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Abstract

Designing accurate reward functions for reinforcement learn-
ing (RL) has long been challenging. Preference-based RL
(PbRL) offers a promising approach by using human pref-
erences to train agents, eliminating the need for manual re-
ward design. While successful in single-agent tasks, extend-
ing PbRL to complex multi-agent scenarios is nontrivial. Ex-
isting PbRL methods lack the capacity to comprehensively
capture both temporal and cooperative aspects, leading to
inadequate reward functions. This work introduces an ad-
vanced multi-agent preference learning framework that ef-
fectively addresses these limitations. Based on a cascaded
Transformer architecture, our approach captures both tem-
poral and cooperative dependencies, alleviating issues re-
lated to reward uniformity and intricate interactions among
agents. Experimental results demonstrate substantial perfor-
mance improvements in multi-agent cooperative tasks, and
the reconstructed reward function closely resembles expert-
defined reward functions. The source code is available at
https://github.com/catezi/MAPT.

Introduction
In recent years, deep reinforcement learning (RL) achieved
remarkable success in solving complex sequential decision-
making problems across diverse domains like games (Mnih
et al. 2013; Vinyals et al. 2019; Silver et al. 2016), au-
tonomous driving (Zhou et al. 2020b), robot control (Chen
et al. 2022b), and other settings with well-defined reward
structures. In these contexts, agents can develop effective
policies by maximizing cumulative rewards when an appro-
priate reward structure is available. However, formulating
practical reward structures often poses difficulties, demand-
ing strong expertise in reward engineering (Schenck and Fox
2017; Yahya et al. 2017; Peng et al. 2020). The effectiveness
of the created reward structure dramatically hinges on the
designer’s grasp of task objectives, operational principles,
and pertinent background knowledge (Leike et al. 2018).
Even domain experts must devote significant time to ex-
periment with various methods to navigate the complexities
of reward engineering (Christiano et al. 2017; Lee, Smith,
and Abbeel 2021). This challenge is particularly pronounced
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in multi-agent collaborative scenarios characterized by in-
tricate interactions, where explicitly defining reward struc-
tures can be problematic (Song et al. 2018). Furthermore,
even if explicit reward structures are crafted, agents might
fall into reward manipulation during the policy learning and
optimization phase (Skalse et al. 2022). It involves exploit-
ing vulnerabilities in the reward structure to maximize cu-
mulative rewards without genuinely addressing the intended
tasks (Leike et al. 2018; Ouyang et al. 2022).

Several methods exist to address the challenges of reward
engineering, including imitation learning (Ho and Ermon
2016). This method involves mimicking expert trajectories
to learn implicit reward functions. While imitation learning
performs well in some tasks, surpassing human-level perfor-
mance remains difficult. To overcome this limitation, human
feedback-based RL emerges as a more versatile and practi-
cal alternative. This approach aims to learn implicit reward
functions by leveraging expert human feedback and provid-
ing reward signals to the agent. Different types of human
feedback are employed, including value feedback (Daniel
et al. 2014), expert demonstrations (Ng and Russell 2000),
preference feedback (Akrour, Schoenauer, and Sebag 2011;
Wilson, Fern, and Tadepalli 2012; Kim et al. 2023), and
language instructions (Fu et al. 2019). Preference-based RL
(PbRL) has gained recent research attention due to its cost-
effectiveness and rich information (Wirth et al. 2017; Chen
et al. 2022a). In PbRL, the agent’s reward function is derived
from human preferences for pairs of trajectories, guiding the
agent toward specific goals or desired behaviors (Christiano
et al. 2017; Stiennon et al. 2020). Recent studies highlight
the performance improvement achieved by learning implicit
reward functions from human trajectory preferences (Lee,
Smith, and Abbeel 2021; Park et al. 2022; Liang et al. 2022;
Liu et al. 2022). In summary, PbRL offers an effective way
to acquire reward functions based on human intent rather
than predefined designs. Its effectiveness spans diverse do-
mains like robot control (Lee, Smith, and Abbeel 2021) and
dialogue systems (Ouyang et al. 2022).

