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Abstract

Spiking Graph Neural Networks are emerging tools for an-
alyzing graph data along with low energy consumption and
certain biological fidelity. Existing methods directly integrate
same-reactive spiking neurons into graph neural networks for
processing propagated graphs. However, such same-reactive
neurons are not biological-functionality enough compared to
the brain’s dynamic-reactive ones, limiting the model’s ex-
pression. Meanwhile, insufficient long-range neighbor infor-
mation can be excavated with the few-step propagated graph,
restricting discrimination of graph spiking embeddings. In-
spired by the dynamic cognition in the brain, we propose a
Dynamic Reactive Spiking Graph Neural Network that can
enhance model’s expressive ability in higher biological fideli-
ty. Specifically, we design dynamic reactive spiking neuron-
s to process spiking graph inputs, which have unique opti-
mizable thresholds to spontaneously explore dynamic reac-
tive states between neurons. Moreover, discriminative graph
positional spikes are learned and integrated adaptively into
spiking outputs through our neurons, thereby exploring long-
range neighbors more thoroughly. Finally, with the dynamic
reactive mechanism and learnable positional integration, we
can obtain a powerful and highly bio-fidelity model with low
energy consumption. Experiments on various domain-related
datasets can demonstrate the effectiveness of our model. Our
code is available at https://github.com/hzhao98/DRSGNN.

Introduction
Graph neural networks (GNNs), reconciling the expressive
power of graphs with the learning capacity of deep neural
networks, have become powerful tools for analyzing ubiq-
uitous graph data. During training and inference, existing
GNNs (Defferrard, Bresson, and Vandergheynst 2016; Kipf
and Welling 2016; Chen et al. 2020; Yang et al. 2020b,a)
commonly update graph features by transforming and aggre-
gating topological neighbors under persistently active neu-
rons. Unfortunately, such persistently active neurons would
consume high energy (Anthony, Kanding, and Selvan 2020);
meanwhile, GNNs have less biological fidelity due to non-
compliance with biological neurons’ operating mechanism.

Recently, a novel generation of neural networks–Spiking
Neural Networks (SNNs) (Bellec et al. 2018; Cheng et al.
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2020; Rathi and Roy 2020; Fang et al. 2021; Wang, Cheng,
and Lim 2022; Lee, Delbruck, and Pfeiffer 2016; Wu et al.
2018; Jin, Zhang, and Li 2018; Neftci, Mostafa, and Zenke
2019), has emerged to simulate intermittent activities and
spiking communications in biological neurons, showing the
potential of low energy consumption and high biological fi-
delity. Thus, to enable GNNs to satisfy the low-energy and
high bio-fidelity, studying Spiking GNNs is necessary on
the ubiquitous large-scale graph data. Existing methods (X-
u et al. 2021; Wang and Jiang 2022; Zhu et al. 2022) di-
rectly replace the conventional GNNs’ neurons with spiking
ones for processing the propagated graph, where these spik-
ing neurons have consistent firing thresholds with the same
reactive state. According to the dynamic cognition obser-
vation that biological neurons have dynamic reactive states
on processing signals (Deco, Cruzat, and Kringelbach 2019;
Deco, Vidaurre, and Kringelbach 2021), such same-reactive
neurons may have not enough capacity in terms of biologi-
cal functionality, and thus limit the expressive ability of the
model. In addition, insufficient long-range neighbor infor-
mation can be captured with the few-step propagated graph,
leading to non-discriminative spiking graph results.

To address the above problems, we propose a Dynamic
Reactive Spiking Graph Neural Network that can sustain
high biological fidelity and efficiently capture long-range
neighbors. Under the guidance of the brain’s dynamic cog-
nition, each neuron of our model would generate a unique
reactive state according to its optimizable threshold. During
optimization, the reactive dynamics between neurons can
be spontaneously explored for more biological fidelity, thus
generating more discriminative spiking outputs. In addition,
the graph positional spikes are learned and integrated adap-
tively into spiking outputs via our neurons, thereby excavat-
ing long-range neighbors more thoroughly. With the dynam-
ic reactive mechanism and learnable positional integration,
the bio-fidelity and expressive ability of our model can final-
ly be enhanced. The highlights of our work are:

1) We propose a dynamic reactive spiking graph neural
network that has powerful learning capability in high bio-
logical fidelity. 2) Guided by the reactive cognition in the
brain, we design dynamic reactive spiking neuron model-
s with unique optimizable thresholds for spontaneously ex-
ploring the neurons’ reactive dynamics. 3) To sufficiently
excavate long-range neighbors and thus enhance the mod-
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el expression, we integrate learnable positional spikes adap-
tively into spiking graph outputs. 4) Extensive experiments
can demonstrate the powerful learning capability and low
energy consumption of our proposed model.

