, our solver is able to solve all instances
in all maps under 30s. However, this is not the case for
flow solver. The latter searches the network node-by-node
and, therefore, is able to solve the test instances only on the
small maps. When the maps are large (like city maps that are
256× 256) or the makespan is high (like in the maze maps),
it is often unable to produce a solution under the imposed

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17296

26 27 28 29 1000
#Agents

0.0

0.2

0.4

0.6

0.8

1.0

#
A

ve
ra

ge
 E

xp
an

de
d

N
od

es
1e8 Berlin_1_256 (256x256)

flow
flow-BS

26 27 28 29 1000
#Agents

0.0

0.5

1.0

1.5

#
A

ve
ra

ge
 E

xp
an

de
d

N
od

es

1e7 lt_gallowstemplar_n (180x251)

flow
flow-BS

26 27 28 29 1000
#Agents

0.2

0.4

0.6

0.8

1.0

#
A

ve
ra

ge
 E

xp
an

de
d

N
od

es

1e6 random-64-64-20 (64x64)

flow
flow-BS

Figure 4: The number of expanded nodes with a different number of agents on different maps.

Tmin/4 Tmin/2 Tmin Tmin * 2
T

0.0

0.2

0.4

0.6

0.8

1.0

#
Ex

pa
nd

ed
 N

od
es

1e8 maze-128-128-10 (128x128)

flow, k=256
flow, k=1000
flow-BS, k=256
flow-BS, k=1000

Tmin/4 Tmin/2 Tmin Tmin * 2
T

0

2

4

6

8
#

Ex
pa

nd
ed

 N
od

es

1e7 warehouse-20-40-10-2-2 (164x340)

flow, k=256
flow, k=1000
flow-BS, k=256
flow-BS, k=1000

Tmin/4 Tmin/2 Tmin Tmin * 2
T

1

2

3

4

5

#
Ex

pa
nd

ed
 N

od
es

1e6 room-64-64-16 (64x64)

flow, k=256
flow, k=1000
flow-BS, k=256
flow-BS, k=1000

Figure 5: The figure shows (for a specific map and a specific number of agents) how the number of expansions changes with
the increasing values of T . Here Tmin denotes the optimal makespan.

time limit. Fig. 3 shows the success rate for all instances in
all maps second by second. In fact, flow-BS is able to solve
the hardest instance (orz900d map, scenario 20 with 256
agents) in 17s. On the other hand, flow has shown a very
slight increase of SR after solving the easy instances (75%
of instances) around the 8th second.

In the second experiment, we have investigated how the
number of agents affects the performance. For this purpose,
we selected three maps of different topology and size and
plotted the average number of the expanded nodes against
the number of agents. The results (plotted in Fig. 4) show
that our algorithm expands much fewer nodes than the stan-
dard algorithm (as expected). It is worth noting that the re-
lation between the runtime and the number of expansions is
not fixed but increases for flow, too. This is because a sin-
gle memory-access/read/write operation takes longer when
the amount of the stored data increases.

So far, we have assumed that we have an estimator
which can identify an exact bound (T) of the makespan.
However, this may be not the case, so the search may
be repeated several times until finding the optimal so-
lution. Therefore, we have also conducted experiments
to show the practical performance of both solvers for
different T when we fix the map and the number of
agents. The tests are designed as follows. For each one
of the three fixed maps, warehouse-20-40-10-2-2,
maze-128-128-10, room-64-64-16, and for a num-
ber of agents ∈ {256, 1000}, we run the solvers on net-
works with a maximum height equals one of the values

{Tmin/4, Tmin/2, Tmin, Tmin ∗ 2}, where Tmin is the opti-
mal makespan. Again, we have recorded the average number
of expanded nodes over all scenarios (see Fig. 5). Obviously,
the number of nodes expanded by flow significantly in-
creases with the value of T , while flow-BS does not demon-
strate such growth. It means that our solver is especially use-
ful when one cannot estimate the optimal makespan accu-
rately before actually solving an AMAPF problem instance.