PbRL shows promise in enhancing reward and policy
learning for single-agent tasks. However, applying these
methods to multi-agent systems faces a crucial challenge:
agent interactions. Despite numerous proposed PbRL ap-
proaches, achieving superior performance improvement
through human feedback alone remains challenging for

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17202



Multi-Agent RL (MARL). The central question is how to
effectively model reward functions that consider agent
interactions and untangle the complex global dependen-
cies between human preferences in multi-agent tasks. In
fact, human preferences for multi-agent trajectories stem
primarily from evaluating joint actions and cooperative ef-
fects, rather than isolated assessments of individual actions.
Creating separate reward models for each agent would over-
look the ability to capture agent cooperation, resulting in
suboptimal outcomes (Wang et al. 2021). On the other hand,
establishing a centralized, shared reward model among all
agents introduces challenges in assigning credit (Song et al.
2018; Zhou et al. 2020a), often impeding enhancements in
the collective performance of multi-agent systems.

To address this, we extend traditional PbRL methods to
handle multi-agent scenarios and accurately represent the
connections between human preferences and agents’ com-
bined rewards. Our main idea is to create a decoupled re-
ward model by capturing global dependencies (including
temporal and cooperation two aspects) for each agent, re-
flecting their unique contributions. Consequently, we pro-
pose a novel global dependency-enhanced multi-agent pref-
erence model that effectively captures the interdependence
among human preferences, temporal context, and individ-
ual cooperation. It allows us to infer each agent’s con-
tributions and critical actions within and across trajecto-
ries. Drawing inspiration from successful network structures
like the Transformer model (Vaswani et al. 2017), known
for effective sequence modeling and RL training (Chen
et al. 2021; Wen et al. 2022), we introduce Multi-Agent
Preference Transformer (MAPT), a cascaded Transformer-
based architecture. MAPT integrates a self-attention layer
and a cooperative-aware preference attention layer to cap-
ture cooperative global dependencies and calculate signifi-
cance weights for each agent. It involves extracting pertinent
cooperative context from each agent’s trajectory segment,
generating independent cooperative-dependent rewards for
agents. Furthermore, it employs a temporal-aware prefer-
ence attention layer to capture temporal global dependen-
cies within combined rewards. These weights recalibrate
the combined temporal-dependent rewards, shaping a cen-
tralized and decoupled collective reward distribution. Fi-
nally, we apply the cascaded Transformer architecture to de-
fine our multi-agent preference model. The contributions are
summarized as follows:

• We pioneer a comprehensive framework for modeling
human preferences in multi-agent collaboration tasks, fo-
cusing on combined rewards considering temporal and
cooperative factors.

• We present MAPT, an innovative reward model enriched
with global dependencies. Built on a cascaded Trans-
former architecture, it incorporates novel preference at-
tention from both history and agent perspectives.

• Extensive experiments across various multi-agent tasks
and four benchmarks showcase MAPT’s ability to learn
precise joint reward distributions from human prefer-
ences. The resulting policy model, trained on this dis-
tribution, consistently surpasses various baselines.

Background
Preference-Based Reinforcement Learning. We study a
cooperative MARL framework, extending the Markov deci-
sion processes (MDPs) concept (Littman 1994). A Markov
game withN agents is defined by (N,S, {Ai}Ni=1, T ,R, γ),
where S is the state set, and {Ai}Ni=1 is the action set
for each agent. The transition function T : S × A1 ×
. . . × AN → P (S) models state transitions. At timestep
t, given state ot = (o1t , . . . , o

N
t ), agents select actions

at = (a1t , . . . , a
N
t ), and the state transitions to ot+1 with

probability T (ot+1|ot, a1t , . . . , aNt ). The shared reward is
rt = R(o,a). The joint policy πθ = [πθ1 , . . . , πθN ] rep-
resents individual agent policies. For convenience, policy
parameters θ might be omitted. Each agent has full ac-
cess to state information. To denote agents from ik to ij

(1 ≤ k ≤ j ≤ N), we use the notation k : j, where πk:j is
πk, πk+1, . . . , πj . MARL aims to learn a policy maximizing
expected return.

Designing precise reward functions that capture human
intent is challenging in many applications. PbRL addresses
this by learning reward functions from human preferences.
In line with previous works (Christiano et al. 2017; Lee,
Smith, and Abbeel 2021; Liu et al. 2022; Kim et al. 2023),
we consider preferences expressed between pairs of trajec-
tory segments. These segments involve N agents and have
a length denoted as T , where σ = {σ1, . . . , σN}, with
σk = {(o1, ak1), . . . , (oT , akT )} for 1 ≤ k ≤ N . Human
preferences for a segment pair (σ0,σ1) are indicated by
y ∈ {0, 1, 0.5}. Here, y = 1 denotes a preference for σ0,
y = 0 for σ1, and y = 0.5 for equal preference. We repre-
sent preference as σk ≻ σj if segment k is preferred over
segment j. The preference dataset, denoted as D, stores each
feedback as (σ0;σ1; y).

