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Abstract

Engineering design methods aim to generate new designs
that meet desired performance requirements. Past work has
directly introduced conditional Generative Adversarial Net-
works (cGANs) into this field and achieved promising results
in single-point design problems (one performance require-
ment under one working condition). However, these meth-
ods assume that the performance requirements are distributed
in categorical space, which is not reasonable in these sce-
narios. Although Continuous conditional GANs (CcGANs)
introduce Vicinal Risk Minimization (VRM) to reduce the
performance loss caused by this assumption, they still face
the following challenges: 1) CcGANs can not handle multi-
point design problems (multiple performance requirements
under multiple working conditions). 2) Their training process
is time-consuming due to the high computational complex-
ity of the vicinal loss. To address these issues, A Continuous
conditional Diffusion Probabilistic Model (CcDPM) is pro-
posed, which the first time introduces the diffusion model
into the engineering design area and VRM into the diffusion
model. CcDPM adopts a novel sampling method called multi-
point design sampling to deal with multi-point design prob-
lems. Moreover, the k-d tree is used in the training process
of CcDPM to shorten the calculation time of vicinal loss and
speed up the training process by 2-300 times in our exper-
iments. Experiments on a synthetic problem and three real-
world design problems demonstrate that CcDPM outperforms
the state-of-the-art GAN models.

Introduction
Engineering design aims to generate a set of designs that
meet specific performance requirements. Numerous studies
have been conducted in this area over the last few years
with encouraging outcomes (Buede and Miller 2016; Hubka
2015). However, these methods are time-consuming due to
the following reasons: 1) these studies search for the opti-
mal design in a large space using a trial-and-error process,
2) during the trial-and-error process, it is necessary to con-
tinuously adopt numerous physical simulations to verify if
obtained designs meet the performance requirements.

To accelerate existing methods, researchers introduce
the genetic algorithm, topology optimization (Duysinx and
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Bendsøe 1998; Bendsoe and Sigmund 2003), and adjoint op-
timization (Anderson and Venkatakrishnan 1999) into engi-
neering design. However, their efforts have not fundamen-
tally solved the time-consuming problem because the search
space is still very large and the time of a single numeric sim-
ulation is still long. Furthermore, in situations where perfor-
mance is evaluated by non-analytical models (e.g., experi-
ments or expert assessments), some gradient-based methods
fail because they require differentiable physical solvers.

To further improve the efficiency, researchers proposed
inverse design methods, which regard the performance re-
quirements as inputs, and directly generate designs that meet
specific performance requirements, to skip the trial-and-
error process. Many works have directly applied cGANs
(Mirza and Osindero 2014) and conditional Variational au-
toencoders (cVAEs) (Sohn, Lee, and Yan 2015) to the in-
verse design (Yilmaz and German 2020; Achour et al. 2020;
Wang, Shimada, and Farimani 2021). These methods are in-
tuitive and effective, but they have a critical limitation that
they assume the empirical distributions of the performance
requirements are discrete, and estimated through the Dirac
delta function. This assumption is unreasonable because the
distributions of performance requirements of designs are
continuous in this scenario.

To reduce the performance loss caused by this discrete
assumption, Continuous conditional GAN (CcGAN) (Ding
et al. 2022) and Performance conditioned Diverse Gen-
erative Adversarial Network (PcDGAN) (Heyrani Nobari,
Chen, and Ahmed 2021), introduce Vicinal Risk Minimiza-
tion (VRM) (Sain 1996; Chapelle et al. 2000) into condi-
tional GAN (cGAN). Although relaxing the assumption, Cc-
GAN and PcDGAN still face some challenges. First, GANs
(Goodfellow et al. 2020) adopt zero-sum game theory to
train the networks, which are difficult to train and prone to
mode collapse. Second, they cannot work if the input per-
formance requirements belong to different working condi-
tions in multi-point design problems (Piperni and Rahman
2021; Mangano and Martins 2021; Li, Bai, and Qu 2022).
For example, they can only generate new aircraft designs
given lift coefficient (CL) and drag coefficient (CD) under
only one working condition. Third, the continuous empir-
ical distributions of input conditions lead to the increased
computational complexity of the cost function, resulting in
a time-consuming training process.
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Recently, a novel generative method named the diffusion
probabilistic model (DPM) (Sohl-Dickstein et al. 2015; Ho,
Jain, and Abbeel 2020) has been extensively studied. Com-
pared with GANs, it has a more stable training process and
can generate more realistic results. Therefore, DPM is se-
lected as our basic model, and a novel Continuous condi-
tional DPM is proposed, called CcDPM. CcDPM introduces
the VRM into its loss function to adapt the continuity of in-
put working conditions and performance requirements and
adopts the k-dimensional tree (k-d tree) (Bentley 1975) to
reduce the calculation time of vicinal loss in the training pro-
cess. Moreover, CcDPM can take the performance require-
ments under multiple working conditions as its inputs and
generate the corresponding designs.