Related Work
Spiking Neural Networks
Training Strategies. Existing deep SNNs are mainly di-
vided into artificial neural networks (ANNs)-converted and
direct-training SNNs. The former (Cao, Chen, and Khosla
2015; Diehl et al. 2015; Rueckauer et al. 2017) provide an al-
ternative ANNs training strategy for SNNs, to further utilize
their low energy consumption on developed deep learning
studies. The latter ones (Lee, Delbruck, and Pfeiffer 2016;
Jin, Zhang, and Li 2018; Neftci, Mostafa, and Zenke 2019;
Kheradpisheh and Masquelier 2020) perform direct and ef-
ficient training through the ANNs’ error backpropagation
paradigm, which commonly use a continuous function to ap-
proximate the spiking function or its derivative.

Spiking Neuron Models. The spiking neuron model, in-
spired by neuroscience, is the basic unit and plays a vi-
tal role in controlling data transmission in SNNs. A classic
LIF model (Gerstner and Kistler 2002) simulates the gen-
eration mechanism of the action potential in a simplified
way. On this basis, a series of variant methods have been
studied (Fourcaud-Trocmé et al. 2003; Brette and Gerstner
2005; Bellec et al. 2018; Cheng et al. 2020; Rathi and Roy
2020; Wang, Cheng, and Lim 2022). For example, inspired
by Lateral Interactions (Ratliff, Hartline, and Lange 1974)
in neuroscience, LISNN (Cheng et al. 2020) integrates adja-
cent neurons’ lateral into spiking neuron membrane poten-
tial mechanism. Several approaches (Rathi and Roy 2020;
Wang, Cheng, and Lim 2022) attempt to explore dynamic re-
active neural layers by optimizing the unique threshold at the
layer level. Regarding the layer-level region as the unit area,
such layer-level optimization methods default that all neu-
rons in the same brain unit area have the same reactive state.
However, recent brain’s cognition researches (Deco, Cruza-
t, and Kringelbach 2019; Deco, Vidaurre, and Kringelbach
2021) observe that the neurons’ reactive states may unevenly
vary even in a tiny spatial brain area. Therefore, these layer-
level optimization methods are not biological-functionality
enough, which cannot sufficiently capture the reactive dy-
namics and thus limit the expressive ability of models. In
our work, we design a neuron-level threshold optimization
method to imitate the reactive dynamics between neurons in
the brain, thus enhancing the model expression.

Graph Neural Networks
The pioneering works that apply neural networks to graph-
s (Gori, Monfardini, and Scarselli 2005; Scarselli et al. 2008;
Bruna et al. 2013) learn node representation with recurren-
t neural networks or their improvements. Afterward, plenty
of methods (Kipf and Welling 2016; Veličković et al. 2017;
Wu et al. 2019; Liu, Gao, and Ji 2020; Dwivedi et al. 2022;
Cui et al. 2022; Zeng et al. 2021; Luo et al. 2023) have
been proposed to make GNNs more powerful. For example,

Kipf. et. al. introduced a linear function to the spectral fil-
ter (Kipf and Welling 2016) to prevent performance degra-
dation. Then, Wu et. al. treated neighborhood aggregation
as a pre-computing process in SGC (Wu et al. 2019). Aim-
ing to alleviate the performance-dropping problem in deep-
layer conditions, Liu et. al. (Liu, Gao, and Ji 2020) proposed
DAGNN to decouple the representation transformation and
propagation to learn graph representations from larger re-
ceptive fields. And other studies (Kreuzer et al. 2021; D-
wivedi et al. 2022; Cui et al. 2022) mainly utilize position-
al encodings, that play a central role in the most promi-
nent neural networks (LeCun et al. 1998; Hochreiter and
Schmidhuber 1997; Vaswani et al. 2017), to alleviate over-
smoothing and over-squashing problems.

Recently, several models belonging to SNNs (Xu et al.
2021; Wang and Jiang 2022; Zhu et al. 2022) have been s-
tudied with low energy consumption and high bio-fidelity.
They directly utilize the same-reactive spiking neurons (Ger-
stner and Kistler 2002) to process the propagated graph da-
ta with maintaining a low energy consumption and certain
bio-fidelity. However, due to the dynamic cognition in the
brain (Deco, Cruzat, and Kringelbach 2019; Deco, Vidaurre,
and Kringelbach 2021), adopting the same-reactive neuron
is not biological-functionality enough and would limit the
model’s expressive ability. Meanwhile, the few-step propa-
gated graph cannot thoroughly excavate long-range neigh-
borhood information, leading to non-discriminative spiking
results. On the contrary, through dynamic reactive neurons
and spiking positional integration, our proposed model can
sustain high biological fidelity and efficiently excavate long-
range neighbors.

Preliminaries
In this section, we provide the basic definition of graph and
recap the preliminaries in GNNs and SNNs. We denote a
graph as G = {V,X,A,Y}, where V = {vk}nk=1 is the set
of n nodes, X ∈ Rn×d represents node features, and each
node vk is associated with a d-dimensional feature vector
xk ∈ Rd. A ∈ Rn×n is the intrinsic adjacent matrix, and D
is the diagonal degree matrix of A. Y ∈ Rn×c is the one-hot
label matrix with c classes.