To obtain a scalar reward function r̂ parameterized by ψ,
most prior works define a preference predictor following the
Bradley-Terry model (Bradley and Terry 1952) under single-
agent settings, and we extend it to the multi-agent form:

P [σ0 ≻ σ1;ψ] =

exp(
∑

ot,at∈τ0

1≤t≤|τ0|

r̂(o0
t ,a

0
t ;ψ))

∑1
m=0 exp(

∑
ot,at∈τm

1≤t≤|τm|

r̂(omt ,a
m
t ;ψ))

.

(1)

Then, given a dataset of preferences D, the reward function
r̂ is updated by minimizing the cross-entropy loss between
this preference predictor and the actual human labels:

LCE(ψ) = − E
(σ0,σ1,y)∼D

[y logP (σ0 ≻ σ1;ψ)

+ (1− y) logP (σ1 ≻ σ0;ψ)]. (2)

The joint policy πθ can be updated using any MARL algo-
rithm, ensuring that it maximizes the expected returns con-
cerning the learned reward.

Multi-Agent Policy Gradient. MAPPO (Yu et al. 2022),
HAPPO (Kuba et al. 2022) and MAT (Wen et al. 2022) es-
tablish a sequential modeling framework for MARL and are

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17203



state-of-the-art algorithms based on the popular Proximal
Policy Optimization (PPO) method (Schulman et al. 2017),
which is known for its simplicity and stable performance.

Methodology
This section introduces the Multi-agent Preference Trans-
former (MAPT), a novel cascaded Transformer architec-
ture for modeling human preferences in multi-agent envi-
ronments. Our approach captures temporal and coopera-
tive dependencies among agents’ behaviors, facilitating two-
dimensional credit assignments. A new preference predictor
is employed, utilizing a global dependency-enhanced reward
model to improve agent behavior representation. We detail
the architecture of MAPT, as shown in Fig. (1), designed to
accommodate the proposed preference predictor.

Problem Statement
Existing PbRL algorithms follow a two-step approach in-
volving reward modeling and policy optimization. The chal-
lenge lies in accurately reconstructing reward functions from
preference data, directly affecting policy optimization ef-
ficiency. To improve reward reconstruction quality, PbRL
methods for single-agent scenarios explore whether the re-
ward function stationarity assumption holds (Early et al.
2022; Kim et al. 2023). They adopt a time-independent
paradigm (local perception, rewards based on current state
and action) when stationarity holds (Christiano et al. 2017;
Lee, Smith, and Abbeel 2021), and a time-dependent
paradigm (global perception, rewards based on historical
states and actions) when it does not (Early et al. 2022).

Multi-agent PbRL is intricate due to interactions among
agents. Directly applying single-agent PbRL methods to
multi-agent scenarios can lead to substantial reward mod-
eling biases, impeding effective policy learning. In coop-
erative settings, reward function non-stationarity is influ-
enced by both temporal and cooperative factors. Consider a
team-based soccer match: offensive and defensive strategies
evolve, altering the reward function (optimization goal) over
different phases, indicating temporal non-stationarity. More-
over, an individual agent’s reward distribution can change
based on teammates’ states and actions. For instance, the
success of agent A passing to teammate B, yielding a high
reward, depends on A’s skill and B’s positioning. It high-
lights the need to perceive global interdependencies across
time and cooperation levels when modeling and learning
from human preferences in multi-agent collaborative tasks.

The two left images in Fig. (2) depict the reward distribu-
tion learned through reward model training using an exten-
sion of classic single-agent PbRL methods (Christiano et al.
2017; Kim et al. 2023) to collaborative multi-agent settings.
The right image in Fig. (2) shows empirically grounded re-
ward distributions for these state-action pairs. These explicit
rewards are based on heuristic reward functions, reflecting
human insights, and provide diverse experiences that enable
agents to explore and produce coherent, high-quality behav-
iors. In contrast, inferred rewards from reward models ap-
pear more congested, needing clear differentiation among
most state-action pair feedback. These homogeneous re-

wards result in almost identical feedback for any action in
any state, leading to low variance in the advantage function.
As a result, agents need help to obtain valuable positive in-
centives, limiting diverse action and policy exploration. In
MARL, exploration is vital for effective interaction and co-
ordination among agents. Reward differentiation becomes
crucial to ensure diverse strategy exploration, enhancing ex-
ploration efficiency and convergence.

