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Abstract

Deep learning methods often suffer performance degradation
due to domain shift, where discrepancies exist between train-
ing and testing data distributions. Domain generalization mit-
igates this problem by leveraging information from multiple
source domains to enhance model generalization capabilities
for unseen domains. However, existing domain generalization
methods typically present examples to the model in a ran-
dom manner, overlooking the potential benefits of structured
data presentation. To bridge this gap, we propose a novel
learning strategy, Symmetric Self-Paced Learning (SSPL),
for domain generalization. SSPL consists of a Symmetric
Self-Paced training scheduler and a Gradient-based Difficulty
Measure (GDM). Specifically, the proposed training sched-
uler initially focuses on easy examples, gradually shifting em-
phasis to harder examples as training progresses. GDM dy-
namically evaluates example difficulty through the gradient
magnitude with respect to the example itself. Experiments
across five popular benchmark datasets demonstrate the ef-
fectiveness of the proposed learning strategy.

Introduction
Most machine learning algorithms assume that training
(source domains) and testing (target domain) data are inde-
pendent and identically distributed. Violating this assump-
tion may cause model performance degradation due to a lack
of generalization ability in handling domain shifts (Ghifary
et al. 2015; Hendrycks and Dietterich 2019). Domain Adap-
tation (DA) (Pan and Yang 2009; Fernando et al. 2013) is an
intuitive solution to deal with domain shifts by utilizing tar-
get domain data to align the distribution between the source
and target domains (Ganin and Lempitsky 2015) or to fine-
tune the model trained on source domains (Long et al. 2015).
However, in many scenarios where target domain data is un-
available, large-scale data collection and annotation is pro-
hibitively expensive. For example, in traffic scene seman-
tic segmentation, capturing data that encompasses all traffic
scenes under all weather conditions is infeasible (Yue et al.
2019). Domain generalization (DG) (Li et al. 2018) is an
emerging solution to relax the constraints inherent in domain
adaptation methods. DG aims to learn a universal represen-
tation that can effectively generalize to unseen target do-
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mains by leveraging labelled data from multiple source do-
mains. Existing DG methods fall into three categories (Zhou
et al. 2022; Wang et al. 2022): data augmentation (Zhou et al.
2020), domain invariant representation (Wang et al. 2022),
and learning strategy (Arpit et al. 2022; Meng et al. 2022).

However, current DG methods uniformly weigh all train-
ing examples, presenting them to the model randomly, over-
looking the potential benefits of structured data presentation
based on example difficulty (Soviany et al. 2022). From an
optimization perspective, training in a structured order can
be seen as a continuation method (Bengio et al. 2009), pro-
viding a series of optimization objectives, where proceeding
objectives serve as a pre-training process that helps to opti-
mize and regularize the succeeding objectives (Wang, Chen,
and Zhu 2021). Analogously, in human learning, learning
knowledge in a structured order yields notable advantages
over a randomized approach (Bengio et al. 2009).

Yet, selecting the optimal structured order in the context
of DG poses challenges. Conventional methods typically
train models in an easy-to-hard order, progressively expand-
ing the training set from simpler to more complex examples,
resulting in a bias towards easy examples (Wang, Chen, and
Zhu 2021). In domain generalization, easy examples are of-
ten from domains with small domain gaps. Overemphasiz-
ing these examples while overlooking hard examples ham-
pers the model’s generalizability to domains with large do-
main gaps. Another problem that arises is how to measure
the difficulty of examples. Existing methods either utilize
predefined difficulty measures (Curriculum Learning) (Ben-
gio et al. 2009) or dynamically update example difficulty
with training loss (Self-Paced Learning) (Kumar, Packer,
and Koller 2010). However, predefined difficulty measures
do not integrate the model’s feedback, while training loss
raises an inaccurate difficulty measurement issue when dif-
ferent examples yield identical training losses.

