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Abstract

Learning from open-world noisy data, where both closed-set
and open-set noise co-exist in the dataset, is a realistic but
underexplored setting. Only recently, several efforts have been
initialized to tackle this problem. However, these works as-
sume the classes are balanced when dealing with open-world
noisy data. This assumption often violates the nature of real-
world large-scale datasets, where the label distributions are
generally long-tailed, i.e. class-imbalanced. In this paper, we
study the problem of robust visual recognition with class-
imbalanced open-world noisy data. We propose a probabilistic
graphical model-based approach: iMRF to achieve label noise
correction that is robust to class imbalance via an efficient
iterative inference of a Markov Random Field (MRF) in each
training mini-batch. Furthermore, we design an agreement-
based thresholding strategy to adaptively collect clean samples
from all classes that includes corrected closed-set noisy sam-
ples while rejecting open-set noisy samples. We also introduce
a noise-aware balanced cross-entropy loss to explicitly elimi-
nate the bias caused by class-imbalanced data. Extensive ex-
periments on several benchmark datasets including synthetic
and real-world noisy datasets demonstrate the superior perfor-
mance robustness of our method over existing methods. Our
code is available at https://github.com/Na-Z/LIOND.

1 Introduction
The success of modern deep neural networks for visual recog-
nition heavily rely on the availability of large-scale well-
annotated datasets such as ImageNet. Unfortunately, the ex-
treme cost and difficulty in annotating extensive data severely
limits the construction of more large-scale datasets with pre-
cise annotations. This limitation impedes the development of
deep models for fine-grained visual recognition. In contrast,
tremendous data with noisy labels can be easily accessed
from the online search engines. Hence, designing robust vi-
sual recognition approaches that are unbiased to the noise
data is appealing. This is commonly known as learning with
noisy labels in the literature (Song et al. 2022).

Many studies on learning from noisy data (Han et al. 2018;
Jiang et al. 2018; Li, Socher, and Hoi 2020; Li et al. 2019;
Liu et al. 2020b; Patrini et al. 2017; Wei et al. 2020; Zhang
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and Sabuncu 2018) generally follow the closed-set assump-
tion, i.e. the real labels of the noisy samples (samples with
incorrect labels) are within the same label space as the clean
samples. An example of closed-set (a.k.a. in-distribution)
noisy data is shown in Fig. 1(a), where one image of ‘cat’
is mislabeled as ‘dog’ while two images of ‘dog’ are misla-
beled as ‘cat’ and ‘horse’, respectively. Although these prior
works have achieved impressive progress, their closed-set
assumption is unrealistic in many real applications. This is
because the training label space is usually a subset of the
labels in real-world, and thus it is inevitable to take samples
that are not belonging to the training label space when we
collect data from the open world. This kind of samples is
usually known as open-set (a.k.a. out-of-distribution) noisy
data (Wang et al. 2018; Wei et al. 2021). The prevalent co-
existence of closed-set and open-set noise in the training data,
which is also referred as the open-world noisy data as illus-
trated in Fig. 1(b), is a practical problem. However, it has not
been studied until very recently (Li, Xiong, and Hoi 2021;
Sachdeva et al. 2021; Wu et al. 2021; Yao et al. 2021).

Despite the relatively realistic open-world setting com-
pared to the naive closed-set assumption, existing approaches
under this setting still suffer from an unrealistic class balance
assumption that hypothesizes a uniform density of the label
distribution. This balance assumption violates the real-world
large-scale datasets (Li et al. 2017; Van Horn et al. 2018) that
generally follow long-tailed distributions (Reed 2001) with
severe class imbalance between the head and tail classes. To
carry out robust visual recognition using real-world large-
scale datasets, it is imperative to train a robust deep neural
network that can effectively learn from the class-imbalanced
open-world noisy data, as illustrated in Fig. 1 (c).

This paper is the first to explicitly study this unexplored
yet pragmatic direction. The challenges lie in the difficulty of
correctly identifying clean samples, closed-set noisy samples,
and scarce samples from the tail classes. Prior works that use
either temporally averaged model (Yao et al. 2021) or smooth
neighbors (Li, Xiong, and Hoi 2021) for open-world noisy
label correction face challenges with class imbalance. Jo-
SRC (Yao et al. 2021) may lead to overfitting on noisy labels,
favoring head classes, while ProtoMix(Li, Xiong, and Hoi
2021) may struggle to form meaningful neighborhoods due
to imbalanced class distributions. In contrast, NGC (Wu et al.
2021) that constructs a global graph with all training samples
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Figure 1: Exemplar comparison of different problem settings for noisy data learning. This toy dataset only contains three
categories: cat, dog, and horse. Tags on the images indicate the given labels. Green, blue, and orange highlights the clean sample,
closed-set noisy sample, and open-set noisy sample, respectively.