Preference Modeling
As discussed earlier, local-dependency preference predictors
have limitations in learning from human preferences, espe-
cially in multi-agent scenarios. How information is aggre-
gated significantly affects the diversity of individual reward
distribution and agent exploration, particularly in multi-
agent contexts. When creating independent reward models
and local-dependency preference predictors, each agent con-
structs its reward function based on local observations, treat-
ing other agents as part of the environment rather than ex-
plicitly modeling interactions. It tends to have similar re-
ward functions for individual agents, failing to capture in-
tricate interactions and action importance among agents. It
necessitates credit assignment both within and across tra-
jectories. To address these challenges, we introduce a novel
multi-agent preference predictor. This predictor utilizes a
global dependency-enhanced reward model, assuming that
preferring a trajectory segment depends exponentially on the
weighted sum of rewards assigned to individual agents and
timesteps. In this framework, an agent’s reward depends on
the weighted aggregation of globally enhanced rewards spe-
cific to that agent:

P [σ
0 ≻ σ

1
;ψ] =

exp

(∑|τ0|
t=1 w

0
t · AGG(

{
r̂n,0
t

}N

n=1
)

)
∑1

m=0 exp
(∑|τm|

t=1 wm
t · AGG({r̂n,m

t }N
n=1

)
) ,

(3)
where AGG denotes an aggregation operator used to aggre-
gate individual rewards to the collective reward.

To capture global dependencies in both temporal and co-
operative aspects, we introduce an enhanced reward func-
tion r̂nt for each agent in at timestep t. This function takes
the complete previous sub-trajectory of length T for agent
in as input. Additionally, we use the AGG operator to cap-
ture cooperative-wise dependencies. It enables credit assign-
ment across segments. We also introduce temporal impor-
tance weights wnt for the T -length sub-trajectory segment
associated with agent in, allowing credit assignment within
segments. This formulation encompasses traditional design
and converges to the standard model in specific scenarios.
Overall, our multi-agent preference predictor considers joint
actions from all agents within the global state, effectively
capturing global dependencies between action advantages
and environmental states among agents. It fosters a diver-
sified reward structure, recognizing the mutual influence of
agents’ behaviors and facilitating cooperative actions.

Architecture of Multi-Agent Preference Learning
To implement the multi-agent preference predictor de-
scribed in Eq. (3), we introduce a new cascaded

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17204



2d

�
𝑡𝑡
𝑤𝑤𝑡𝑡[�

𝑛𝑛
𝑟̂𝑟𝑡𝑡𝑛𝑛]

T

C (emb. dim.)

N

N

d (hidden dim.)

Co
op

er
at

iv
e-

w
ise

 
Se

lf-
at

te
nt

io
n

Part I. Embedding cooperative-interaction dependencies

d

N

Te
m

po
ra

l-w
ise

 
Ca

us
al

-a
tt

en
tio

n

Part II. Capturing temporal- and cooperative- wise global dependencies

T

1

𝑃𝑃[⋅]

𝑜𝑜𝑘𝑘,𝑡𝑡

𝑎𝑎𝑘𝑘,𝑡𝑡

observation
embedding

action
embedding

Reshape

ℝ2𝑑𝑑 → ℝ1

ℝ2𝑑𝑑 → ℝ1

1

T

T

𝑤𝑤𝑡𝑡

𝑟̂𝑟𝑡𝑡𝑛𝑛

Pooling

N

NN

Linear: 
ℝ𝐶𝐶 → ℝ𝑑𝑑 Concat.

2d

Pooling

Co
op

er
at

iv
e-

w
ise

Se
lf-

at
te

nt
io

n

𝐡𝐡

Linear: 
ℝ𝑑𝑑 → ℝ𝑑𝑑

C (emb. dim.) d (hidden dim.)

Figure 1: Overview of MAPT. We first construct cooperative hidden embeddings through the self-attention layer, where each
represents the context information from the agent i1 to iN . Then we construct two preference attention layers with bidirectional
and causal self-attention mechanisms to compute the rewards r̂nt and aggregate them for modeling the weighted sum of global
dependency-enhanced rewards
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Figure 2: Comparison of reward histograms: Traditional
PbRL vs. Human-designed environmental rewards in multi-
agent context. Data from 100,000 state-action pairs in Door-
CloseOutward training. Each color denotes an agent.

