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Abstract

This paper studies robust nonparametric regression, in which
an adversarial attacker can modify the values of up to ¢ sam-
ples from a training dataset of size N. Our initial solution is
an M-estimator based on Huber loss minimization. Compared
with simple kernel regression, i.e. the Nadaraya-Watson es-
timator, this method can significantly weaken the impact of
malicious samples on the regression performance. We pro-
vide the convergence rate as well as the corresponding min-
imax lower bound. The result shows that, with proper band-
width selection, ¢ error is minimax optimal. The /5 error is
optimal with relatively small g, but is suboptimal with larger
q. The reason is that this estimator is vulnerable if there are
many attacked samples concentrating in a small region. To
address this issue, we propose a correction method by pro-
jecting the initial estimate to the space of Lipschitz functions.
The final estimate is nearly minimax optimal for arbitrary q,
up to a In N factor.

Introduction

In the era of big data, it is common for some samples to
be corrupted due to various reasons, such as transmission
errors, system malfunctions, malicious attacks, etc. The val-
ues of these samples may be altered in any way, rendering
many traditional machine learning techniques less effective.
Consequently, evaluating the effects of these corrupted sam-
ples, and making corresponding robust strategies, have be-
come critical tasks in the research community (Natarajan
et al. 2013; Van Rooyen and Williamson 2017; Song et al.
2022).

Among all types of data contamination, adversarial attack
is of particular interest in recent years (Biggio, Nelson, and
Laskov 2012; Xiao et al. 2015; Jagielski et al. 2018; Szegedy
et al. 2014; Goodfellow, Shlens, and Szegedy 2015; Madry
et al. 2018; Mao et al. 2019), in which there exists a mali-
cious adversary who aims at deteriorating our model perfor-
mance. With this goal, the attacker alters the values of some
samples using a carefully designed strategy. To cope with
these attacks, robust statistics comes into being, which has
been widely discussed in existing literatures (Huber 1981;
Maronna et al. 2019). Several commonly used methods are

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

17007

trimmed mean, median-of-means and M -estimators. In re-
cent years, many new methods are proposed for high dimen-
sional problems with optimal statistical rates. These meth-
ods are summarized in (Steinhardt 2018; Diakonikolas and
Kane 2019, 2023). For example, (Diakonikolas et al. 2016,
2017; Hopkins and Li 2018; Cheng et al. 2019) have solved
some basic problems such as mean and covariance estima-
tion. The idea of these research can then be used in machine
learning problems with poisoning attack, which means that
some training samples are modified by adversaries. (Bakshi
and Prasad 2021; Diakonikolas, Kong, and Stewart 2019)
designed some robust methods for linear regression. (Di-
akonikolas et al. 2019; Steinhardt, Koh, and Liang 2017)
proposed a meta algorithm for robust learning with paramet-
ric models. There are also several other works that focus on
general robust empirical risk minimization problems (Prasad
et al. 2020; Jambulapati et al. 2021).

Despite these previous works toward robust learning
problems, most of them focus on parametric models. How-
ever, for nonparametric methods such as kernel (Nadaraya
1964) and k nearest neighbor estimator, defense strate-
gies against poisoning attack still need further exploration
(Salibian-Barrera 2022). Actually, designing robust tech-
niques is indeed more challenging for nonparametric meth-
ods than parametric one. For parametric models, the param-
eters are estimated using full dataset, while nonparametric
methods have to rely on local training data around the query
point. Even if the ratio of attacked samples among the whole
dataset is small, the local anomaly ratio in the neighborhood
of the query point can be large. As a result, the estimated
function value at such query point can be totally wrong. De-
spite such difficulty, in many real scenarios, due to problem
complexity or lack of prior knowledge, parametric models
are not always available. Therefore, we hope to explore ef-
fective schemes to overcome the robustness issue of non-
parametric regression.