and employs label propagation (Iscen et al. 2019; Zhou et al.
2003) over the graph is less susceptible to the class imbalance
issue. However, the label propagation process over the entire
graph becomes increasingly memory- and time-consuming
when the size of graph increases, which impedes its feasible
use in practice. Moreover, all these prior works reply on two
fixed thresholds to select clean samples or reject open-set
noisy samples. Such a fixed thresholding strategy is sub-
optimal since it cannot be dynamically adjusted based on the
learning status. This can lead to the inaccurate acceptance of
clean samples and wrong rejection of open-set noisy samples.

We propose a probabilistic graphical model-based ap-
proach, which we called iterative Markov Random Field
(iMRF) to achieve label noise correction for class-imbalanced
data. Our iMRF represents the true labels of all training sam-
ples as a set of latent random variables and performs inference
in each training mini-batch efficiently. The MRF is formed
by the K-nearest neighbors (KNN) graph of the embeddings
from all training samples at each epoch. At each iteration,
iMRF infers each latent random variable in the batch based
on its predicted value from the current model and the inferred
values of its KNN from the previous iteration. The designed
smoothness energy function (c.f. Sec. 3.1 for the details)
in our iMRF is able to take care of the samples in the tail
classes by weighing down the contributions of their dissimi-
lar neighbors. Furthermore, we design an agreement-based
thresholding strategy that can adaptively adjust the threshold
for selecting clean samples from all in-distribution classes or
rejecting open-set noisy samples. Specifically, we introduce a
tripartite agreement mechanism to obtain clean samples with
high confidence at each epoch. The tripartite agreement is
met by the consensus among the given label, current infer-
ence from iMRF, and previous inference from iMRF. Once
we have the high-confident clean samples w.r.t. current epoch,
two adaptive thresholds are set accordingly to collect clean
samples used for next epoch. Inspired by balanced softmax
(Ren et al. 2020), we also present a noise-aware balanced
cross-entropy loss to explicitly eliminate the bias of class-

imbalanced data. By training the model with this loss and
a set of losses that includes two types of contrastive losses,
we expect the model to be robust to the class-imbalanced
open-world noisy data. The main contributions of this work
are summarized as follows: 1) We propose a probabilistic
graphical model-based method iMRF to effectively correct
label noise with semi-global smoothness and efficient infer-
ence. 2) We design an agreement-based thresholding strategy
that can adaptively adjust the thresholds for sample selection.
Our proposed tripartite agreement mechanism is aware of
both the model learning status and the given and previously
inferred labels. 3) We conduct extensive experiments on both
synthetic and real-world noisy datasets with a variety of ex-
perimental settings. Our proposed method consistently shows
superior performance over existing state-of-the-art methods.

2 Related Work
Learn from Noisy Data. A huge body of approaches
(Zhang et al. 2018; Xia et al. 2020; Yao et al. 2020; Zhang,
Xing, and Liu 2021; Zhang et al. 2021b; Huang et al. 2019)
have been contributed to the filed of learning from noisy data,
which can be roughly summarized as: a) robust regulariza-
tion including network regularization (e.g., dropout, weight
decay, and batch normalization) and data augmentation such
as mixup, b) loss adjustment including loss correction and
loss reweighting, c) label correction, and d) sample selection.
Notably, recent start-of-the-art approaches such as DivideMix
(Liu et al. 2020b) and ELR+ (Li, Socher, and Hoi 2020) are
mainly hybrid approaches that combines different techniques,
e.g. sample selection and semi-sueprvised learning.