Graph Neural Networks
The graph convolution mechanism in our model is based
on the previous work Simplifying Graph Convolutional Net-
work (SGC) (Wu et al. 2019), which treats the neighborhood
aggregation as a pre-computing process to reduce the excess
complexity caused by collapsing weight matrices in regular
GNNs. SGC first performsK-step graph feature propagation
with the adjacent matrix, then employs a collapsing replace-
ment of GNNs’ resulting function – a single linear transfor-
mation on the propagated graph features. The operation of
SGC with two-step feature propagation is:

X̂ = Â(ÂX), (1)

Y = X̂W, (2)
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Figure 1: The illustration of our proposed model. We first utilize feature propagation and random walk to obtain the propagated
graph features and initial positional features. Then, both features are converted into the spiking signals through Poisson coding,
and integrated as the spiking inputs of our dynamic reactive spiking graph transformation (DRSGT) layer. Stimulated by
these spiking inputs at t-timestep, each neuron in the DRSGT layer would reset and charge the membrane potential, and fire
spikes according to its unique threshold, finally generating spiking outputs. During training, each neuron’s unique threshold is
optimized for spontaneously exploring reactive dynamics between neurons, thereby simulating the dynamic cognition in the
brain. Meanwhile, the discriminative graph positional spikes can be learned and integrated adaptively into the spiking graph
outputs, so as to sufficiently excavate the long-range neighbor information.

where Â = D̃−
1
2 ÃD̃−

1
2 is a renormalization operation on

the feature propagation process with Ã = A + In. D̃ is the
degree matrix of Ã, and In is the identity matrix.

Spiking Neural Networks
The Spiking Neuron model adopted as our base one is the
Leakey Integrate-and-fire (LIF) (Gerstner and Kistler 2002).
LIF imitates the action potential generation mechanism in
the brain, that is, the neuron would fire a pulse when the
membrane potential reaches the threshold Vth, and then the
membrane potential would be resetted. The LIF model op-
erated on the discrete domain can be described as:

V t
i = λV t−1

i +
∑
j

WijZ
t
j − V thZt−1

i , (3)

Zt−1
i =

{
1, if V t−1

i(rl) > 1

0, otherwise
, V t−1

i(rl) =
V t−1
i

V th
, (4)

where V t−1
i andZt−1

i represent the membrane potential val-
ue and spiking output value of the i-th post-neuron at (t−1)-
th timestep, respectively. Zt

j represents the spiking output
value of the j-th pre-neuron at t-th timestep. λ(0 ≤ λ ≤ 1)
and Wij are the leak factor and weight value connecting j-
th pre-neuron and i-th post-neuron, respectively. V th is the
threshold value of the LIF neuron model. The neuron model
is expected to process serial spiking inputs with T -duration.
V t−1
i(rl) is the membrane potential value relative to V th of the
i-th post-neuron at (t−1)-th timestep. The first two terms of
Equation 3 represent the potential leakage and accumulation
of neurons, respectively, while Equation 4 is the firing pro-
cess when the potential reaches the threshold. And the last
term of Equation 3 is the membrane potential reset; that is,
after firing a spike, the neuron would reset its potential.

Dynamic Reactive Spiking GNN
In this section, we will introduce the dynamic reactive spik-
ing graph neural network guided by the brain’s dynamic cog-
nition, whose framework is depicted in Figure 1.

To keep to the high training efficiency properties of
SNNs, the feature propagation is also regarded as the pre-
computing process in our model, then the spiking linear
graph transformation is employed on such propagated-graph
feature information.

Input Preprocessing for Spiking GNN
Since the spiking neural network should be stimulated by
spiking sequential input data, we utilize the common strat-
egy - Poisson coding to code X̂ into spiking inputs with
T duration, which generates random values and compares
them with the float values in X̂ to produce the spiking in-
puts at each timestep. The probability distribution of the
spiking number is subject to Poisson distribution. We de-
note the spiking form of the propagated-feature matrix X̂

at t-th timestep as X̂t. In this way, the spiking sequen-
tial propagated-graph features [X̂1, X̂2, · · · , X̂T ] can be u-
tilized to stimulate the dynamic reactive spiking graph trans-
formation layer.

Dynamic Reactive Spiking Graph Transformation
Recent brain’s cognition researches (Deco, Cruzat, and
Kringelbach 2019; Deco, Vidaurre, and Kringelbach 2021)
observe that the reactive states of neurons may unevenly
vary in the same tiny brain area. Therefore, guided by such
spatial dynamic cognition in the brain when processing sig-
nals, we enforce our model aware of and realize such dy-
namic cognition. That is, we employ dynamic reactive neu-
rons with unique optimizable thresholds inside our dynamic
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Figure 2: (a) The cognitive response corresponding to the ex-
isting same reactive graph spiking neural model (Zhu et al.
2022). (b) The cognitive response in the brain correspond-
ing to our proposed dynamic reactive graph spiking neural
model. Note that the darker the color in the brain, the more
active it is in response to signals.

reactive spiking graph transformation (DRSGT) layer, there-
by spontaneously exploring the spatial reactive dynamics be-
tween neurons. Concretely, stimulated by the spiking inputs
X̂t, the i-th post-neuron’s output of our dynamic reactive
spiking graph transformation model can be formulated as:

V t
i = λV t−1

i +
∑
j

WijX̂
t

j − V th
i Zt−1

i , (5)

Zt−1
i,k =

{
1, if V t−1

i(rl),k > 1

0, otherwise
, V t−1

i(rl),k =
V t−1
i,k

V th
i

, (6)

where X̂
t

j is the n nodes’ spiking input corresponding to
the j-th pre-neuron at t-timestep, V t−1

i and Zt−1
i repre-

sent the n nodes’ membrane potentials and spiking output
vectors, respectively, of the i-th post-neuron at (t − 1)-th
timestep. Zt−1

i,k and V t−1
i,k are the k-th node’s membrane po-

tential and spiking output value of the i-th post-neuron at
(t−1)-th timestep. V t−1

i(rl),k represent the k-th node’s relative
membrane potential compared with the threshold V th

i . We
denote W ∈ Rd×c and Vth ∈ Rc as optimizable parameter
matrices of this spiking transformation model, where Wij is
the weight value connecting j-th pre-neuron and i-th post-
neuron in W, and V th

i represents the unique threshold value
for i-th post-neuron in Vth. The comparison illustration of
neurons with the same and dynamic reactive states is pro-
vided in Figure 2, reflecting that our neuron-level dynamic
method can capture more various reactive states like brains.

Learnable Graph Positional Spikes
Directly transforming the propagated-feature information by
Equations 5 and 6 would still result in the underutilizing
problem of long-range neighbor information. In other words,
the feature propagation process with small steps cannot well

aggregate the long-range-hop neighbor information. Mean-
while, directly increasing the step to aggregate the more
far neighbors still suffers from the over-squashing prob-
lem (Alon and Yahav 2021); that is, the long-range neigh-
bor information is compressed into a fixed-length feature
vector. Such an underutilizing problem of long-range neigh-
bors would lead to non-discriminative spiking graph outputs
and poor model expressive ability. Therefore, to sufficient-
ly explore the long-range neighbor information, inspired by
Transformer (Vaswani et al. 2017), it is expected to integrate
the positional graph information into our dynamic reactive
spiking transformation layer. Due to the disordered property
of graph data, there is no concept of absolute positional in-
formation in graph data. Therefore, the relative positional in-
formation, which can implicitly capture the neighbor struc-
tural similarity and discrepancy between nodes, is utilized to
integrate into our spiking graph transformation process. Un-
der the integration of the relative positional information, our
model can capture the neighbor structural similarities and
discrepancies between long-range nodes, thereby enhancing
the model expression.

We design a learnable graph positional integration mod-
ule to integrate positional information into the spiking graph
outputs. We first initialize the positional information of the
graph data by Laplacian eigenvectors (LSPE) (Dwivedi et al.
2020) or random walk (RWPE) (Dwivedi et al. 2022). Lapla-
cian eigenvectors can capture distance-aware information:

PEk = [Uk1, Uk2, · · · , Ukdpos
]>, (7)

∆ = I−D−1/2AD−1/2 = U>ΛU, (8)

where U and Λ are the Laplacian eigenvectors and eigen-
values, respectively. And the k-th node’s dpos smallest non-
trivial eigenvectors are regarded as the k-th node’s initial po-
sitional encoding, which is denoted as PEk ∈ Rdpos . Ukr

(r = 1, · · · , dpos) represents the k-th node’s r-th smallest
non-trivial eigenvectors. dpos reflects the dimension size of
the spiking positional feature.

The other strategy to encode the graph positional infor-
mation is the self random walk (Li et al. 2020):

PEk = [RWkk, RW
1
kk, · · · , RW

dpos

kk ]>. (9)

The initial positional information of all nodes is also cod-
ed into the spiking form with T -duration: [ ˆPE1, · · · , ˆPET ]
through Poisson coding. Then, the initial spiking position-
al information is first integrated into our propagated-spiking
feature inputs through concatenation:[X̂t; ˆPEt]. And the
dynamic reactive spiking graph transformation (Equation 5)
is performed on such updated spiking position-integrated
graph signals. In this way, the spiking positional informa-
tion can be learned and fused adaptively with the propagated
graph feature during the optimization of our spiking graph
transformation layer, thereby guiding our model to efficient-
ly explore the long-range neighbors.

Moreover, there is also another way to integrate spik-
ing positional inputs into our spiking graph outputs. That
is, an additional spiking neural network is constructed to
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learn spiking positional information individually, whose ba-
sic neuron model is also dynamic reactive spiking one:

V t
ipe = λV t−1

ipe
+
∑
jpe

W ′ipejpe
ˆPE

t

jpe − V
th
ipeZ

t−1
ipe

, (10)

Zt−1
ipe,k

=

{
1, if V t−1

ipe(rl),k
> 1

0, otherwise
, V t−1

ipe(rl),k
=
V t−1
ipe,k

V th
ipe

,

(11)
where ipe and jpe represent the ipe-th post-neuron and jpe-th
pre-neuron in the dynamic reactive spiking neural network
performed on spiking positional inputs. Then, such spiking
positional information is fused to the learned graph embed-
ding by addition, thereby enhancing the exploration ability
on long-range neighbor information. Note that, our method
uses RWPE initialization and the first integration way:
concatenating the positional spikes with propagated graph
spikes, then adaptively learning the position-integrated spik-
ing outputs, by default in experiment section.