Transformer-based architecture named MAPT. This archi-
tecture includes the following components:

Cooperative-Interaction Dependency Embedding. We
employ the Transformer architecture (Vaswani et al. 2017)
as the foundation, renowned for its effectiveness in sequen-
tial decision problems (Chen et al. 2021; Janner, Li, and
Levine 2021). Specifically, following (Wen et al. 2022), we
utilize the self-attention architecture. Observations are em-
bedded as on ∈ RT×C and actions as an ∈ RT×C for
agent in, with T denoting the segment length and C in-
dicating the embedding dimension. Subsequently, a self-
attention layer is applied to encode the entire observation
sequence o = (o1, . . . , oN ). Then the encoded observa-
tion embedding sequence and action embedding sequence
a = (a1, . . . , aN ) are concatenated into a hidden embed-
ding as h = (h1, . . . , hn) ∈ RT×2d, with d denoting the
hidden dimension.

Cooperative-Aware Preference Attention Layer. We in-
troduce a cooperative-wise preference attention layer to in-
corporate cooperative-wise global dependencies for reward
modeling as defined in Eq. (3). As depicted in Fig. (3c), this
layer takes hidden embeddings ht from the embedding layer
as input and generates individual rewards r̂nt at timestep t for
agent in. ht is embedded by a self-attention block. In detail,
each input hnt is linearly transformed into a key Kn ∈ Rd,
query Qn ∈ Rd, and value Vn ∈ Rd. Notably, r̂nt denotes

the cooperative global-dependency enhanced individual re-
ward. Specifically, for agent in, we utilize N state-action
hidden embeddings (h1t , . . . , h

N
t ) from all agents to approx-

imate the individual reward r̂nt during training. Leveraging
the principles of self-attention (Vaswani et al. 2017), the in-
dividual reward r̂nt for agent in is defined as a convex com-
bination of values with attention weights derived from the
n-th query and N keys:

r̂nt = softmax({⟨Qn,Kk⟩}Nk=1)
n
t · Vnt , (4)

Then, we apply the average pooling operator to aggregate
the individual rewards r̂nt , resulting in the collective reward
r̂t given by the equation r̂t = 1

N

∑N
n=1 r̂

n
t . Overall, The

cooperation-aware preference attention layer and the aver-
age pooling layer make up the operator AGG in Eq. (3).

Temporal-Aware Preference Attention Layer. We also
introduce a temporal-wise preference attention layer to en-
hance the multi-agent preference predictor in the tempo-
ral global dependencies manner according to Eq. (3). In
Fig. (3d), this layer takes r̂t and h as input and gener-
ates temporal importance weights wt. Specifically, the input
ht = 1

N

∑N
n=1 h

n
t is transformed into a query Qt ∈ Rd,

while the input r̂1:Nt is transformed into key Kt ∈ Rd and
value Vt = r̂t ∈ R. According to the self-attention mecha-
nism (Vaswani et al. 2017), the output xk at k-th timestep
is determined by a weighted combination of values, us-
ing temporal-wise attention weights from the corresponding
query and keys:

xk =
∑T

t=1
softmax({⟨Qk,Kt′⟩}Tt′=1)t · r̂t. (5)

Then the weighted sum of rewards can be computed by the
average of outputs {x1, . . . , xT } as follows:

1

T

T∑
k=1

xk =
1

T

T∑
k=1

T∑
t=1

softmax({⟨Qk,Kt′⟩}Tt′=1)t · r̂t

=

T∑
t=1

1

T

T∑
k=1

softmax({⟨Qk,Kt′⟩}Tt′=1)t · r̂t =
T∑

t=1

wtr̂t, (6)
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Figure 3: The overall model architecture of MAPT and its critical components: (a) Overall architecture of MAPT. (b)
Cooperative-interaction dependency modeling layer. (c) Cooperative-wise preference attention layer for cooperative global
dependency modeling. (d) Temporal-wise preference attention layer for temporal global dependency modeling.

where wt = 1
T

∑T
k=1 softmax({⟨Qk,Kt′⟩}Tt′=1)t.

In summary, we model cooperative- and temporal-wise
global dependency-enhanced rewards by averaging outputs
from the cooperative and temporal-wise attention layers. We
assume that the probability of preferring a segment is pro-
portional to this aggregation. The overall architecture of the
proposed MAPT is depicted in Fig. (3a).