Despite the progress of these approaches in learning from
noisy data, their closed-set assumption largely limits their
applications in large-scale real-world datasets where open-set
and closed-set noise co-exist. The problem of learning from
open-set noisy data is firstly unveiled by ILON (Wang et al.
2018), it iteratively selects the noisy labels via the density esti-
mation within neighorhood and learns discriminative features
by enlarging the distance between clean and noisy samples
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with a contrastive loss. Since then, this practical problem has
attracted more attentions (Li, Xiong, and Hoi 2021; Sachdeva
et al. 2021; Wu et al. 2021; Yao et al. 2021). Most of them
adopt the iterative learning strategy similar as ILON. They
gradually select more clean samples via label correction and
subsequently perform semi-supervised learning with the se-
lected clean samples as labeled and the remaining ones as
unlabeled. All methods use contrastive learning for unlabeled
samples, but differ in label correction and sample selection
approaches. Jo-SRC (Yao et al. 2021) uses JS-divergence to
measure clean sample likelihood and prediction disagreement
between augmented views for open-set sample likelihood. It
employs two thresholds for clean and open-set sample selec-
tion. Then, it uses the temporally averaged model to correct
labels for closed-set noisy samples. ProtoMix (Li, Xiong, and
Hoi 2021) cleans the closed-set noise by aggregating predic-
tions of neighboring samples. Unlike the local smoothness
manner in ProtoMix, NGC (Wu et al. 2021) adopts the label
propagation technique that can take account of both local and
global smoothness. However, all of these approaches follow
the class-balanced assumption, which violates the long-tailed
nature of large-scale datasets. Moreover, their techniques face
either failures or heavy computation issue when dealing with
class-biased large-scale real-world datasets.
Learning with Imbalanced Classes. A large and growing
body of literature (Zhang et al. 2021a) has investigated on
learning with imbalanced classes, a.k.a. long-tailed learning.
The goal is to learn a unbiased deep neural network given a
class-biased training dataset, where some classes have mas-
sive samples (i.e. head classes) yet some are with very few
samples (i.e. tail classes). Recent techniques (Zhou et al.
2020; Ren et al. 2020; Liu et al. 2020a; Xiang, Ding, and Han
2020) tackle this problem mainly from three perspectives:
1) data re-sampling that manipulates training samples via
over-sampling, under-sampling, or class-balanced sampling
to produce a balanced distribution, 2) loss adjustment that
employs class-level re-weighting to regulate the influence of
label distribution on loss weights or encourage larger margins
between features and classifier for tail classes, and 3) transfer
learning that allows for various transferring schemes, such as
head-to-tail knowledge transfer and knowledge distillation.
Among these technique, the class-level re-weighting is a sim-
ple but effective method. It can be applied to losses or model
predictions, resulting in weighted softmax loss (Kang et al.
2019) and balanced softmax (Ren et al. 2020), respectively.

Unfortunately, these existing approaches are not robust
to real applications since they assume all the data are clean,
which is hard to be hold in the real data. Thus, the perfor-
mance of these approaches, especially on tail classes, can
greatly deteriorate when the class imbalance issue occurs
with open-world noisy data. Our paper targets on this prac-
tical yet challenging problem, and presents a noise-aware
balanced cross-entropy loss to explicitly eliminate the bias
of class-imbalanced data.

3 Our Method
In robust visual recognition with class-imbalanced open-
world noisy data, we are given a training set D = {xi, ŷi}Ni=1,
where xi is the i-th training image and ŷi ∈ {1, ..., C} is its

given label. Let nk be the number of samples of the k-th class,
we have

∑C
k=1 n

k = N and ni ̸= nj . Since the training data
is long-tailed, we have the i-th class as a head class and the
j-th class as a tail class with ni ≫ nj . Let y⋆i denote the real
label of the sample xi, the label of a sample is clean when
ŷi = y⋆i , and noisy when ŷi ̸= y⋆i . Specifically, the label is a
closed-set noise if y⋆i ∈ {1, ..., C}, otherwise it is a open-set
noise. Our objective is to learn a robust model fΘ, which can
recognize the unseen testing data with high accuracy from
the class-imbalanced open-world noisy training data.

We adopt the popular iterative learning strategy in previous
works (e.g. ProtoMix and NGC) that consists of two itera-
tive steps: 1) Label correction-based sample selection. We
gradually correct the noisy labels via our proposed iMRF
(Sec. 3.1) and then select the clean and corrected samples
(Sec. 3.2), i.e. to reject the labels of the open-set samples. 2)
Robust representation learning. We train the model to learn
robust representation using both supervised and unsupervised
losses (Sec. 3.3) with the selected clean and corrected sam-
ples as labeled. The two steps are carried out alternatively
until the model converges.

3.1 Label Correction with iMRF
We introduce iMRF, a probabilistic graphical model-base
method, for label noise correction. In iMRF, real labels and
model predictions are represented as latent and observed
random variables in a Markov random field (MRF). A batch-
update inference algorithm is derived to infer the real labels
of all samples. Intuitively, neighboring samples, close in the
well-learned feature space, are expected to share similar la-
bels. This is commonly known as the smoothness constraint
in the literature of markov random field (Koller and Fried-
man 2009), semi-supervised learning (Iscen et al. 2019; Zhou
et al. 2003), etc. Meanwhile, model predictions, anticipated
to provide reliable information on the real label (Reed et al.
2014) as the model becomes more robust and resilient to
noise and class imbalance during training, are considered
as observed random variables. The constraint enforcing that
the latent random variable remains close to these predictions
is referred to as the fitness constraint in our iMRF. By in-
tegrating the smoothness and fitness constraints, our iMRF
aims to estimate the posterior probability of all real labels
Y = {y1, ..., yN}, given all data samples X = {x1, ..., xN}
and model predictions O = {o1, ..., oN}:

P (Y | X,O,Θ) =
1

Z
exp

{
−

N∑
i=1

N∑
j=1,j ̸=i

Aij · Es(yi, yj)

−
N∑
i=1

Ef (yi, oi)
}
, (1)

where A ∈ {0, 1}N×N is a sparse adjacency matrix that
represents a KNN graph formed by connecting each sample
to its K nearest neighbors in the learned feature space. yi is a
latent random variable, denoting the real label as a one-hot
vector in {0, 1}C . oi ∈ RC is an observed random variable,
denoting the categorical distribution predicted by the model
fΘ. Θ represents the learnable parameters of the model fΘ.
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Es and Ef denote the smoothness and the fitness energy
function, respectively. Z is the partition function.

For each pair of samples xi and xj , the smoothness energy
function Es(yi, yj) measures the disagreement between yi
and yj , weighted by an adaptive cost coefficient that is aware
of the distance between the learned feature vectors fi and fj .
The formulation of Es is as follow:

Es(yi, yj) = 1[xj ∈ Ds ∪Dw] · J(fi, fj) · ∥yi − yj∥2, (2)

and
J(fi, fj) = α · exp(β ·D(fi, fj)), (3)

where the indicator function 1[·] = 0 if the j-th neighbor
is not selected as the clean sample (c.f. Eq. 5 for the def-
initions of Ds and Dw). By adding this constraint, those
potential outliers (i.e., open-set noisy samples) can be ruled
out from the computation of the smoothness energy. Such
a strategy would lead to a more accurate inference by al-
leviating the adverse impact of open-set noise especially
on tail classes that are hard to be distinguished from the
open-set noise. J(·, ·) is a non-negative increasing function
given by the cosine distance D(fi, fj). α and β are hyper-
parameters. The intuition behind J is that the contribution of
the disagreement between two neighboring samples should
be proportional to their similarity in the feature space. For
example, let us consider two neighbors yj and yk of the ran-
dom variable yi. The case where xk is closer to xi than xj in
the feature space, i.e. D(fi, fk) ≤ D(fi, fj) should result in
Es(yi, yk) ≤ Es(yi, yj).

For each sample xi, the fitness-based energy function
Ef (yi, oi) aims to measure the divergence between the state
of yi and the model prediction oi, which is formulated as:

Ef (yi, oi) = γ · ∥yi − oi∥2, (4)

where γ is a hyper-parameter that represents the cost coeffi-
cient for the fitness energy.

Unfortunately, the exact inference of the posterior distri-
bution P (Y |X,O,Θ) in Eq. 1 is intractable due to the high
dimensionality of the latent random variable Y and high com-
putation cost of Z in Eq. 1. One naive solution is to assume
complete independence of the latent random variables and
ignore the pairwise smoothness terms Es(yi, yj). However,
this leads to a trivial solution where label smoothness is ig-
nored. We can also do approximate inference with variational
inference (Jordan et al. 1999), MCMC Sampling (Andrieu
et al. 2003), alpha-expansion (Boykov, Veksler, and Zabih
2001), etc. However, these approximate inference methods
are usually too slow to be computed during training. In view
of these limitations, we derive a batch-update inference algo-
rithm with a computation complexity and accuracy between
the naive and approximate inference algorithms.

Our batch-update algorithm evaluates the posterior proba-
bilities of a subset of samples (i.e. batch) at a time. For each
latent random variable during an evaluation step, we fix its
K nearest neighbors at their inferred values from the previ-
ous evaluation. Note that the complexity of our batch-update
algorithm is dependent only on the batch size and number
of nearest neighbors K. The initial values of latent random
variables Y are set as the model predictions after a warm-up

training stage, except for those chosen as clean samples by
our thresholding strategy. We set the values of these selected
clean samples to the one-hot vector of the given labels.

We then use the computed posterior probability P (Y |
X,O,Θ) for the sample selection in the next section. Further-
more, the resultant ỹi = argmax pi are used as the corrected
label for xi, where pi represents P (yi | X,O,Θ).