In this paper, we provide a theoretical study about robust
nonparametric regression problem under poisoning attack.
In particular, we hope to investigate the theoretical limit of
this problem, and design a method to achieve this limit. To-
wards this goal, we make the following contributions:

Firstly, we propose and analyze an estimator that mini-
mizes a weighted Huber loss, which is quadratic with small
input, and linear with large input. Such design achieves a
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tradeoff between consistency and adversarial robustness. It
was originally proposed in (Hall and Jones 1990), but to the
best of our knowledge, it was not analyzed under adversar-
ial setting. We show the convergence rate of both ¢ and ¢,
risk, under the assumption that the function to estimate is
Lipschitz continuous, and the noise is sub-exponential. An
interesting finding is that the maximum number of attacked
samples (denoted as ¢) is not too large, then the convergence
rate is not affected by adversarial samples, i.e. the influence
of poisoning samples on the overall risk is only up to a con-
stant factor.

Secondly, we provide an information theoretic minimax
lower bound, which indicates the underlying limit one can
achieve, with respect to ¢ and N. The minimax lower bound
without adversarial samples can be derived using standard
information theoretic methods (Tsybakov 2009). Under ad-
versarial attack, the estimation problem is harder, thus the
lower bound in (Tsybakov 2009) may not be tight enough.
We design some new techniques to derive a tighter one. The
result shows that the initial estimator has optimal ¢, risk.
With small g, the ¢ risk is also minimax optimal. Neverthe-
less, for larger g, the /5 risk is not optimal, indicating that
this estimator is still not perfect. We then provide an intu-
itive explanation of the suboptimality. Instead of attacking
some randomly selected training samples, the best strategy
for the attacker is to focus their attack within a small region.
With this strategy, majority of training samples are altered
here, resulting in wrong estimates. A simple remedy is to
increase the kernel bandwidth to improve robustness, which
can make /., risk optimal. However, this adjustment will
introduce additional bias in other regions, thus the /s risk
is still suboptimal. The drawback of the initial estimator is
that it does not make full use of the continuity of regression
function, and thus unable to correct the estimation.

Finally, motivated by the issues of the initial method men-
tioned above, we propose a corrected estimator. If the attack
focuses on a small region, then the initial estimate fails here.
However, the estimate elsewhere is still reliable. With the
assumption that the underlying function is continuous, the
value at the severely corrupted region can be inferred us-
ing the surrounding values. With such intuition, we propose
a nonlinear filtering method, which projects the estimated
function to the space of Lipschitz functions with minimal ¢,
distance. The corrected estimate is then proved to be nearly
minimax optimal up to only a In IV factor.

Preliminaries

In this section, we clarify notations and provide precise
problem statements. Suppose X1,...,Xy € X C R?be N
independently and identically distributed training samples,
generated from a common probability density function (pdf)
f. For each sample X;, we can receive a corresponding label

o

in which  : R? — R is the unknown underlying function
that we would like to estimate. W; is the noise variable. For
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i =1,...,N, W, are independent, with zero mean and fi-
nite variance. B is the set of indices of attacked samples. x
means some value determined by the attacker. For each nor-
mal sample X, the received label is Y; = n(X;)+W;. How-
ever, if a sample is attacked, then Y; can be arbitrary value
determined by the attacker. The attacker can manipulate up
to ¢ samples, thus |B| < q.

Our goal is opposite to the attacker. We hope to find an
estimate 7) that is as close to 1 as possible, while the at-
tacker aims at reducing the estimation accuracy using a care-
fully designed attack strategy. We consider white-box setting
here, in which the attacker has complete access to the ground
truth ), X; and W; forall i € {1,..., N}, as well as our es-
timation algorithm. Under this setting, we hope to design a
robust regression method that resists to any attack strategies.

The quality of estimation is evaluated using ¢ and £
loss, which is defined as

Rli] = E[sgpm(X)—n(xﬂ, @
Rolil] = E[sipsgpm:c)—n(x)@, 3

in which the expectation in (2) and (3) are taken over all
training samples (X;,Y;), ..., (Xn, Yn). A denotes the at-
tack strategy. The supremum over A is taken here because
the adversary is assumed to be smart enough and the attack
strategy is optimal. In (2), X denotes a random test sample
that follows a distribution with pdf f. Our analysis can be
easily generated to £, loss with arbitrary p.

Without any adversarial samples, 7 can be learned using
kernel regression, also called the Nadaraya-Watson estima-
tor (Nadaraya 1964; Watson 1964):

SN K (25X Y
Y K (22)

h

in which K is the Kernel function, h is the bandwidth that
will decrease with the increase of sample size N. /)y (x)
can be viewed as a weighted average of the labels around
x. Without adversarial attack, such estimator converges to
7 (Devroye 1978). However, (4) fails even if a tiny fraction
of samples are attacked. The attacked labels can just set to
be sufficiently large. As a result, 7y (x) could be far away
from its truth.