Overall Objective Function and Training
The T -duration output [Z1

i ,Z
2
i , · · · ,Z

T
i ] of the i-th post

neuron can be obtained after performing such dynamic re-
active spiking graph neural network with learnable posi-
tional spikes. Then, we stack and normalize the T -duration
output to get the predicted output logit Ypred: Y pred

i =∑T
t=1 Zt

i/
∑c

i=1

∑T
t=1 Zt

i, where Y pred
i is the prediction

vector of n nodes corresponding to the i-th class in Ypred.
The objective function is the prediction loss function L =

MSE(Ypred,Y), where MSE(·, ·) is the Mean Squared
Error loss function. The gradient during backpropagation in
the training process is [∇W,∇Vth]. Note that in the fol-
lowing content, we take the weight value Wij between j-th
pre-neuron and i-th post-neuron and the i-th post-neuron’s
firing threshold V th

i as examples of gradient calculation.
The weight update is computed byWij = Wij−lr∇Wij ,

and ∇Wij is computed by:

∇Wij =
∂L

∂Wij
=

∑
k

∑
t

∂L

∂Zt
i,k

∂Zt
i,k

∂V t
i(rl),k

∂V t
i(rl),k

∂V t
i,k

∂V t
i,k

∂Wij

=
∑
k

∑
t

∂L

∂Zt
i,k

∂Zt
i,k

∂V t
i(rl),k

1

V ′thi

X̂t
j,k,

(12)
where lr is the learning rate, X̂t

j,k is the k-th node’s spiking
input corresponding to the j-th pre-neuron at t-timestep.

The threshold update is computed by V th
i = V th

i −
lr∇V th

i , and ∇V th
i is computed by:

∇V th
i =

∂L

∂V th
i

=
∑
k

∑
t

∂L

∂Zt
i,k

∂Zt
i,k

∂V t
i(rl),k

∂V t
i(rl),k

∂V ′thi

∂V ′thi

∂V th
i

=
∑
k

∑
t

∂L

∂Zi,k
t

∂Zt
i,k

∂V t
i(rl),k

(V ′thi Zt−1
i,k + V t

i,k)(V ′thi − 1)

V ′thi

.

(13)

Algorithm 1: The training procedure of our proposed model
Input: X, A, Ytrain, and T
Output: Optimized W , V th

1: Obtain propagated feature X̂ // Equation 1
2: Obtain initial positional feature PE // Equation 9
3: Random initialize W and V th

4: while not converged do
5: for t = 1 to T do
6: Generate X̂t and ˆPEt by Poisson coding
7: Integrate ˆPEt into X̂t through concatenation
8: Reset and Chrge the DRSGT layer by position-

integrated spiking inputs // Equation 5
9: Fire spiking outputs // Equation 6

10: end for
11: Obtain final predictions Ypred

12: Update W and Vth // Equations 12 and 13
13: end while

To realize the backpropagation in the optimization of our
proposed model, we replace the discontinuous gradien-
t ∂Zt

i,k/∂V
t
i(rl),k in Eqs. 12 and 13, from the pseudo-

derivative (Wang, Cheng, and Lim 2022). In this way, we
can update W and Vth during training to finally obtain a
powerful model. The whole training procedure is provided
in Algorithm 1.

Experiments
We have assessed our model learning ability on various
datasets, obtaining competitive results. This section summa-
rizes datasets, experimental setup, and results analysis.

Datasets

We use twelve graph datasets: Cora (McCallum et al. 2000),
Citeseer (Sen et al. 2008), Pubmed (Namata et al. 2012),
ogbn-arxiv (Hu et al. 2020), Amazon Photos, Amazon Com-
puters, ACM (Fan et al. 2020), DBLP 1, Co-author C-
S (Shchur et al. 2018), Co-author Physics (Shchur et al.
2018), flickr (Huang, Li, and Hu 2017), and blogcata-
log (Huang, Li, and Hu 2017).

Experimental Setup

In the experiments, the splitting rules in three datasets: Co-
ra, Citeseer, and Pubmed, are following (Kipf and Welling
2016), while the one of others is following the default one
in datasets. The evaluation metrics for different datasets are
testing the accuracy on the test set. For graph datasets, we
utilize several artificial GNNs (GCN, SGC, DAGNN and so
on) as the comparison methods, to show the superiority of
our method in terms of model performance and energy con-
sumption. And SpikingGCN (Zhu et al. 2022) is also regard-
ed as the baselines.