3.2 Tripartite Agreement for Sample Selection

Similar to prior works (Li, Xiong, and Hoi 2021; Wu et al.
2021; Yao et al. 2021) in learning open-world noisy data, we
construct a mixture of strongly labeled set Ds, weakly labeled
set Dw, and unlabeled set Du for training the model. The
samples in the strongly labeled set contains their given labels,
while the samples in the weakly labeled set are assigned the
corrected labels. Generally, we expect the strongly labeled set
to include clean samples and the unlabeled set to include the
open-set noisy samples. These prior works utilize two manu-
ally defined and fixed thresholds (i.e. ηl and ηh) to identify
the three sets. Concretely, the thresholds ηl and ηh are used
for accepting the clean samples and the corrected closed-set
noisy samples, respectively. Since the model performance
may change along the training, such a fixed thresholding strat-
egy that cannot be adjusted with the learning status of the
model is not optimal. To this end, we design an agreement-
based thresholding strategy to take the model learning status
into account. Specifically, we propose a tripartite agreement
mechanism to check the consensus among the given labels
{ŷi}, current corrected labels {ỹti}, and previous corrected
labels {ỹt−1

i }. We postulate that those samples that fulfil the
tripartite agreement are clean samples with high confidence,
and thus can be used as a reference set for determining the
thresholds, i.e. Iref ← i, if ŷi = ỹti = ỹt−1

i ∀i = 1, · · · , N .
Since the current and previous corrected labels are derived
from the same model at different training epochs, they inher-
ently reflect the learning status of the model.

Consequently, we get the posterior probabilities of the
samples in the reference set at their given labels and
then rank them in an ascending order, i.e. Ssort ←
AscendSort({pi(yi) : yi ∈ D, i ∈ Iref}). In view of the
high confidence of the reference set, we believe the obtained
probabilities can manifest the true probabilities distribution
w.r.t. the real labels. A straightforward way is to select the
minimum and maximum probabilities as the thresholds η∗l
and η∗h, respectively. Nonetheless, the reference set is impos-
sible to be completely clean. To be tolerant to the potential
noise in the reference set, we select the top ϵl% and the last
ϵh% probabilities in Ssort and use the corresponding mean
as η∗l and η∗h, respectively. ϵl and ϵh are hyper-parameters to
control the percentage of samples that are probably outliers.
Finally, the resultant training data including aforementioned
three sets can be collected as:

D⋄ = {xi, ŷi | pi(ŷi) > η∗l }︸ ︷︷ ︸
strongly labeled

∪ {xi, ỹi | max(pi) > η∗h}︸ ︷︷ ︸
weakly labeled

∪ {xi | pi(ŷi) ≤ η∗l ∨max(pi) ≤ η∗h}︸ ︷︷ ︸
unlabeled

. (5)
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3.3 Robust Representation Learning
Given the re-organized training data D⋄ from Eq. 5, we train
our model fΘ using a set of losses to learn robust representa-
tions. We adopt three supervised losses: a mixup-based cross-
entropy loss (Zhang et al. 2018), a supervised contrastive
loss (Khosla et al. 2020), and a noisy-aware balanced cross-
entropy loss adapted from the balanced softmax cross-entropy
loss (Ren et al. 2020) to be noise-aware. The three supervised
losses extract knowledge from the strongly and weakly la-
beled sets to learn robust representations. Additionally, we
incorporate two unsupervised losses, i.e. instance-wise con-
trastive loss (Chen et al. 2020) and cross-view consistency
loss (Tarvainen and Valpola 2017), to distill knowledge from
all three sets for enhancing robust representation learning.
Noisy-aware balanced cross-entropy loss. Balanced soft-
max cross-entropy loss (Ren et al. 2020) takes the label fre-
quency as the prior knowledge to adjust the model predic-
tions during training, which is able to alleviate the class-
imbalanced bias. However, this loss cannot be directly used
in our studied setting due to the existence of noise in the
training set, which makes the computed label frequency unre-
liable. We adapt this loss to the noisy and imbalanced setting
by a simple yet effective modification: instead of computing
label frequency on the original training set D, we compute
the frequency based on Ds and Dw. We name the adapted
loss as noisy-aware balanced cross-entropy loss, denoted as
Lbsce, because Ds and Dw are dynamically changing with
the training epochs in regard to the noisy label correction and
open-set noisy rejection.