“4)

iNw (X)

The Initial Estimator

Now we build the estimator based on Huber loss minimiza-
tion. Similar method was proposed in (Hall and Jones 1990).
However, (Hall and Jones 1990) analyzed the case in which
the distribution of label has heavy tails, instead of the case
with corrupted samples. To the best of our knowledge, the
performance under adversarial setting has not been ana-
lyzed. Now we use 7jg to denote a slightly modified version
of the estimator proposed in (Hall and Jones 1990):

(

al x—X;
No(x) = arg min K d
06 |s|<M ; h

) sYi—s), 6
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in which tie breaks arbitrarily if the minimum is not unique,
and

U2

dlu) = { 2T |u| — T2

is the Huber loss function.

Here we provide an intuitive understanding of this
method. We hope the estimator to have two properties: ro-
bustness under attack, and consistency without attack. Ro-
bustness is guaranteed if we let ¢ be ¢; loss, but the solution
is the local median instead of mean. As long as the noise
distribution is not symmetric, £; minimizer is not consistent.
On the contrary, letting ¢ be ¢ loss just yields the kernel re-
gression (4), which is not robust. Therefore, Huber cost (6)
is designed to get a tradeoff between these two goals, which
is quadratic with small input and linear with large input. The
threshold parameter 1" can be set flexibly. Moreover, con-
sider that there exists nonzero probability that |7}(x) — 7(x)]
is arbitrarily large, we project the result into [— M, M]. !

There are several simple baselines for comparison. The
first one is median-of-means (MoM) (Nemirovskij and
Yudin 1983; Ben-Hamou and Guyader 2023), which divides
samples into groups and calculates the median of the esti-
mates in each group. MoM is inefficient because it fails even
when there is only one attacked sample in each group. An-
other solution is trimmed mean (Bickel 1965; Welsh 1987,
Dhar, Jha, and Rakshit 2022), which removes a fraction of
samples with largest and smallest label values. The trim frac-
tion parameter depends on the ratio of attacked samples.
Unfortunately, such ratio is highly likely to be uneven over
the support, while the trim fraction is set uniformly. This
dilemma makes trimmed mean method not efficient. Robust
regression with spline smoothing (Eubank 1999) is another
alternative but is restricted to one dimensional problems.
Finally, robust regression trees (Chaudhuri and Loh 2002)
works practically but theoretical guarantee is not provided.

Finally, we comment on the computation of the estimator
(5). Note that ¢ is convex, therefore the minimization prob-
lem in (5) can be solved by gradient descent. The derivative
of pis

if
if

u <T

u| > T ©)

2u if |u <T
¢ (u) = { o if w>T %)
=27 if u<-T.

Based on (5) and (7), s can be updated using binary search.
Denote € as the required precision, then the number of iter-
ations for binary search should be O(In(M/¢)). Therefore,
the computational complexity is higher than kernel regres-
sion up to a In(M/¢) factor.

Theoretical Analysis

This section proposes the theoretical analysis of the initial
estimator (5) under adversarial setting. To begin with, we
make some assumptions about the problem.

!'Suppose that for some x, there is only one training sample
whose distance to x is smaller than h. This sample is controlled by
adversary and the value is altered arbitrarily far away. This event
can result in arbitrarily large estimation error, and happens with
nonzero probability. Therefore, if we do not project the estimate
output to [— M, M], then both 2 and ¢, loss will be infinite.
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Assumption 1. (Problem Assumption) there exists a com-
pact set X and several constants L, v, fm, fu, D, o, o,
such that the pdf f is supported at X, and

(a) (Lipschitz continuity) For any x1,%x2 € X, |n(x1) —
n(x2)| < Lljx1 — x|,

(b) (Bounded f and n) Forallx € X, f,, < f(x) < fum
and |n(x)| < M, in which M is the parameter used in (5);

(c) (Corner shape restriction) For allr < D andx € X,
V(B(x,7) N X) > avgr?, in which B(x,r) is the ball cen-
tering at X with radius r, vq is the volume of d dimensional
unit ball, which depends on the norm we use;

(d) (Sub-exponential noise) The noise W; is subexponen-
tial with parameter o,

1

E[e)\Wi] g G%UZAZ’V|)\| g -
g

®)
fori=1,... N.