Training and Inference
Training. We train MAPT using cross-entropy loss on the
preference dataset D to align its preference predictor with
human labels. This process guides deriving a suitable reward
function and identifying important agent behaviors within
trajectory segments. In Part I, we transform each trajectory
segment (o, a) of length T into two 3D matrices of size
T ×N ×C. A self-attention layer is applied to extract coop-
erative interaction features, and the action embeddings are
concatenated to N encoded observation embeddings as h ∈
RT×N×2d. In Part II, two branches are pursued. First, the
feature h from Part I is reshaped to RN×T×2d, and coopera-
tive global dependencies are extracted using a cooperation-
wise preference attention layer and mapped to RN×T×1.
And then the results are aggregated along the agent dimen-
sion to produce R1×T . Simultaneously, the feature h ob-
tained in Part I is also pooled along the agent dimension
to produce RT×2d. Then, temporal global dependencies are
captured using a temporal-wise preference attention layer,
generating temporal weights w ∈ RT×1. Using the temporal
weights, a weighted sum computation yields the preference
reward for the trajectory segment.

Inference. We label all state-action pairs using the learned
global dependency-enhanced reward function during MARL
training. To achieve this, we supply MAPT with T previ-
ous transitions (o1:N

t−T+1,a
1:N
t−T+1, . . . ,o

1:N
t ,a1:Nt ) and uti-

lize the t-th value rt from the temporal-wise preference at-
tention layer as the reward for the timestep t.
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Figure 4: Comparative reward histograms: Traditional PbRL
(MA-MLP), MAPT, and human-designed rewards (GT) in
multi-agent settings. Based on 100,000 state-action pairs,
uniformly sampled from replay buffers during training in
two environments. Colors indicate different agents.

Experiments
In this section, we assess MAPT’s performance across four
benchmarks and compare it against various baseline meth-
ods. Our experiments address three key questions: (1) Can
human preferences effectively guide multi-agent learning in
complex control and coordination tasks, surpassing expert
trajectories? (2) Does the integration of global dependen-
cies in preference predictors lead to diverse rewards, alle-
viating exploration challenges arising from reward homoge-
nization? (3) Is the reward function learned from the model
consistent with the ground truth reward function?

Experimental Setup
Benchmark Datasets. We evaluated MAPT using
four benchmarks: StarCraftII Multi-Agent Challenge
(SMAC) (Samvelyan et al. 2019), Google Research Foot-
ball (Football) (Kurach et al. 2020), Bimanual Dexterous
Hands Manipulation (Bi-DexHands) (Chen et al. 2022b),
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Tasks

Training with
task rewards

Training with
demonstations Training with preferences

MAT OMAR MA-MLP MA-LSTM MA-Transformer MAPT (Ours.)
3m 20.0±0.00 19.82±0.02 0.66±0.01 19.87±0.11 0.87±0.03 19.98±0.05

3s5z 20.00±0.02 19.87±0.11 1.77±0.17 14.52±0.49 5.86±0.28 19.59±0.42
6h vs 8z 19.78±0.07 18.33±0.15 9.57±0.14 9.76±0.15 6.36±0.17 17.05±0.53
MMM2 20.52±0.09 15.99±0.22 0.80±0.05 1.39±0.08 1.89±0.16 3.68±0.10
3 vs 1 4.89±0.02 4.55±0.34 0.72±0.06 1.31±0.03 1.06±0.02 3.78±0.07

counter attack 4.77±0.16 1.14±0.18 2.98±0.08 0.83±0.06 0.24±0.06 4.21±0.10
pass and shoot 4.83±0.11 2.72±0.58 2.20±0.06 1.90±0.03 0.66±0.06 4.76±0.04

CatchOver 25.32±0.88 16.85±1.21 8.62±0.34 25.34±1.59 4.75±0.13 25.12±0.64
DoorOpenInward 402.13±0.44 114.47±34.31 224.96±31.32 242.42±33.92 171.23±14.53 372.60±11.38

DoorOpenOutward 440.17±2.46 113.62±12.85 64.95±4.46 123.76±12.88 28.88±7.85 228.08±10.98
DoorCloseOutward 981.82±0.43 818.76±2.43 515.81±36.61 737.67±25.29 492.45±28.05 786.70±26.03
HalfCheetah 6×1 4483.95±74.75 4088.93±165.67 -88.75±11.62 1132.20±116.15 1317.90±147.77 2423.50±128.33

Table 1: Average accumulated trajectory rewards of learning from different feedbacks across baselines on 4 benchmarks
(SMAC, Football, Bi-dexhands, and Ma-Mujoco). Using the same multi-agent preference dataset from scripted teachers, we
train 3 baselines and MAPT. The result shows the average and standard deviation averaged over 8 runs.