Formally, let Xl denote a mini-batch of images from Ds ∪
Dw, and Il be the index of Xl. The noisy-aware balanced
cross-entropy loss is computed as:

Lbsce = −
1

|Xl|
∑
i∈Il

log

{
n̄yi exp{li(yi)}∑C
k=1 n̄

k exp{li(k)}

}
, (6)

where li ∈ RC is the predicted logits before softmax. n̄k is
the frequency of k-th class in Ds ∪Dw.
Mixup-based cross-entropy loss. As shown in many prior
works (Li, Socher, and Hoi 2020; Li, Xiong, and Hoi 2021;
Sachdeva et al. 2021; Wu et al. 2021), mixup (Zhang et al.
2018) is a powerful technique against noisy labels. We adopt
this technique to generate more virtual samples {x′

i, y
′
i} from

Ds and Dw. Subsequently, the cross-entropy loss is applied
on these mixed virtual samples, denoted as Lmixup.
Supervised contrastive loss. We adopt supervised con-
trastive learning (Khosla et al. 2020) to effectively leverage
label information in Ds and Dw. We use data augmentation
techniques to augment Xl, resulting in X ′

l , which is indexed
by I ′l . The supervised contrastive loss is computed as:

Lsupcon = − 1

|Xl|
∑
i∈Il

1

|Si|
∑
s∈Si

log
exp(fi · fs/τ)∑

a∈Al(i)
exp(fi · fa/τ)

.

(7)
Here Al(i) = {Il \ {i}} ∪ I ′l , and Si = {s ∈ Al(i) : y

∗
i =

y∗s}, where y∗ is either ŷ or ỹ according to the set that it
comes from. τ ∈ R+ is a temperature parameter.
Instance-wise contrastive loss. Motivated by the potential
of contrastive learning in learning with noisy data shown in

the prior works (Li, Xiong, and Hoi 2021; Wu et al. 2021),
we employ the instance-wise contrastive loss Linscon over
all the training samples.
Cross-view consistency loss. In addition to Linscon that is
applied on the feature space, we also apply a consistency
loss on the model predictions over all the samples as a
further regularization. Specifically, we maintain an expo-
nential moving average of the current model weights Θt:
Θ̃t = ωΘ̃t−1 + (1− ω)Θt, where Θ̃ is known as the teacher
in mean-teacher framework (Tarvainen and Valpola 2017),
and ω is a smoothing coefficient. Let X be a mini-batch of
images from D⋄ and X ′ be the augmented version (i.e. an-
other view) of X . The two views of the same data (X ′ and
X ) are respectively passed to Θ and Θ̃, outputting two sets
of categorical probabilities {oi} and {õi}. The cross-view
consistency loss is therefore computed as the KL divergence
between two predictions: Lconsist =

1
|X |

∑
i DKL(oi ∥ õi).

Finally, the total loss of one mini-batch is computed as:

Ltotal = Lbsce + Lmixup + Lsupcon + Linscon + Lconsist.
(8)

4 Experiments
We evaluate our proposed method on three datasets, including
CIFAR-10 and CIFAR-100 (Krizhevsky, Hinton et al. 2009)
with controlled noise and class imbalance, and WebVision (Li
et al. 2017) that is a real-world class-imbalanced dataset with
open-world noise. The experimental results on both synthetic
and real-world datasets show that our method can improve
the testing performance with the co-existence of various noise
types and imbalanced classes in the training data.

4.1 Comparison on Synthetic Datasets
Dataset Setup. To the best of our knowledge, we are the
first to explicitly study the problem of Learning with class-
Imbalanced Open-world Noisy Data (LIOND). Thus, we
simulate the setting by manipulating the training data of
CIFAR-10 and CIFAR-100 with controlled noise and class
imbalance. Specifically, we first follow (Cui et al. 2019) to
create the class-imbalanced version of CIFAR 1 by reducing
the original number of training samples no

k w.r.t. an expo-
nential function nk = no

kµ
k/(C−1), where µ denotes the

imbalance factor of a dataset (the number of training samples
in the largest class divided by that of the smallest) and k is
the class index starting from 0. Subsequently, we corrupt the
imbalanced training data of CIFAR with symmetric closed-
set noise added by randomly selecting a portion κ of samples
and flipping their real labels to the random class labels from
the training classes, following ProtoMix and NGC. We fur-
ther inject a number of images from open-set datasets, i.e.
TinyImageNet (Le and Yang 2015) and Places-365 (Zhou
et al. 2017), that do not share label space with the evaluated
dataset. Note that we also use CIFAR-100 as the open-set
dataset for CIFAR-10. The number of open-set images to
add is controlled by the ratio ρ, w.r.t. the number of current
training samples. Each open-set image is assigned with a
random class label from the training classes.