The main contributions are summarized as follows:
(1) A new sampling method is proposed to deal with

multi-point design problems, which enables diffusion mod-
els to accept any number of performance requirements under
different working conditions as inputs and generate corre-
sponding designs while training with only one condition.

(2) The k-d tree is introduced into our training process
to reduce the calculation time of vicinal loss, thus greatly
speeding up the training process. This method is very use-
ful in training large-scale datasets and can be applied to the
training process of CcGAN. Compared with CcDPM with-
out a k-d tree, the training speed of CcDPM with a k-d tree
on different datasets increases by 2-300 times.

(3) A novel method is proposed to solve the inverse design
problem, called CcDPM. As far as we know, it is the first
work to apply DPM to the inverse design area, and also the
first work to introduce vicinal loss into DPM.

(4) CcDPM has been applied to several real-world inverse
design problems, such as airfoil inverse design and rocket
inverse design. Experimental results show that our method
achieves state-of-the-art, which validates the effectiveness
and advantages of the proposed CcDPM.

Background and Related Work
In this section, we provide a concise background on three
topics explored in this work: inverse design, diffusion mod-
els, and vicinal risk minimization.

Engineering Design
The purpose of engineering design is to create a design with
specified performance requirements under specific working
conditions. For example, designing a city bus with a fuel
consumption of 25L/100KM (performance requirement)
on the urban road (working condition) is referred to as a
single-point design problem. Designing a car that has a fuel
consumption of 10L/100KM (performance requirement 1)
on the urban road (working condition 1) and a fuel con-
sumption of 5L/100KM (performance requirement 2) on
the highways (working condition 2), respectively, is referred
to as a multi-point design problem.

Inverse Design
Inverse design is a kind of engineering design method,
which aims to end the trial-and-error process in traditional

engineering design methods. They regard the performance
requirements and working conditions as inputs, and directly
generate designs that meet specific performance require-
ments under corresponding working conditions, so inverse
design problems can be regarded as conditional generative
problems. Due to the significant achievements of cGANs
and cVAEs in generative tasks like image and video gen-
eration, many works have directly applied them to the in-
verse design (Yilmaz and German 2020; Achour et al. 2020;
Wang, Shimada, and Farimani 2021).

Diffusion Probabilistic Model
Diffusion probabilistic models are a class of latent variable
generative models (Sohl-Dickstein et al. 2015; Ho, Jain, and
Abbeel 2020; Nichol and Dhariwal 2021) and have been
used in many fields (Ramesh et al. 2022; Liu et al. 2022).
They can generate data with a similar distribution as the
training data. In specific, diffusion models work by destroy-
ing training data through the successive addition of Gaussian
noise and then learning to restore the data by reversing the
noising process. After that, the diffusion models can gener-
ate data by simply passing randomly sampled noise through
the trained denoising process.

Continuous Empirical Probability Density
Function
VRM is an alternative rule to empirical risk minimization
(ERM). VRM assumes that a sample point shares the same
label with other samples in its vicinity. The cGANs and con-
ditional diffusion models learn the conditional distribution
of samples with some auxiliary information. However, their
empirical loss function fails in the continuous scenario. It
is because the empirical loss function of cGANs and condi-
tional diffusion models rely on a large number of samples for
each distinct label as ERM approaches demand (Mohri, Ros-
tamizadeh, and Talwalkar 2018; Shalev-Shwartz and Ben-
David 2014), however corresponding samples for some la-
bels may not be found when the label is continuous. To
address the continuous challenge in cGAN, CcGAN (Ding
et al. 2022) uses a new loss function for the discriminator,
called vicinal loss, which is based on VRM.