and Multi-agent MuJoCo (Ma-Mujoco) (de Witt et al.
2020). Synthetic preferences generated by scripted teachers
were used, akin to previous studies (Christiano et al.
2017; Lee, Smith, and Abbeel 2021; Kim et al. 2023).
The deterministic teacher generates preferences based
on task rewards, with preference label y determined by
y = argminj

∑T
t=1 r(o

j
t ,a

j
t ). The multi-agent preference

datasets comprised 50,000 segment pair preferences for
SMAC and Football, and 30,000 for Bi-DexHands and
Ma-Mujoco. Preferences were extracted from replay buffers
during scripted teacher training using HAPPO and MAT,
structured as (τ 0; τ 1; y), encapsulating sequential segments
τ 0 and τ 1 with associated preference label y.

Baselines. We compare our method against various multi-
agent imitation learning and classical PbRL methods. Sim-
ilar to (Kim et al. 2023), we consider different aggrega-
tion modes of preference reward function as baselines, in-
cluding the standard Markov reward model and the re-
ward model based on temporal global dependency aggre-
gation. For the standard Markov reward model, the pref-
erence predictor employs an MLP-modeled reward func-
tion similar to (Christiano et al. 2017; Lee, Smith, and
Abbeel 2021). For global temporal dependency aggregation-
based reward models, LSTM-based (Early et al. 2022)
and Transformer-based (Kim et al. 2023) architectures are
used as reward functions for shaping the preference pre-
dictor. To adapt existing PbRL algorithms to the multi-
agent context, we formulate them within the multi-agent
framework using Eq. (1). Our evaluation involves base-
line algorithms, including MAGAIL (Song et al. 2018),
OMAR (Pan et al. 2022), multi-agent MLP-based pref-
erence model (MA-MLP), multi-agent LSTM-based pref-
erence model (MA-LSTM), and multi-agent Transformer-
based preference model (MA-Transformer).

Implementation Details. We randomly select pairs of tra-
jectory segments from offline datasets for reward learning

and gather preferences from scripted teachers. These pref-
erences are used to create multi-agent preference datasets,
which are then utilized to develop a reward function for
training RL agents. We train RL agents using MAT (Wen
et al. 2022), a recent state-of-the-art algorithm known for
its strong performance on various multi-agent cooperative
benchmarks. Baselines are implemented according to their
official repositories, with hyperparameters maintained at
their original best-performing settings. For reward models,
we set the learning rate to 1e-4 and the hidden dimension
to 256. As for policy models, following MAT, the learning
rates for actors and critics are 5e-4 for SMAC and Football,
and 5e-5 for Bi-DexHands and Ma-Mujoco. Our models are
trained on a single NVIDIA Tesla V100 GPU.

Main Results
Tab. (1) summarizes the performance evaluation of the pol-
icy model across various reward functions learned by base-
line algorithms. Notably, MAPT consistently outperforms
all baseline algorithms across most tasks. Our approach
successfully aligns the policy model’s performance with
task rewards, especially in complex multi-agent cooperative
tasks where most baselines struggle to contribute meaning-
fully. In benchmarks with continuous action spaces like Bi-
Dexhands and Ma-Mujoco, MAPT achieves an average per-
formance improvement of 46%. In tasks with discrete ac-
tion spaces like SMAC and Football, MAPT consistently en-
hances accumulative trajectory rewards by 35% to 189% un-
der diverse difficulty levels. In challenging SMAC tasks de-
manding high-difficulty intricate cooperation, such as 3s5z
and 6s vs 8Z, baseline algorithms fail to guide agent learn-
ing, yielding a 0% win rate effectively. In contrast, deploying
MAPT substantially boosts the win rate to 94% and 62%,
highlighting the importance of capturing temporal- and
cooperative-wise global dependencies. Remarkably, MAPT
outperforms specific SOTA multi-agent imitation learning
methods guided by human demonstrations in some environ-
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Tasks MAPT MAPT-TPA MAPT-CPA
OpenIn. 292.16±11.38 23.43±0.95 182.13±13.68

CloseOut. 786.70±26.03 718.16±22.38 782.37±24.05

3s5z 19.59±0.42 8.32±0.38 9.09±0.10
6h vs 8z 17.05±0.53 13.26±0.31 5.56±0.04

Table 2: Ablation study to assess global dependency effects.
MAPT-TPA omits the temporal-aware preference layer.
MAPT-CPA omits the cooperation-aware preference layer.
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Figure 5: Time series of the learned reward function and the
ground truth (GT) reward using rollouts from a policy opti-
mized by MAPT.

ments. Human preference may be a more efficient and less
biased feedback form than expert demonstrations, holding
significant promise for offline MARL. These results under-
score the effectiveness of our global dependency-enhanced
preference model using a cascaded Transformer architec-
ture. MAPT’s success in reward learning demonstrates its
ability to derive suitable reward functions from human pref-
erences, guiding agents towards meaningful behaviors.