1We drop the suffix from CIFAR-10 and CIFAR-100 for brevity.
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Method
Open-set CIFAR-100 TinyImageNet Places-365

ρ = 20% ρ = 40% ρ = 20% ρ = 40% ρ = 20% ρ = 40%

Jo-SRC 68.49±0.79 67.51±0.78 68.17±0.76 69.65±1.08 67.11±1.03 68.11±1.76
ProtoMix 72.68±4.29 72.83±6.12 76.50± 8.12 72.75±5.20 71.81±4.91 70.76±5.43
NGC 85.89±0.41 84.86±0.40 86.12±0.60 85.05±1.08 86.15±0.28 85.27±0.29
Ours 86.29±0.42 85.47±0.40 86.78±0.79 86.03±0.27 86.66±0.38 85.79±0.10

Table 1: LIOND performance comparison with baselines on CIFAR-10 dataset with imbalance factor µ = 10, symmetric
closed-set noise κ = 50%, and different variants of open-set noise. Top-1 accuracy (%) over 3 independent runs is reported.

Method
Open-set TinyImageNet Places-365

ρ = 20% ρ = 40% ρ = 20% ρ = 40%

Jo-SRC 33.60±0.17 33.36±0.45 33.16±1.29 34.00±0.41
ProtoMix 42.84±0.95 41.01±0.67 42.95±0.49 42.18±0.69
NGC 54.25±0.48 51.81±1.43 53.89±0.88 52.19±0.79
Ours 56.17±0.35 56.47±0.63 56.03±0.68 56.77±0.24

Table 2: LIOND performance comparison with baselines on CIFAR-100 under the same settings of µ and κ as in Tab. 1.

Baselines. We adopt three latest works on Learning with
Open-world Noisy Data (LOND): Jo-SRC, ProtoMix 2, and
NGC as our baselines. Since these baselines do not consider
class imbalance in their experiments on CIFAR datasets, we
produce the results under our studied settings based on their
officially provided codes.
Implementation. Following ProtoMix and NGC, we use
PreAct ResNet-18 (He et al. 2016) as our feature encoder
for both CIFAR datasets. The encoder is followed by two
parallel linear layers: one projection layer that produces 64-
dimensional feature vector fi and one classification layer that
produces C-dimensional logits li. We train the model using
SGD optimizer with momentum 0.9 and weight decay 5e-4.
We set the batch size as 128 and the initial learning rate as
0.02 with a cosine decay schedule. The model is trained for
300 epochs with a warmup period using Lbsce. The warmup
period is set to 10 and 30 epochs for CIFAR-10 and CIFAR-
100, respectively. We adopt random crop and horizontal flip as
weak augmentation to generate X , and AugMix (Hendrycks
et al. 2020) as strong augmentation to generate X ′. We set
the hyper-parameters as α = 0.05, β = 3, γ = 0.5, K = 30,
ϵl = 1, ϵh = 1, τ = 0.3, and ω = 0.99.

Learning with Class-Imbalanced Open-World Noisy Data.
Tab. 1 and 2 report the comparison results with the three base-
lines on CIFAR-10 and CIFAR-100, respectively, under the
novel setting of learning with class-imbalanced open-world
noisy data. We can see that our method achieves the state-of-
the-art performance on all settings. Particularly, our method
significantly outperforms the strongest baseline NGC on the
CIFAR-100 dataset, which is much more challenging than
CIFAR-10 as the number of classes is ten times more (i.e. 100
vs. 10) but the number of samples per classes is much lower
(e.g. 500 vs. 50 for the last tail class). Our method’s superior
and consistent outperformance demonstrates its effectiveness.

Learning with Open-world Noisy Data. Although our
method is proposed for learning with class-imbalanced open-

2For a fair comparison, we adopt ProtoMix (classifier) that uses
the softmax classifier instead of the KNN classifier as our baseline.

world noisy data, it also shows notable performance under
the setting without class imbalance, i.e. LOND. The compar-
ison results with the state-of-the-art methods on this setting
are shown in Tab. 3. Our method outperforms the previous
SOTA by clear margins, in contrast to the marginal perfor-
mance gaps between ProtoMix and NGC. This underscores
the robustness of our method in addressing open-world noise.

4.2 Comparison on Real-world Dataset
In addition to the verification on the simulating datasets with
controlled noise and class imbalance, we evaluate our method
on the real-world dataset - WebVision (Li et al. 2017). Web-
Vision uses the same categories from ImageNet ILSVRC12
(Deng et al. 2009) to crawl images from Flickr and Google.
As a result, the images in WebVision inherently contains
(both closed-set and open-set) noisy labels and imbalanced
classes. Following previous works, we conduct experiments
on the first 50 classes.
Implementation. To align with ProtoMix and NGC, we
adopt Inception-ResNet V2 as the feature encoder. We train
the model using SGD optimizer with momentum 0.9 and
weight decay 1e-4. We set the batch size as 32 and the initial
learning rate as 0.04 with a cosine decay schedule. The model
is trained for 80 epochs with a 15-epoch warmup period using
Lbsce. The configuration of hyper-parameters is the same as
that for CIFAR datasets, except for K = 50 and ϵl = 0.1.
Results. The comparison results are reported in Tab. 4. It is
obvious that our method outperforms the competing methods
on the two validation sets by significant margins. Our state-of-
the-art performance demonstrates the strength of our method
in the real-world scenario.