1https://dblp.uni-trier.de/
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Method Cora Citeseer Pubmed ogbn-arxiv Ama.Ph. Ama.CS

A
rt

ifi
ci

al
on

es
GCN (Kipf and Welling 2016) 81.35±1.03 69.93±1.21 78.09±0.62 71.82±0.30 86.56±0.28 79.31±0.47
GAT (Veličković et al. 2017) 82.33±0.69 71.25±0.46 77.17±0.55 73.61±0.21 86.19±0.46 81.11±0.35
SGC (Wu et al. 2019) 81.96±0.36 71.62±0.34 79.34±0.28 73.59±0.18 87.67±0.43 85.52±0.25
FastGCN (Chen, Ma, and Xiao 2018) 80.36±0.98 70.02±0.76 76.99±0.58 73.96±0.48 85.86±0.25 85.47±0.40
DAGNN (Liu, Gao, and Ji 2020) 84.01±0.57 72.06±0.52 79.62±0.35 73.05±0.49 89.19±0.43 86.36±0.38
SDGNN (Zeng et al. 2021) 85.25±0.30 74.35±0.47 80.37±0.48 72.33±0.18 91.19±0.35 88.06±0.33
GEM (Luo et al. 2023) 83.01±0.78 73.98±0.39 78.50±0.56 73.90±0.84 92.54±0.35 83.81±0.68

Sp
ik

in
g

on
es SpikingGCN (Zhu et al. 2022) 77.72±0.65 70.58±0.54 77.14±0.53 62.95±0.22 87.01±0.62 88.35±0.34

Ours 82.50±0.51 72.52±0.33 78.98±0.45 66.26±0.39 92.80±0.55 89.41±0.36
Ours w/o LPSI 81.93±0.54 71.98±0.63 78.09±0.33 64.06±0.35 92.02±0.44 89.01±0.31
Ours w/o DRM 80.62±0.37 71.23±0.32 78.02±0.35 64.33±0.29 91.82±0.36 87.93±0.37
Ours r/w LLRM 77.79±0.49 70.39±0.40 77.52±0.46 63.98±0.25 89.52±0.70 88.21±0.46
Method ACM DBLP Co.CS Co.Ph. flickr blogcatalog

A
rt

ifi
ci

al
on

es

GCN (Kipf and Welling 2016) 93.30±0.72 82.56±0.33 90.73±0.46 95.05±0.37 57.46±0.48 72.51±0.46
GAT (Veličković et al. 2017) 93.21±0.54 82.15±0.30 90.42±0.38 95.02±0.29 53.62±0.29 68.49±0.55
SGC (Wu et al. 2019) 93.59±0.38 81.92±0.27 92.30±0.35 93.47±0.34 59.98±0.31 72.14±0.35
FastGCN (Chen, Ma, and Xiao 2018) 93.90±0.46 82.08±0.31 92.21±0.27 95.23±0.56 52.31±0.41 66.86±0.39
DAGNN (Liu, Gao, and Ji 2020) 94.06±0.33 82.76±0.47 92.56±0.26 93.48±0.25 61.76±0.47 73.92±0.37
SDGNN (Zeng et al. 2021) 94.49±0.23 83.19±0.45 92.80±0.50 96.02±0.19 59.36±0.21 74.06±0.32
GEM (Luo et al. 2023) 94.21±0.27 83.59±0.61 82.55±0.35 94.64±0.44 59.54±0.57 74.10±0.31

Sp
ik

in
g

on
es SpikingGCN (Zhu et al. 2022) 91.06±0.45 83.04±0.33 91.40±0.45 93.99±0.37 57.69±0.29 70.68±0.50

Ours 92.73±0.39 83.95±0.30 92.85±0.38 95.62±0.36 59.93±0.26 72.93±0.49
Ours w/o LPSI 92.03±0.44 83.53±0.36 92.40±0.40 94.28±0.45 58.45±0.34 72.01±0.46
Ours w/o DRM 91.65±0.30 83.41±0.38 92.16±0.39 94.36±0.36 58.81±0.39 71.98±0.65
Ours r/w LLRM 91.13±0.43 83.20±0.19 91.07±0.60 94.06±0.31 58.04±0.27 70.79±0.42

Table 1: Classification performance (%) on various datasets.

Method Cora Citeseer Pubmed ogbn-arxiv Ama.Ph Ama.CS
unlearnable Lap. 69.62±0.43 69.86±0.24 68.47±0.60 61.36±0.53 75.12±0.40 77.42±0.36
unlearnable RW 70.06±0.37 69.75±0.30 70.50±0.53 60.99±0.48 80.01±0.40 80.66±0.33
learnable Lap.1 82.62±0.32 72.76±0.29 79.01±0.51 65.97±0.32 92.65±0.43 89.35±0.26
learnable RW1 82.50±0.51 72.52±0.33 78.98±0.48 66.26±0.39 92.80±0.55 89.41±0.36
learnable Lap.2 82.44±0.49 72.61±0.32 78.69±0.46 66.01±0.29 92.76±0.37 89.65±0.39
learnable RW2 82.53±0.36 72.92±0.37 78.83±0.49 66.41±0.40 93.14±0.40 89.86±0.35
Method ACM DBLP Co.CS Co.Ph. flickr blogcatalog
unlearnable Lap. 83.63±0.29 76.55±0.30 80.62±0.43 87.95±0.32 54.39±0.52 68.06±0.38
unlearnable RW 84.42±0.31 76.74±0.35 82.37±0.46 90.93±0.32 55.69±0.43 68.89±0.34
learnable Lap.1 92.34±0.37 83.64±0.20 92.60±0.35 95.67±0.37 59.91±0.33 72.63±0.45
learnable RW1 92.73±0.39 83.95±0.30 92.85±0.38 95.62±0.36 59.93±0.26 72.93±0.49
learnable Lap.2 92.76±0.29 84.10±0.33 92.79±0.40 96.01±0.41 59.34±0.41 72.96±0.42
learnable RW2 93.01±0.36 83.86±0.28 93.03±0.49 95.86±0.40 58.98±0.46 72.88±0.39