Methodology
In this section, A novel diffusion model with vicinity-based
loss, which uses a k-d tree for acceleration and a novel sam-
pling method adapted to multi-point design is proposed. The
details of each part are described in this section.

Problem Definition
Let x ∈ Rd denotes the designs we need,
{wc1 ,wc2 , · · · ,wcm} is the set of m working con-
ditions, and {y1,y2, · · · ,ym} means the set of the
performance requirements corresponding to m working
conditions, where m is a positive integer, yi ∈ RK , and
K is the dimensions of each yi. In the inverse design
problem, we try to find x given {wc1 ,wc2 , · · · ,wcm}
and {y1,y2, · · · ,ym} which means the new designs x
should have performance y1 under wc1 , performance y2
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under wc2 , and so on. Therefore, the problem can be
regarded as solving a conditional probability distribution
q(x| < wc1 ,y1 >,< wc2 ,y2 >, · · · , < wcm ,ym >).

Given the dataset D = {(x1,w1
c,y

1), (x2,w2
c,y

2),
· · · , (xN ,wN

c ,y
N )} (each data pair (xi,wi

c,y
i) means de-

sign xi has a performance yi under working conditionwi
c),

our target is to learn a distribution pθ(x| < wc1 ,y1 >
,< wc2 ,y2 >, · · · , < wcm ,ym >) from D that is as
close as possible to the approximate q(x| < wc1 ,y1 >,<
wc2 ,y2 >, · · · , < wcm ,ym >) with changeable m in one
model.

Continuous Conditional Diffusion Probabilistic
Model

The diffusion probabilistic model has achieved great success
in many generative tasks (Dhariwal and Nichol 2021; Gong
et al. 2022; Li et al. 2022). Compared with GANs, its train-
ing process is more stable, and it can generate more real-
istic samples. In our work, a novel diffusion model called
the Continuous conditional Diffusion Probabilistic Model
(CcDPM) is proposed. CcDPM introduces the vicinal loss
into its loss function. To reduce the calculation time of vic-
inal loss, the k-d tree is adopted in our training process.
Moreover, CcDPM can take performance requirements un-
der multiple working conditions as its inputs and generate
the corresponding designs. In this section, the loss function,
the training process, and the testing process will be intro-
duced respectively.

Loss Function of CcDPM As mentioned before, the tra-
ditional GANs and DPMs commonly assume that the em-
pirical distributions of conditions are discrete and estimate
the empirical distributions through the Dirac delta func-
tion. This assumption is unreasonable in the inverse design
area because the distributions of performance requirements
are continuous. Motivated by CcGAN, the vicinal loss is
introduced into the DPM. The vicinal loss is essentially
a smooth estimation of the marginal distribution p(wc,y)
(only smooth p(y) is also reasonable) by the Gaussian ker-
nel density estimation (KDE) (Davis, Lii, and Politis 2011;
Hastie et al. 2009). The empirical probability density func-
tion p(x,u) of ERM is shown in Eq.1.

p̂δ(x,u) =
1

N

N∑
i=1

N∑
j=1

δ(x− xi)δ(u− uj) (1)

where u denotes the combination of wc and y, N denotes
the number of samples in the dataset, xi is the real sam-
ple in the training dataset, ui is the condition-performance
pair in the training dataset, and δ represents the Dirac func-
tion centered at 0. Therefore, the p̂δ(x,u) is equal to zero
when u is not in the condition-performance collection in the
dataset. In CcDPM, Gaussian kernel KDE is used to replace
the Dirac delta estimation and to smooth the marginal distri-
bution p(u). The new estimate for p(x,u) is termed the soft
vicinal estimate (SVE) as Eq.2.

Algorithm 1: Training Algorithm of CcDPM

Input: The dataset
D = {(x1,w1

c,y
1), · · · , (xN ,wN

c ,y
N )}, and its

corresponding condition-performance set
C = {(w1

c,y
1), · · · , (wN

c ,y
N )}

Output: The trained weights θ.
1: Build a k-d tree K of D using C.
2: while step < totalepoch do
3: Initialize t ∼ Uniform(1, · · · , T )
4: Randomly sample ui = (wi

c,y
i) from space of C.