4.3 Ablation Studies
To investigate the effects of our design choice and hyper-
parameters in LIOND, we conduct ablation studies on
CIFAR-100 dataset with imbalance factor µ = 10, sym-
metric closed-set noise κ = 50%, and ρ = 40% open-set
samples from TinyImageNet.
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Method
Dataset CIFAR-10 CIFAR-100

CIFAR-100 TinyImageNet Places-365 TinyImageNet Places-365
Jo-SRC 84.46±0.22 84.89±0.53 84.74±0.29 59.87±0.26 60.24±0.64
ProtoMix 92.17±0.75 93.15±0.64 93.95±0.07 73.14±0.58 72.31±0.10
NGC† 92.31±0.29 93.54±0.21 93.67±0.22 73.49±0.11 73.44±0.35
NGC 92.40±0.39 93.78±0.17 93.89±0.18 73.53±0.27 73.84±0.07
Ours 93.50±0.17 94.04±0.22 94.24±0.22 75.35±0.39 75.30±0.51

Table 3: LOND performance comparison with baselines on CIFAR-10 and CIFAR-100 datasets with symmetric closed-set noise
κ = 50% and open-set noise ρ = 40% from different open-set datasets. † indicates the reported results in the original paper.

Method
Dataset WebVision-50 ILSVRC12

top1 top5 top1 top5
INCV† 65.24 85.34 61.60 84.98
DivideMix† 77.32 91.64 75.20 90.84
ELR+† 77.78 91.68 70.29 89.76
ProtoMix† 76.30 91.50 73.30 91.20
NGC† 79.16 91.84 74.44 91.04
Jo-SRC 74.40 90.64 69.68 88.44
ProtoMix 77.08 90.76 72.56 90.24
NGC 78.92 92.24 75.00 91.00
Ours 80.80 93.00 77.24 92.28

Table 4: Performance comparison with baseline methods
on WebVision-50 and ILSVRC12 validation sets, using
WebVision-50 for training. † denoted the reported results
in the paper. We reproduce the results for ProtoMix and NGC
with the same optimization setting as our method.
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Figure 2: Ablation study of different components of our
method on CIFAR-100 in LIOND.

Design Choice. We first study the effects of the proposed
iMRF, agreement-based thresholding strategy (ATS), and
different loss functions. Fig. 2 shows the resultant perfor-
mance with the removal of each component. Specifically,
‘w/o iMRF’ directly uses the network predictions as the
posterior distribution pi. ‘w/o ATS’ replaces the proposed
ATS with the fixed thresholding strategy of ProtoMix (i.e.
ηl = 0.01 and ηh = 0.9). ‘w/o L∗’ removes the correspond-
ing loss from the total loss in Eq. 8, except for ‘w/o Lbsce’.
We replace Lbsce with conventional cross-entropy loss since
Lbsce is compulsory for the warmup period. As shown in
the figure, ATS contributes most to the final performance,
which empirically testifies our hypothesis on the importance
of adaptive thresholding. Furthermore, the performance also

CONFIDENTIAL

CONFIDENTIAL

Figure 3: Effects of different hyper-parameters (i.e. α, β, γ,
and K) on CIFAR-100 in LIOND.

suffers from a significant drop when removing iMRF. It is
worth mentioning that the drastic performance drop with the
removal of mixup is also observed in ProtoMix and NGC.
Hyper-parameter Tuning. Fig. 3 shows the impact of four
hyperparameters. A large K (e.g., K=100) harms perfor-
mance, likely because of the scarcity of samples for tail
classes in CIFAR-100, resulting in noisy labels for the last
tail class with only 50 samples, making it unable to form a
valid K nearest neighborhood. Generally, hyperparameters
are less sensitive within a certain range.

5 Conclusion
This paper explores robust visual recognition with class-
imbalanced open-world noisy data. We employ an iterative
learning strategy involving label correction through sample
selection and robust representation learning. Our probabilistic
graphical model-based approach, iMRF, effectively corrects
label noise. Additionally, we introduce a tripartite agreement-
based thresholding strategy for dynamic threshold adjustment
during sample selection. We propose a noisy-aware balanced
cross-entropy loss, integrated with carefully selected losses,
to achieve a robust model. Extensive experiments on syn-
thetic and real datasets with diverse noisy and imbalanced
settings demonstrate consistent and superior performance
improvements over existing approaches.
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