Table 2: Effect of positional initial and integrated ways on performance (%). ‘Lap.’ and ‘RW’ are positional initialization using
Laplacian eigenvector and random walk. Subscripts 1 and 2 are different integrated ways mentioned, in turn, in section .

Results Analysis
In Table 1, our method is consistently comparable with the
SNNs-belonging GNN-SpikingGCN (Zhu et al. 2022) on
various datasets, and outperforms the traditional GNNs in
most cases. Such a phenomenon indicates that our dynam-
ic reactive Spiking GNN can generate more discriminative
spiking predictions under our dynamic reactive spiking re-
active mechanism and the sufficient exploration of the long-
range neighbor information. Meanwhile, we evaluate the
model’s generalization capability by active learning, which
discovers an acquisition function for successively select-
ing unlabeled data to optimize the model performance. We
adopt three acquisition ways: σ-optimal acquisition func-

tion (SOPT) (Ma, Garnett, and Schneider 2013), standard
predictive entropy one(PE) (Hernández-Lobato, Hoffman,
and Ghahramani 2014), and random selection of samples;
and the Area under the Learning Curve (ALC) is reported
on GCN (Kipf and Welling 2016), SpikingGCN (Zhu et al.
2022), and our method in Table 3, which show our approach
can gain better generalization capability than baselines.

Ablation Study. We evaluate the effectiveness of the de-
signed neuron-level dynamic reactive mechanism (DRM)
and learnable positional spiking integration (LPSI) in Ta-
ble 1. Our neuron-level DRM can improve the model learn-
ing ability under our employed threshold optimization strat-
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Figure 3: (a) Energy consumption comparisons. (b) The changing curve of each neuron’s threshold during optimization on
ACM. (c) The curve of each neuron’s threshold during optimization on blogcatalog. (d) Parameter analysis on T .

Models Cora ACM
SOPT-GCN 71.01±0.32 85.37±0.64
SOPT-SpikingGCN 72.09±0.36 86.96±0.62
SOPT-Ours 73.62±0.29 88.05±0.58
PE-GCN 59.54±1.26 83.16±0.98
PE-SpikingGCN 62.64±1.32 84.97±1.15
PE-Ours 64.07±1.35 85.94±0.89
Random-GCN 56.99±2.26 82.43±1.76
Random-SpikingGCN 60.82±2.05 84.77±1.59
Random-Ours 62.33±2.06 85.46±2.08

Table 3: The area under ALC on several datasets.

egy, which reflects that such brain’s dynamic reactive neu-
ron mechanism is necessary for the spiking GNN model. In
addition, the comparison between our method and the one
removing LPSI can reflect that, our model can capture more
long-range information with the integrated positional infor-
mation in the dynamic spiking graph transformation process.
Moreover, we also explore the model performance with dif-
ferent integrated strategies and positional initialization ways
in Table 2. Note that ‘unlearnable Lap.’ and ‘unlearnable R-
W’ in Table 2 represent the ones that first obtain the initial
positional information PE with c-dimension, then directly
fuse the spiking form [P̂E

1
, · · · , P̂E

T
] ( ˆPEt ∈ Rn×c, t =

1, · · · , T ) into the spiking output by adding operation. Our
model with learnable spiking positional signals can always
achieve better performance than the unlearnable ones, which
may be on account that the unlearnable positional signals
cannot adaptively be integrated with our spiking graph sig-
nals to generate more discriminative outputs. Moreover, we
compare our method with ‘Ours r/w LLRM’, which repre-
sents that the neuron-level reactive strategy in our model is
replaced with the layer-level one.

Energy Consumption. Our model mainly includes a spik-
ing graph feature transformation layer, and parameters of
both our proposed dynamic reactive mechanism and learn-
able positional spikes are almost negligible for the entire
model’s parameter number. In this way, our energy con-
sumption is in the same order as SpikingGCN, which can
save energy 10 times at least with the traditional GNNs (Kipf
and Welling 2016; Chen, Ma, and Xiao 2018; Wu et al. 2019;
Liu, Gao, and Ji 2020). The comparisons of energy con-

sumption with other methods are depicted in Figure 3(a).
Therefore, although the capabilities of our model on some
datasets in Table 1 have a little gap with existing ANNs-
belonging GNNs, our method with relatively low energy
consumption still has an advantage in practical applications.