Conclusion
In this paper, we have revisited the reduction-based ap-
proach to optimally solving the Anonymous MAPF prob-
lem, when the latter is reduced to a search problem on an
auxiliary graph of a special structure. We have suggested an
improved AMAPF solver that is based on a specific search
algorithm tailored to find paths on the auxiliary graphs ex-
ploiting their specific topology. We have shown that our im-
proved AMAPF solver significantly outperforms the state-
of-the-art one on a large variety of setups, leveraging its bet-
ter scalability to the size of the input graph. Next, we plan to
extend the proposed search technique to support costs (e.g.
Min-Cost-Maximum-Flow) to solve other MAPF problems.

Acknowledgments
This work was partially supported by the Analytical Cen-
ter for the Government of the Russian Federation in ac-
cordance with the subsidy agreement (agreement identifier
000000D730321P5Q0002; grant No. 70-2021-00138).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17297

References
Adler, A.; De Berg, M.; Halperin, D.; and Solovey, K. 2015.
Efficient multi-robot motion planning for unlabeled discs in
simple polygons. In Algorithmic Foundations of Robotics
XI: Selected Contributions of the Eleventh International
Workshop on the Algorithmic Foundations of Robotics, 1–
17.

Ahuja, R. K.; Magnanti, T. L.; and Orlin, J. B. 1995. Net-
work flows: theory, algorithms and applications. Prentice
Hall.

Barták, R.; Ivanová, M.; and Švancara, J. 2021. From clas-
sical to colored multi-agent path finding. In Proceedings of
the 14th International Symposium on Combinatorial Search
(SoCS 2021), 150–152.

Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D. D.; and
Stuckey, P. J. 2021. Integrated task assignment and path
planning for capacitated multi-agent pickup and delivery.
IEEE Robotics and Automation Letters, 6(3): 5816–5823.

Cruz-Mejı́a, O.; and Letchford, A. N. 2023. A survey on
exact algorithms for the maximum flow and minimum-cost
flow problems. Networks.

Ford, L. R.; and Fulkerson, D. R. 1956. Maximal flow
through a network. Canadian journal of Mathematics, 8:
399–404.

Ford Jr, L. R.; and Fulkerson, D. R. 2015. Flows in networks,
volume 54. Princeton university press.

Gonzalez, J. P.; Dornbush, A.; and Likhachev, M. 2012. Us-
ing state dominance for path planning in dynamic environ-
ments with moving obstacles. In 2012 IEEE International
Conference on Robotics and Automation, 4009–4015. IEEE.

Gross, O. 1959. The bottleneck assignment problem. Rand.

Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J.; and Ayanian,
N. 2018. Conflict-based search with optimal task assign-
ment. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2021. Lifelong multi-agent path finding in
large-scale warehouses. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI 2021), 11272–
11281.

Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and path
planning for multi-agent pickup and delivery. In Proceed-
ings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS).

Ma, H.; and Koenig, S. 2016. Optimal Target Assignment
and Path Finding for Teams of Agents. In Proceedings of
the 15th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2016), 1144–1152.

Ma, H.; Li, J.; Kumar, T.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and De-
livery Tasks. In Proceedings of The 16th Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS 2017),
837–845. International Foundation for Autonomous Agents
and Multiagent Systems.

Nguyen, V.; Obermeier, P.; Son, T. C.; Schaub, T.; and Yeoh,
W. 2017. Generalized target assignment and path finding
using answer set programming. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI 2017), 1216–1223.
Okumura, K.; and Défago, X. 2022. Solving Simultane-
ous Target Assignment and Path Planning Efficiently with
Time-Independent Execution. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
volume 32, 270–278.
Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In 2011 IEEE in-
ternational conference on robotics and automation, 5628–
5635. IEEE.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Solovey, K.; and Halperin, D. 2016. On the hardness of
unlabeled multi-robot motion planning. The International
Journal of Robotics Research, 35(14): 1750–1759.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. Symposium on Com-
binatorial Search (SoCS), 151–158.
Xu, Q.; Li, J.; Koenig, S.; and Ma, H. 2022. Multi-
Goal Multi-Agent Pickup and Delivery. In Proceedings of
the 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2022).
Yu, J.; and LaValle, S. M. 2013a. Multi-agent path planning
and network flow. In Algorithmic foundations of robotics X,
157–173. Springer.
Yu, J.; and LaValle, S. M. 2013b. Planning optimal paths
for multiple robots on graphs. In 2013 IEEE International
Conference on Robotics and Automation, 3612–3617. IEEE.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17298