Reward Analysis

To evaluate the efficacy of introducing preference model-
ing with global dependencies in addressing the reward func-
tion homogenization issue and enhancing reward diversity,
we visualized reward distributions of MAPT and the local
dependency modeling method (MA-MLP) across numerous
state-action pairs. These were compared with the reward dis-
tribution generated by human-designed Ground Truth (GT),
as depicted in Fig. (4). The outcomes reveal that reward
functions based on local dependency tend to yield concen-
trated marginal distributions, offering similar rewards for
most cases, making it challenging to differentiate advanta-
geous actions. In contrast, MAPT, incorporating global de-
pendency modeling showcases a more dispersed marginal
reward distribution akin to the Ground Truth. This diverse
feedback effectively distinguishes advantageous actions and
guides agent training. Notably, as agent numbers increase,
the credit assignment challenge intensifies, aggravating ho-
mogenization effects. Even in this scenario, MAPT demon-
strates advantages.

To assess the quality of learned reward functions, we com-
pare them with ground truth rewards. Fig. (5) illustrates
MAPT’s optimized learned reward functions from scripted
teachers across various environments. While the scale dif-
fers from the ground truth reward due to unconstrained out-
put, the learned reward function remains reasonably aligned.

Tasks MAPT MAPT* MAPT*-CPA
OpenIn. 292.16±11.38 213.42±12.74 276.96±5.27

CloseOut. 786.70±26.03 487.12±19.64 729.31±30.72

3s5z 19.59±0.42 18.43±0.32 19.48±0.39
6h vs 8z 17.05±0.53 14.54±0.33 17.89±0.49

Table 3: Ablation study to assess self-attention architecture.
MAPT* uses an LSTM network instead of self-attention.
MAPT*-CPA removes the cooperation-aware preference
layer from MAPT*.

Ablation Studies
Contribution of Global Dependencies. To evaluate the
enhanced effects of global dependencies on reward func-
tion reconstruction and preference modeling, we conducted
experiments by removing the Temporal-aware Preference
Attention (TPA) layer and the Cooperation-aware Prefer-
ence Attention (CPA) layer from the base MAPT. It helps
us assess the impact of introducing independent temporal-
wise and cooperative-wise global dependencies. Tab. (2)
presents the results of the two variations of MAPT across
four environments. Removing the TPA layer leads to a sig-
nificant performance decline, indicating its importance in
modeling reward functions tied to crucial actions and tem-
poral events. Likewise, eliminating the CPA layer also re-
sults in substantial performance reduction. The introduc-
tion of cooperative-wise global dependency enables non-
independent reward function modeling, aiding the separa-
tion of individual agent contributions and effective confi-
dence allocation. These findings underscore the critical role
of the components within MAPT, demonstrating their sig-
nificance in the success of our approach.

Contribution of Self-Attention Mechanism. To demon-
strate the superiority of the proposed cascaded Transformer,
particularly its self-attention mechanism, in capturing global
dependencies, we replaced the self-attention network in the
model with an LSTM network. The results in Tab. (3) in-
dicate that MAPT with the self-attention network performs
significantly better than MAPT with the LSTM network.
This improvement can be attributed to the self-attention
mechanism’s robust ability to model long-distance depen-
dencies effectively.

Conclusion
In this study, we present MAPT, a new framework focus-
ing on global dependency modeling using a cascaded Trans-
former architecture. It incorporates specific preference atten-
tion layers to capture complex global relationships among
agents. By utilizing self-attention, we assign weight to re-
wards for each agent, resulting in MAPT outperforming
baseline methods in challenging multi-agent tasks. Our anal-
ysis underscores the importance of self-attention in captur-
ing distant correlations, essential for extracting global de-
pendencies and interpreting reward signals accurately. Ad-
ditionally, our reconstructed reward function closely resem-
bles expert-defined distributions.
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