Neuron Threshold Optimization. We have shown the
changing curve of each neuron’s threshold during the op-
timization process, as shown in Figures 3(b) and 3(c). These
curves can reveal that during the optimization process, our
method can spontaneously explore spatial-level dynamic re-
active states between multiple neurons.

Hyperparameter Analysis. We also explore the influence
of the hyper-parameter T on the graph classification effect
on five datasets with different related fields, depicted in Fig-
ure 3(d). Figure 3(d) shows that the model’s performance
would be enhanced with T when T is small, which is on ac-
count that the spiking signal generated with less T may not
sufficiently contain the information of the float propagated
features. And the spiking signal generated with T can suf-
ficiently capture the information of the float features when
T reaches a certain value, so that the performance would no
longer be affected by T in this case.

Conclusion
In this paper, we propose a dynamic reactive spiking graph
neural network to achieve powerful learning ability with
high bio-fidelity and energy efficiency. We adopt spiking
neurons with different optimizable thresholds to sponta-
neously explore the reactive dynamics between neurons.
Moreover, discriminative positional graph information is
learned through our designed neurons, which is also inte-
grated into spiking graph outputs to capture more long-range
neighbor information and thus enhance model expression.

Acknowledgments
Our work was supported by Joint Fund of Ministry of Edu-
cation of China (8091B022149), Key Research and Devel-
opment Program of Shaanxi (2021ZDLGY01-03), National
Natural Science Foundation of China (62132016, 62171343,
62071361 and 62201436), and Fundamental Research Fund-
s for the Central Universities (ZDRC2102).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16976



References
Alon, U.; and Yahav, E. 2021. On the bottleneck of graph
neural networks and its practical implications. Proc. Int.
Conf. Learn. Represent.
Anthony, L. F. W.; Kanding, B.; and Selvan, R. 2020. Car-
bontracker: Tracking and predicting the carbon footprint
of training deep learning models. arXiv preprint arX-
iv:2007.03051.
Bellec, G.; Salaj, D.; Subramoney, A.; Legenstein, R.; and
Maass, W. 2018. Long short-term memory and learning-to-
learn in networks of spiking neurons. Proc. Adv. Neural Inf.
Process. Syst., 31.
Brette, R.; and Gerstner, W. 2005. Adaptive exponential
integrate-and-fire model as an effective description of neu-
ronal activity. J. Neurophysiol., 94(5): 3637–3642.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013.
Spectral networks and locally connected networks on graph-
s. arXiv preprint arXiv:1312.6203.
Cao, Y.; Chen, Y.; and Khosla, D. 2015. Spiking deep con-
volutional neural networks for energy-efficient object recog-
nition. Int. J. Comput. Vis., 113: 54–66.
Chen, J.; Ma, T.; and Xiao, C. 2018. Fastgcn: fast learning
with graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247.
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020.
Simple and Deep Graph Convolutional Networks. arXiv
preprint arXiv:2007.02133.
Cheng, X.; Hao, Y.; Xu, J.; and Xu, B. 2020. LISNN: Im-
proving spiking neural networks with lateral interactions for
robust object recognition. In Proc. Int. Jt. Conf. Artif. Intell.,
1519–1525.
Cui, H.; Lu, Z.; Li, P.; and Yang, C. 2022. On positional and
structural node features for graph neural networks on non-
attributed graphs. In Proc. Int. Conf. Inf. Knowl. Manag.,
3898–3902.
Deco, G.; Cruzat, J.; and Kringelbach, M. L. 2019. Brain
songs framework used for discovering the relevant timescale
of the human brain. Nat. Commun., 10(1): 583.
Deco, G.; Vidaurre, D.; and Kringelbach, M. L. 2021. Re-
visiting the global workspace orchestrating the hierarchical
organization of the human brain. Nat. Hum. Behav., 5(4):
497–511.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Proc. Adv. Neural Inf. Process. Syst.,
3844–3852.
Diehl, P. U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.-C.; and
Pfeiffer, M. 2015. Fast-classifying, high-accuracy spiking
deep networks through weight and threshold balancing. In
Proc. Int. Jt. Conf. Neural Netw., 1–8. ieee.
Dwivedi, V. P.; Joshi, C. K.; Laurent, T.; Bengio, Y.; and
Bresson, X. 2020. Benchmarking graph neural networks.
Dwivedi, V. P.; Luu, A. T.; Laurent, T.; Bengio, Y.; and Bres-
son, X. 2022. Graph neural networks with learnable struc-
tural and positional representations. Proc. Int. Conf. Learn.
Represent.

Fan, S.; Wang, X.; Shi, C.; Lu, E.; Lin, K.; and Wang, B.
2020. One2multi graph autoencoder for multi-view graph
clustering. In Proc. Web Conf., 3070–3076.
Fang, W.; Yu, Z.; Chen, Y.; Masquelier, T.; Huang, T.; and
Tian, Y. 2021. Incorporating learnable membrane time con-
stant to enhance learning of spiking neural networks. In
Proc. IEEE Int. Conf. Comput. Vis., 2661–2671.
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