5: Add Gauss noise to ui, and get ûi = (ui + ε′).
6: Find k nearest neighbors of ûi from K in a distance

threshold of κ, and obtain the corresponding subset
Di = {(xi1 ,wi1

c ,y
i1), · · · , (xik ,wik

c ,y
ik)} from

D.
7: Randomly choose a sample Dj

i = (xij ,w
ij
c ,yij )

from Di, uij = (w
ij
c ,yij ).

8: Calculate W using ûi and uij by Eq.3.
9: Use (xij , ûi) and t to calculate L̂SV Lsimple(θ) by Eq.4

10: Compute the gradients and update θ.
11: end while
12: return θ.

p̂SV E(x,u) = C
N[

N∑
i=1

exp(−
1
2 (u−u

i)
T
Σ−1(u−ui))

] N∑
j=1

W (uj ,u)δ(x−xj)

N∑
k=1

W (uk,u)


(2)

W (ui,u) = e−ν||u
i−u||2 (3)

where ν is a Hyper-parameter, C is constant. Through
Eq.2 a novel loss is used in CcDPM by using VRM called
vicinal loss in Eq.4. In Eq.4 ε denotes the noise in difussion
model, ε′ denotes the noise in Algorithm 1.

L̂SV Lsimple(θ) =
C
N

N∑
i=1

N∑
j=1

Eε,ε′ [
W (ui,uj+ε′)

N∑
k=1

W (uk,uj+ε′)

||ε− εθ(x,uj + ε′, t)||2]

(4)

Training Process Algorithm 1 shows our training algo-
rithm. In the calculation of the loss function, k neighbors in a
distance threshold of κ near the specified ûi will be searched
on the whole dataset. Consequently, the search complexity
is O(N), where N is the number of training samples. When
the training dataset is very large, the search time will be very
long. Therefore, the k-d tree (Bentley 1975) is adopted to ac-
celerate this process. The k-d tree is a data structure used for
searching neighbors, and its average search complexity is
O(log n). Therefore, a k-d tree is constructed using C at the
beginning of the training process. Then θ can be updated
iteratively. In each training step, first randomly sample in
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Figure 1: Training process of CcDPM.

space C to get a working condition wi
c and its correspond-

ing performance requirements yi. Next, Gaussian noise is
added to them to get ûi, and then use the k-d tree to find
k nearest neighbors in a distance threshold of κ. After that,
the loss function can be computed by using ûi and one of its
neighbors. Finally, the gradient will be calculated and θ can
be updated.

Multi-Point Design Sampling After the training process,
the model should be applied to generation problems. In real
scenarios, the engineering design problem can be a multi-
point design problem (Piperni and Rahman 2021; Mangano
and Martins 2021; Li, Bai, and Qu 2022), which means
the generated designs should have different specific perfor-
mances under different working conditions. For example, we
want the generated designs x concurrently satisfies both y1
under working condition wc1 and y2 under working condi-
tion wc2 . CcGAN, PcDGAN, and DPM cannot handle the
generative problems under multiple working conditions.

In our method, pθ(x|wc,y) can be obtained from the
trained CcDPM, which means CcDPM only accepts one per-
formance requirement under one working condition as its
input. To enable it to handle situations with multiple input
conditions, the sampling algorithm should be changed, as
shown in Fig. 2 and Algorithm 2.

We define the Markovian noising process q̂ conditioned
on multiple performance requirements under multiple work-
ing conditions, which is similar to the unconditional Marko-
vian noising process q (Dhariwal and Nichol 2021). The
conditional reverse process can be expressed as Eq.5.

q̂(xt|xt+1, < wc1 ,y1 >, · · · , < wcm ,ym >) =
Zq(xt|xt+1)q̂(< wc1 ,y1 >, · · · , < wcm ,ym > |xt)

(5)
where Z is a normalizing constant, q̂(< wc1 ,y1 >

, · · · , < wcm ,ym > |xt) can be calculated by estimator
pϕ(y|xt,wc). Working condition is known during genera-
tion and working condition wc and design x are indepen-
dent, and assuming that the performance of the same de-
sign is independent under different working conditions, with

Algorithm 2: Sampling Algorithm of CcDPM

Input: The trained weights θ, the working conditions and
performance requirements set
{(wc1 ,y1), · · · , (wcm ,ym)}, and denote (wci ,yi) to ui.
Output: New design x.