In Assumption 1, (a) is a common assumption for smooth-
ness. (b) is also commonly made and usually called “’strong
density assumption” in existing literatures on nonparametric
statistics (Audibert and Tsybakov 2007; Doéring, Gyorfi, and
Walk 2017). This assumption requires the pdf to be both up-
per and lower bounded in its support. Although somewhat
restrictive, this assumption facilitates theoretical analysis.
Relaxing this assumption is possible but is not the focus of
this paper. We refer to full paper (Zhao and Wan 2023) for
some further analysis. (c) prevents the shape of the corner of
the support from being too sharp. Without assumption (c),
the samples around the corner may not be enough, and the
attacker can just attack the samples at the corner of the sup-
port, which can result in large errors. (d) requires that the
noise is sub-exponential. If the noise assumption is weaker,
e.g. only requiring the bounded moments of W; up to some
order, then the noise can be disperse. In this case, it will be
harder to distinguish adversarial samples from clean sam-
ples.

We then make some restrictions on the kernel function K.

Assumption 2. (Kernel Assumption) the kernel need to sat-
isfy:

(a) [ K(u)du =1;

(b)K (u) = 0,Y||u|| > 1;

(c) cx < K(u) < Ck for two constants cx and C.

In Assumption 2, (a) is actually not necessary, since from
(5), the estimated value will not change if the kernel function
is multiplied by a constant factor. This assumption is only
for convenience of proof. (b) and (c) require that the kernel
need to be somewhat close to the uniform function in the unit
ball. Intuitively, if the attacker wants to modify the estimate
at some X, the best way is to change the response of sample ¢
with large K ((X;—x)/h), in order to make strong impact on
f(x). To defend against such attack, the upper bound of K
should not be too large. Besides, to ensure that clean samples
dominate corrupted samples everywhere, the effect of each
clean sample on the estimation should not be too small, thus
K also need to be bounded from below in its support.

Furthermore, recall that (5) has three parameters, i.e. h,
T and M. We assume that these three parameters satisfy the
following conditions.
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Assumption 3. (Parameter Assumption) h, T, M need to
satisfy
(a)h > In®> N/N;
(b)T > 4Lh + 1601In N;
(¢)M > sup|n(x)
xeX

In Assumption 3, (a) ensures that the number of samples
whose distance to x less than £ is not too small. It is nec-
essary for consistency, but is not enough for a good tradeoff
between bias, variance and robustness. The optimal depen-
dence of h over N will be discussed later. (b) requires that
T ~ In N. This rule is based on the sub-exponential noise
condition in Assumption 1(d). If we use sub-Gaussian as-
sumption instead, then it is enough for 7' ~ +/In V. If the
noise is further assumed to be bounded, then 7" can just be
set to constant. On the contrary, if the noise has heavier tail,
then 7" needs to grow with IV faster. (b) is mainly designed
for rigorous theoretical analysis. Practically, one may choose
smaller 7. (c) prevents the estimate from being truncated too
much.

The upper bound of ¢y error is derived under these as-
sumptions. Denote a < b if a < Cb for some constant C
that depends only on L, M, ~, fm, fm, D, a,0,ckx, Ck.

Theorem 1. Under Assumption 1, 2 and 3,
B |sup (n(00) ~ (X))

T%q . )

i {1

The detailed proof of Theorem 1 is shown in the sup-
plementary material. Here we provide an intuitive explana-
tion of (9). The first term in (9) is caused by adversarial at-
tack, while the remaining two terms are just the standard
nonparametric regression error (Tsybakov 2009) for clean
samples. Therefore we only discuss the first term here. The
best strategy for the adversary is to concentrate its attack
on a small region. Denote By, (x) as the ball centering at
x with radius h, in which A is the bandwidth parameter in
(5). Since the pdf f is both upper and lower bounded, the
number of samples within By, () roughly scales as Nh.
Now we discuss two cases. Firstly, if ¢ < Nh9, with ¢
attacked samples around x, the additional estimation er-
ror caused by these adversarial samples roughly scales as
Tq/(Nh?). These attacked samples can affect 7jo(x) for
a region with radius roughly h, thus the overall additional
{5 error is (T'q/(Nh?))?h? = T?¢%/(N?h?). Secondly, if
q 2 Nh, then the adversary can attack most of samples in a
much broader region, whose volume scales as ¢/N. The ad-
ditional estimation error in this region is proportional to 7',
thus the additional /5 error is 7?¢/N. Combining these two

cases yields (9), in which there is a phase transition between
q < Nh?and ¢ > Nhe.