1: t = T
2: while t > 0 do
3: Obtain εθ(xt) using xt and θ.
4: for j = 1 to m do
5: Obtain εθ(xt,uj) using xt, uj , θ, and t.
6: Compute ε̂θ(xt,u1, · · · ,um) using εθ(xt),

εθ(xt,u1), · · · , εθ(xt,um) by Eq.12
7: Using ε̂θ(xt,u1, · · · ,um) sampling xt−1 using

DDPM or another sampler such as DDIM.
8: t = t− 1
9: end while

10: x = x0

11: return new design x.

Bayesian Formula Eq.6 can be obtained, more detailed proof
is provided in Appendix B.

q̂(u1,u2, · · · ,um|xt) ∝
m∏
i=1

pϕ(yi|xt,wci) (6)

where pϕ is an estimator. Then the sampling method used
to inverse design for multi-point design is obtained. The
sampling method with estimator is described as Eq.7.
p̂θ(xt|xt+1,u1,u2, . . . ,um) = N (µ̂θ + Σθg,Σθ) (7)

where g and µ̂θ are described in Eq.8 and Eq.9.

g = ∇xt
log

m∏
i=1

pϕ(yi|xt,wci)|xt=µ (8)

µ̂θ(xt|u1,u2, . . . ,um) = µθ(xt)

+Σθ(xt)
m∑
i=1

si∇xt
log pϕ(yi|xt,wci)

(9)
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Figure 2: Sampling method of CcDPM.

In Eq.9, the pϕ(yi|xt,wci) is difficult to compute, and it
requires another model to learn. In our CcDPM, the estima-
tor free sampling method (Ho and Salimans 2022) is used.
The implicit estimator is given in Eq.10.

pi(y|xt,wc) ∝
p(xt|y,wc)

p(xt)
(10)

Compute the gradient terms of both sides in Eq.10, then
Eq.11 can be obtained.

∇xt
log pi(yi|xt,wci) ∝

∇xt
log p(xt|yi,wci)−∇xt

log p(xt) ∝
ε(xt|yi,wci)− ε(xt)

(11)

Then the sampling method of CcDPM is shown in Eq.12.

ε̂θ(xt|u1, ...,um) = εθ(xt)+
m∑
i=1

si(εθ(xt,ui)−εθ(xt))

(12)
where εθ(xt) is the unconditional output of the model, m
is the number of specific working conditions, and si is the
guiding scaling of specific performance under specific work-
ing conditions. After obtaining ε̂θ(xt,u1, · · · ,um), DDPM
(Ho, Jain, and Abbeel 2020) (or another sampler such as
DDIM (Song, Meng, and Ermon 2020)) can be used to sam-
ple xt−1.

Experiments
In this section, we introduce one synthetic dataset and three
real-world datasets and report the results that CcDPM ap-
plied to them.

Datasets
Four datasets are used in our experiments to evaluate our
CcDPM.

• Synthetic Uneven Dataset: This dataset is an uneven
synthetic example (Heyrani Nobari, Chen, and Ahmed
2021). There are six peaks in the performance space.
50% of the data are located in a circle around one of
the peaks, the remaining 50% of the data is evenly dis-
tributed throughout the space. 10,000 data points are used
for training. The performance metrics as a density func-
tion of an un-normalized Gaussian mixture:

y(x) =
K∑
k=1

exp(− (x− µk)T (x− µk)
2σ2

) (13)

where µk is the mode of the k-th mixture component and
σ is the standard deviation.

• Xfoil Dataset: This dataset is an airfoil dataset
(Heyrani Nobari, Chen, and Ahmed 2021) under single
working condition. Based on the UIUC airfoil library,
48,503 airfoils are generated by BézierGAN (Chen,
Chiu, and Fuge 2019), and calculated by Xfoil (Drela
1989) at Mach number 0.01 and angle of attack 0 de-
grees, and the lift-drag ratio CL/CD is used as perfor-
mance. Since there is only one working condition, the
working condition is not included in the calculation in
each model. Performance metrics y = [CL/CD], de-
signs x = airfoil shape parameters.

• CFD Dataset: This dataset is an airfoil dataset have
multiple working conditions. Different from the Xfoil
dataset, this dataset used a CFD solver which is more
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model
single-point design multi-point design

Uneven Xfoil CFD Rocket CFD Rocket

CcGAN 0.0256 0.0663 0.0425 0.0732 - -
PcDGAN 0.0186 0.0515 0.0756 0.0738 - -

CcLSGAN 0.0257 0.1220 0.0411 0.0660 - -
DPM 0.0174 0.0501 0.0411 0.0442 0.1010 0.0891

CcDPM 0.0148 0.0459 0.0376 0.0425 0.0986 0.0871

Table 1: The label error of single-point design and multi-point design.

model
single-point design multi-point design

Uneven Xfoil CFD Rocket CFD Rocket

CcGAN -85.55 -31.40 -16.37 -29.77 - -
PcDGAN -87.75 -29.76 -5.94 -26.96 - -

CcLSGAN -84.60 -31.28 -13.64 -29.79 - -
DPM -64.78 -29.78 -11.21 -27.05 -10.77 -32.67

CcDPM -64.63 -29.28 -12.42 -26.70 -10.50 -31.87

Table 2: The diversity comparison of single-point design and multi-point design.

complex and close to reality (Wang et al. 2021). 10,366
airfoils are obtained by using the UIUC airfoil library
after CST perturbation (Nadarajah, Castonguay, and
Mousavi 2007; Kulfan 2008). The working conditions
are the Mach number is from 0.2 to 0.7 and the an-
gle of attack is from 2 to 10, thus working condition
wc = [Ma,AOA]T , totaling 31098 data pairs. Using
lift coefficient as performance metrics, thus y = [CL],
x = airfoil shape parameters.

• Rocket Dataset: This dataset is a rocket dataset have
multiple working conditions. 3311 rocket shapes are cal-
culated with simulation software at Mach number from
0.6 to 1.6, roll angle from 2 to 20 degrees, and at-
tack angle from 2 to 20 degrees, thus working condition
wc = [Ma,RA,AOA]T , totaling 3,311,000 data pairs.
Using the axial force coefficient, the normal force coef-
ficient, and the pressure center as performance metrics,
thus y = [CA,CN,Xp]T , x = rocket shape parame-
ters.

Only the CFD dataset and Rocket dataset are used for
generating multi-point design tasks (multiple performance
requirements under corresponding working conditions) be-
cause the Uneven dataset and Xfoil dataset have only one
working condition.

Metrics
In our work, the performance of models is evaluated by how
well the generated designs meet the given performance re-
quirements and how diverse the designs are. Mean abso-
lute error (MAE) between the performance requirements and
the real performance of generated designs is used to evalu-
ate how well the generated designs meet the given perfor-
mance requirements, named “label error”. To measure diver-
sity of designs, the log determinant of the similarity matrix
(Borodin 2009) is used in our experiments.

sdiv =
1

n

n∑
i=1

log det(Lsi) (14)

where n is the number of times diversity is evaluated, Si is
a random subset of generated designs and L is the similarity
kernel.

Results
The generated designs of all models are calculated by the
corresponding simulation solver to avoid invalid generation.
In our experiments, CcGAN does not use the embedding
proposed in the original paper (Ding et al. 2022), which will
lead to invalid generation in these scenarios. CcLSGAN is
the LSGAN (Mao et al. 2017) with vicinal loss. Hyperpa-
rameters and more detailed results are provided in Appendix
C and Appendix D.

The performance comparison of single-point design and
multi-point design is shown in Table 1. In multi-point de-
sign, working conditions are set to a normalized distance of
0.5 or more. From Table 1, it can be seen that: 1) compared
with GANs and diffusion models, the diffusion models can
generate designs that meet design requirements better in all
datasets, 2) diffusion model with VRM outperforms diffu-
sion model with ERM in all datasets.