q 2 1
— h — .
Nh’ + +th

<

~

©))

Remark 1. Theorem 1 is based on the assumption that the
pdf f is bounded from below. For the case such that f has
bounded support but can approach zero arbitrarily, we have
provided an analysis in section 3 in the supplementary ma-
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terial. The result is that
T?q
< 24 p?

Nhd’
From (10), the bound is worse than the case with densities
bounded from below if ¢ < Nh®. Intuitively, in this case, the
best strategy for the adversary would be to attack samples in
the region with low pdf values.

E [sup (fo(X) — n(X))?
A

(10)

The next theorem shows the bound of ¢, error:
Theorem 2. Under Assumption 1, 2, 3, if K(u) is mono-

tonic decreasing with respect to ||ul|, then
Tq In N
E ) — < h .11
sipsgp\no(X) N S ypa Th+ N (11)

The detailed proof is in section 4 in the supplementary
material. Unlike ¢5 loss, the assumption that f is bounded
from below can not be relaxed under ¢, loss. If f can ap-
proach zero, then the adversary can just attack the region
with low density. As a result, we can only get a trivial bound
R S 1.

We then show the minimax lower bound, which indicates
the information theoretic limit of the adversarial nonpara-
metric regression problem. In general, it is impossible to de-
sign an estimator with convergence rate faster than the fol-
lowing bound.

Theorem 3. Let F be the collection of f,n, Py that satisfy
Assumption 1, in which Py is the distribution of the noise

Wi,...,Wn. Then
i sup B fsup (1) ~ 100
T (fmPN)EF A
g\ 2
> (L N-T= 12
2 (5)7 N (12)
and
inf sup E SUPsuplﬁ(X)—n(X)]
7 (fmEn)eF LA x
1
q\ T 1
> (4 ;
e () e

In the right hand side of (12) and (13), N—2/(4+2) js the
standard minimax lower bound for nonparametric estima-
tion (Tsybakov 2009), which holds even if there are no ad-
versarial samples. Therefore, we focus on the proof of the
lower bound with the first term in the right hand side of
(12). The basic idea is to construct two hypotheses on the
regression function 7. The total variation distance between
these two hypotheses is not too large, thus the adversary can
transform one of them to the other. As a result, after adver-
sarial contamination with a carefully designed strategy, we
are no longer able to distinguish between these hypotheses.
The lower bounds in (12) and (13) can then be constructed
accordingly.

Compare Theorem 1, 2 and Theorem 3, we have the fol-
lowing findings. We claim that the upper and lower bound
nearly match, if these two bounds match up to a polynomial
of In N:
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e The /., error is rate optimal. From (11) and (13), with
h ~ max{(g/N)Y/(@+1) N=1/(@+2)} and T ~ In N,
the upper and minimax lower bound of /. error nearly
match.

<

The ¢y error 1is rate optimal if ¢ S

max{\/N/lnzN,Nd/(d+2)/ln2N}. From (9)

and (12), let b ~ N _#2, the upper and minimax
lower bound of ¢5 error match. In fact, in this case,
the convergence rate of (5) is the same as ordinary
kernel regression without adversarial samples, i.e.
h? + 1/(Nh?). With optimal selection of h, {5 error
scales as N~2/(4+2) which is just the standard rate
for nonparametric statistics (Krzyzak 1986; Tsybakov
2009).

>

The ¢ error is not rate optimal if g P

max{q/N/ln2 N,Nd/(d”)/anN}. In this case, if

d < 2, the optimal  in (9) is h ~ (gln N/N)?/(d+2),
and resulting ¢5 error is Ry < (qIn N/N)*/(d+2) 1f
d > 2, then optimal h is h ~ N~Y(@42) and the /o
error is ¢In® N/N + N—2/(4+2)_ For either d < 2 or
d > 2, these two bounds are worse than the lower bound
in (12).