The diversity comparison of single-point design and
multi-point design is shown in Table 2. It is difficult for DPM
and CcDPM to use Bézier parameterization, so the CST pa-
rameterization is used, which makes the comparison of di-
versity calculated in CST space in case Xfoil. The calcula-
tion of diversity only considers valid samples. From Table
2, it can be seen that diffusion models can generate more
diverse designs than GANs. Although PcDGAN has larger
diversity in case CFD, its label error is higher and will gen-
erate more invalid designs.
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model Uneven Xfoil CFD Rocket

Without k-d tree 1h24min 13h30min 151h 530h
With k-d tree 31min 34min 47min 1h30min

Speedup Ratio 2.7 23 192 353

Table 3: The speed comparison of CcDPM with and without the k-d tree.

CcGANData distribution

DPMCcLSGAN

PcDGAN

CcDPM

Pe
rf

or
m

an
ce

 M
et

ri
c

Figure 3: Data distribution (only a sub-sample of 1,000 of
the 10,000 data points is shown for clarity) and comparison
of the output distribution of 1,000 generated data points with
the input performance requirement of 0.5, shown by orange
dots.

Table 3 shows the speed comparison of CcDPM with and
without the k-d tree. For the speed test, we train the models
for 200,000 training steps with a batch size of 256. From
Table 2, it can be seen that as the size of the dataset in-
creases, the acceleration effect of the k-d tree becomes more
apparent, making it possible to calculate neighborhood loss
on large datasets. This k-d tree strategy can also be ap-
plied to any other models with vicinal loss such as CcGAN,
PcDGAN and has a similar effect.

Fig. 3 shows the distribution of the Uneven dataset and the
conditional generation results of the Uneven dataset, with a
performance requirement set to 0.5. From Fig. 3, it can be
seen that the generation results of CcGAN and CcLSGAN
are not uniform enough. As the loss function adopts Deter-
minantal Point Process (DPP) (Borodin 2009), resulting in
the generated points of PcDGAN tend to be far away from
each other and leave blank space near the coordinate origin.
DPM and CcDPM generate better results, while the results
of CcDPM are more accurate.

Fig.4 shows the generated designs of the CFD case with
normalized performance requirement range from 0.29 to
0.96 under working condition wc = [Ma,AOA]T =
[0.3, 8.0]T . The performance requirement in this case means
lift coefficient of airfoil. Generally speaking, the larger the
curvature of the trailing edge of an airfoil, the greater the lift
coefficient of the airfoil. All models have captured this fea-
ture. Although PcDGAN has higher diversity, it generates
more invalid designs (0.49,0.56 in Fig.4).

CcGAN

PcDGAN

CcLSGAN

DPM

CcDPM

0.29 0.35 0.42 0.49Performance 
requirement 0.56 0.62 0.69 0.75 0.82 0.89 0.96

Figure 4: Generated designs of the CFD case with perfor-
mance requirement in single-point design.

Conclusion and Limitations
In this paper, we introduce diffusion models to the field of
engineering inverse design for the first time. Specifically, we
propose a novel diffusion model called CcDPM by incorpo-
rating VRM into the conditional diffusion model. Through
experiments with both synthesized data and real engineering
design applications, we demonstrate that CcDPM outper-
forms the current state-of-the-art approach in tackling con-
ditional generation problems under continuous conditions.
Moreover, we accelerate the calculation of vicinal loss by
utilizing k-d tree, which reduces the computational com-
plexity from O(n) to O(log n) and makes vicinal loss applica-
ble to large-scale datasets. Additionally, we propose a novel
sampling method in the diffusion model to solve multi-point
inverse engineering design problems. While we apply this
sampling method to DPM and CcDPM, it can be imple-
mented in other diffusion models as well. Overall, this work
presents a significant contribution to the field of engineering
inverse design by introducing and improving diffusion mod-
els. The proposed CcDPM and the accelerated calculation
and sampling methods offer promising solutions to complex
conditional generation problems and pave the way for fur-
ther research in this area.

Limitations The diffusion model is difficult to use Bézier
parameterization because the same airfoil shape can be rep-
resented by different Bézier parameters, which makes it dif-
ficult to directly get Bézier parameters from existing airfoil
shapes, while GAN can use Bézier parameterization only
in the generator part, which avoids the conversion of air-
foil shape to Bézier parameters. Besides, the method in this
paper is to use a latent space diffusion model to generate
the design’s encoding, and then restore the design based on
the decoder. This method cannot solve inverse design prob-
lems where designs cannot be encoded/parameterized such
as topology generation.
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