This result indicates that the initial estimator (5) is optimal
under /., or under /o with small g. However, under large
number of adversarial samples, the /5 error becomes subop-
timal.

Now we provide an intuitive understanding of the subop-
timality of ¢y risk with large ¢ using a simple one dimen-
sional example shown in Figure 1, in which N = 10000,
h =005 M = 3, f(xr) = 1forz € (0,1), n(x) =
sin(27x), and the noise follows standard normal distribution
N(0,1). For each z, denote gy, (z), ny(x) as the number of
attacked samples and total samples within (x — h, 2+ h), re-
spectively. For robust mean estimation problems, the break-
down point is 1/2 (Andrews and Hampel 2015), which also
holds locally for nonparametric regression problem. Hence,
if gn(z)/np(x) > 1/2, the estimator will collapse and re-
turn erroneous values even if we use Huber cost. In Fig 1(a),
g = 500, among which 250 attacked samples are around
x = 0.25, while others are around z = 0.75. In this case,
qn(z)/np(xz) < 1/2 over the whole support. The curve of
estimated function is shown in Fig 1(b). The estimate with
(5) is significantly better than kernel regression. Then we in-
crease ¢ to 2000. In this case, g5 (x)/np(z) > 1/2 around
0.25 and 0.75 (Fig 1(c)), thus the estimate fails. The esti-
mated function curve shows an undesirable spike (Fig 1(d)).

The above example shows that the initial estimator (5)
fails if the adversary focus its attack at a small region. In
this case, the local ratio of attacked samples surpasses the
breakdown point, resulting in spikes here. With such strat-
egy and sufficiently large ¢, the initial estimator (5) fails to
be optimal. Actually, getting a robust estimate of 7)(x) using
local training samples around x only is not enough. To im-
prove the estimator, we exploit the continuity property of n
(Assumption 1(a)), and use the estimate in neighboring re-
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(a) Scatter plots with ¢ = 500.  (b) Estimated curves, ¢ = 500.
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(c) Scatter plots with ¢ = 2000. (d) Estimated curves, ¢ = 2000.

Figure 1: A simple example with ¢ = 500 and ¢ = 2000.
In (a) and (c), red dots are attacked samples, while blue dots
are normal samples. In (b) and (d), four curves correspond
to ground truth 7, the result of kernel regression, initial esti-
mate and corrected estimate, respectively. With ¢ = 500, the
initial estimate (5) works well. However, with ¢ = 2000, the
initial estimate fails, while the corrected regression works
well.

gions to correct 7jo(x). Based on such intuition, we propose
a projection technique, which will close the gap between the
upper and minimax lower bound. The details are shown in
the next section.

Corrected Regression

As has been discussed in the previous section, while the ini-
tial estimator is already efficient in its own right with small
q, it does not tolerate larger ¢. In particular, concentrated
attack will generate undesirable spikes in 7jy. We hope to re-
move these spikes without introducing two much additional
estimation error. Linear filters> do not work here since the
profile of the regression estimate will be blurred. Therefore,
we propose a nonlinear filter as following. It conducts min-
imum correction (in ¢; sense) to the initial result 7y, while
ensuring that the corrected estimate is Lipschitz. Formally,
given the initial estimate 7jo(x), our method solves the fol-
lowing optimization problem

e = argmin |9y — gl|1, (14)
IVgllew<L
in which
dg dg
Villoo = |, .. =] 15
Wl =max{[ 22 [ a9

Here linear filter means that the output is linear in the input, i.e.
an operator F' is linear if for any function f1, f> and any scalars A\;
and \o, F[}\l f1 + X2 fg] = AlF[fl] +)\2F[f2] Alternatively, F[f]
is a convolution of f with another function K . Such convolution
can blur the regression estimate.
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In Appendix F in the full paper (Zhao and Wan 2023), we
prove that the solution to the optimization problem (14) is
unique.

From (14), 7). can be viewed as the projection of the out-
put of initial estimator 7)y into the space of Lipschitz func-
tions. Here we would like to explain intuitively why we use
¢; distance instead of other metrics in (14). Using the exam-
ple in Fig.1(d) again, it can be observed that at the position
of such spikes, |n(x) — g(x)| can be large. In order to ensure
successful removal of spikes, we hope that the derivative of
such cost should not be too large, otherwise the corrected es-
timate will tend to be closer to the original one to minimize
the cost, thus spikes may not be fully removed. Based on
such intuition, ¢ cost is preferred here, since it has bounded
derivatives, while other costs such as ¢5 distance have grow-
ing derivatives.

The estimation error of the corrected regression can be
bounded by the following theorem.

Theorem 4. (1) Under the same conditions as Theorem 1,

d+2
In N 41 In N
E he(X) — n(X))?| < (£ [
(16)
(2) Under the same conditions as Theorem 2,
. Tq In N
B swpsui () — 10| £ s 4 S D)

The proof is shown in Appendix G in the full paper (Zhao
and Wan 2023). Here we provide a brief idea of the proof.
For the error of 7y in (9), the first term is caused by adver-
sarial samples, while the second and third term are just usual
regression error. The latter one nearly remains the same after
filtering, while the impact of the former error is significantly
reduced. In particular, the ¢, additional estimation error can
be bounded first. This bound can then be used to infer ¢5 and
{, error caused by adversarial samples, using the property
that 7). is Lipschitz. From (16), compared with Theorem 3,
with 7' ~ In N and a proper h, the upper and lower bound
nearly match.

Now we discuss the practical implementation. (14) can
not be calculated directly for a continuous function. There-
fore, we find an approximate numerical solution instead. The
detail of practical implementation is shown in Appendix A
in the full paper (Zhao and Wan 2023).

Despite the optimal sample complexity, the computation
of the corrected estimator is expensive for high dimensional
distributions. It would be an interesting future direction to
improve the computational complexity on dimensionality.
Currently, our method is designed mainly for low dimen-
sional problems.

Numerical Examples

In this section we show some numerical experiments. In par-
ticular, we show the curve of the growth of mean square er-
ror over the attacked sample size g. More numerical results
are shown in the full paper (Zhao and Wan 2023).
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For each case, we generate N = 10000 training samples,
with each sample follows uniform distribution in [0, 1]¢. The
kernel function is

K(u) =2 — Ju], Vlu| < 1. (1)

We compare the performance of kernel regression,
the median-of-means method, trimmed mean, initial es-
timate, and the corrected estimation under multiple at-
tack strategies. For kernel regression, the output is
max(min(Hyw, M), —M), in which 7y is the simple
kernel regression defined in (4). We truncate the result into
[— M, M] for a fair comparison with robust estimators. For
the median-of-means method, we divide the training sam-
ples into b = 20 groups randomly, and then conduct kernel
regression for each group and then find the median, i.e.

intorr = Clip(med({ilyy - -, Al }), [= M, M]), (19)
in which Clip(u, [-M, M]) max(min(z, M), —M)
projects the value onto [— M, M], and med denotes the me-
dian. For trimmed mean regression, the trim fraction is 0.2.

For the initial estimator (5), the parameters are T = 1
and M = 3. The corrected estimator is described in the full
paper (Zhao and Wan 2023). For d = 1, the grid count is
m = 50. For d = 2, m; = mo = 20. Consider that the
optimal bandwidth (h in (5)) need to increase with the di-
mension, in (4), the bandwidths of all these four methods
are set to be h = 0.03 for one dimensional distribution,
and i = 0.1 for two dimensional case. Here M and h sat-
isfy Assumption 3(a) and (c), while 7" is smaller than the
requirement in Assumption 3(b). As was already discussed
earlier, the parameter selection rule in Assumption 3 is de-
signed mainly for theoretical analysis, and does not need to
be exactly satisfied in practice.

The attack strategies are designed as following. Let ¢ =
500k for k =0,1,...,10.

Definition 1. There are three strategies, namely, random at-
tack, one directional attack, and concentrated attack, which
are defined as following:

(1) Random Attack. The attacker randomly select q sam-
ples among the training data to attack. The value of each
attacked sample is —10 or 10 with equal probability;

(2) One directional Attack. The attacker randomly select
q samples among the training data to attack. The value of all
attacked samples are 10;

(3) Concentrated Attack. The attacker pick two random
locations cy, ¢y that are uniformly distributed in [0,1]%. For
|g/2| samples that are closest to c1, modify their values to
10. For |q/2| samples that are closest to ca, modify their
values to —10.

For one dimensional distribution, let the ground truth be
n (x) sin(27x). For two dimensional distribution, let
n(x) = sin(2wz1) + cos(2mxs).

The noise follows standard Gaussian distribution (0, 1).
The performances are evaluated using square root of /5 er-
ror, as well as ¢, error. The results are shown in Figure
2 and 3 for one and two dimensional distributions, respec-
tively. In these figures, each point is the average over 1000
independent trials.
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Figure 2: Comparison of /2 and ¢, error between various
methods for d = 1.

Figure 2 and 3 show that the simple kernel regression
(blue dotted line) fails under poisoning attack. The ¢ and
{ error grows fast with the increase of g. Besides, tra-
ditional median-of-means (orange dash-dot line) does not
improve over kernel regression. Trimmed mean estimator
works well under random or one directional attack with
small ¢, but fails otherwise. Moreover, the initial estimator
(5) (purple dashed line) shows significantly better perfor-
mance than kernel estimator under random and one direc-
tional attack, as are shown in Fig.2 and 3, (a), (b), (d), (e).
However, if the attacked samples concentrate around some
centers, then the initial estimator fails. Compared with ker-
nel regression, there is some but limited improvement for
(5). Finally, the corrected estimator (red solid line) performs
well under all attack strategies. Under random attack, the
corrected estimator performs nearly the same as initial one.
For one directional attack, the corrected estimator performs
better than the initial one with large ¢. Under concentrated
attack, the correction shows significant improvement. These
results are consistent with our theoretical analysis.

We have also conducted numerical experiments using real
data. In particular, we obtain and compare the root MSE
score of the median-of-means, trimmed mean, our initial
estimator and the corrected estimator under all three types

0.7 MoMm 5 MoM 4
—- ™ — ™ /
0.6 == initial 4] == initial /

—— corrected —— corrected

Root MSE
o o o
w >

o
N

0.1

o 1000 2000 3000 4000 5000 [ 1000 2000 3000 4000 5000
a q

(a) Squared root of /5 error, un- (b) Squared root of ¢ error, un-
der random attack. der one directional attack.

2.25

1.1 =+e- kernel
2.00 MoM
1.0 —. TM™
175 == initial
150 5 09 corrected
o
9 0.8
2125 £
g 0.7
2 1.00 g
3

0.75

0.50

— = initial

0.25
corrected

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
q aq

(c) Squared root of /2 error, un- (d) ¢o error, under random at-

der concentrated attack. tack.
2.5] «een kernel —
MoM 1.4 '_..7.._-..._--—.:—--“-"'
—- ™ i/
2.0{ == initial [//
. ted 1.2 .-'
s correc s I e kernel
2 & |
1 MoM
Els g1ol | — ™
] 5 Jr —— initial
s so08 F corrected
@10 *a !I
0.6 !
0-5 0.4
o 1000 2000 3000 4000 5000 ) 1000 2000 3000 4000 5000
q

(e) £ error, under one direc- (f) £ error, under concentrated
tional attack. attack.

Figure 3: Comparison of {5 and ¢, error between various
methods for d = 2.

of attacks. All experiments show that our methods have de-
sirable performance. The initial estimator significantly im-
proves over median-of-means and trimmed mean estima-
tor. The performance is further improved using our correc-
tion technique. The detailed implementation and results are
shown in Appendix I in the full paper (Zhao and Wan 2023).

Conclusion

In this paper, we have provided a theoretical analysis of ro-
bust nonparametric regression problem under adversarial at-
tack. In particular, we have derived the convergence rate of
an M-estimator based on Huber loss minimization. We have
also derived the information theoretic minimax lower bound,
which is the underlying limit of robust nonparametric re-
gression. The result shows that the initial estimator has min-
imax optimal /., risk. With small ¢, which is the number
of adversarial samples, /5 risk is also optimal. However, for
large g, the initial estimator becomes suboptimal. Finally,
we have proposed a correction technique, which is a nonlin-
ear filter that projects the estimated function into the space
of Lipschitz functions. Our theoretical analysis shows that
the corrected estimator is minimax optimal even for large
q. Numerical experiments on both synthesized and real data
validate our theoretical analysis.
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