To address the challenges, we propose a novel learning
strategy named Symmetric Self-Paced Learning (SSPL) for
domain generalization, which is depicted in Figure 1. The
contributions of our work are threefold:

• We demonstrate that presenting examples in a structured
order can effectively improve the model’s generalization
ability to unseen domains. The proposed learning strategy
effectively improves the model’s generalizability, particu-
larly in domains with large domain gaps.
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Figure 1: Symmetric Self-Paced Learning (SSPL). In the
first epoch, SSPL assigns the highest weight to the easiest
example (a cat in autumn) and then decreases weights up
to the hardest example (a cat in dim light). As the training
proceeds, SSPL gradually reduces the weight of easy ex-
amples and increases the weight of hard examples. By the
final epoch, the weights between easy and hard examples
are reversed: the easiest example receives zero weight, and
weights then increase until the hardest example.

• We propose a Symmetric Self-Paced training scheduler
that dynamically evaluates example difficulty throughout
training and adjusts the data presentation order accord-
ingly. The scheduler initially assigns larger weights to eas-
ier examples and lower weights to more challenging ones.
These weights gradually change as training progresses, re-
sulting in a reversal of weights by the end of training. This
mechanism ensures balanced attention is given to exam-
ples with different difficulties.

• We propose a Gradient-based Difficulty Measure that
evaluates example difficulty based on gradient magnitude.
Unlike the training loss that solely quantifies the differ-
ence between predictions and ground truth, GDM also
considers input data features. Consequently, GDM effec-
tively addresses the inaccurate difficulty measurement is-
sue. By incorporating GDM, the performance of the pro-
posed training scheduler is further boosted.

The proposed learning strategy is designed to complement
existing DG methods, making it applicable alongside any
DG method. Experiments conducted on five benchmark
datasets, including Digits, PACS, Office-Home, VLCS, and
NICO++, demonstrate the effectiveness of the proposed
learning strategy. Ablation studies further validate the effec-
tiveness and robustness of the proposed training scheduler
and difficulty measure in domain generalization. The code
is available in https://github.com/RobustMM/VIGIL.

Related Work
Domain Shift. Many machine learning methods experi-
ence a performance drop when discrepancies exist between
source (training) and target (testing) domains. The dif-
ference in distribution is termed the “domain shift” (Pan
and Yang 2009). Domain adaptation (DA) methods have
been introduced to mitigate domain shifts by aligning the
marginal (Baktashmotlagh et al. 2013; Long et al. 2015)

or conditional (Long et al. 2018; Luo et al. 2020) distri-
butions of the source and target domains. DA has received
considerable attention across various settings, such as semi-
supervised (Saito et al. 2019) and unsupervised (Long et al.
2017) scenarios, which utilize partially labelled or unla-
belled target domain data during the training phase. How-
ever, collecting target domain data in advance may not al-
ways be practical (Yue et al. 2019).
Domain Generalization. Vasiljevic, Chakrabarti, and
Shakhnarovich (2016) demonstrated that models trained
with various blur augmentations fail to generalize to un-
seen blurs or blurs with different parameters. Gilmer et al.
(2018) argued that the robustness of models to data shift sig-
nificantly affects the reliability of real-world machine learn-
ing systems. The domain generalization (DG) problem was
first introduced as a machine learning problem by Blan-
chard, Lee, and Scott (2011) and later formally named “Do-
main Generalization” by Muandet, Balduzzi, and Schölkopf
(2013). In medical applications (Blanchard, Lee, and Scott
2011), DG is motivated by the fact that the distribution be-
tween different patients’ data is different, leading to models
trained on historical patients’ data failing to generalize to
new patients. Moreover, acquiring data for new patients in
advance is often impractical. In computer vision, Torralba
and Efros (2011) proposed a seminal work for cross-domain
generalization issues by investigating the cross-data general-
ization performance of object recognition models with five
popular benchmark datasets. Recently, DG problems have
gained attention in other computer vision applications (Shi
et al. 2020). However, existing DG methods typically train
models with data presented in a random order, which over-
looks the potential impact of data presentation order on the
model’s generalization performance.
Curriculum Learning, proposed by Bengio et al. (2009),
has demonstrated its effectiveness in improving machine
learning models by presenting training examples in a struc-
tured order. However, conventional curriculum learning al-
gorithms rely on manually designed difficulty measures to
evaluate the difficulty of training data (Wang, Chen, and Zhu
2021). For example, sentence length is commonly utilized as
a difficulty measure in Natural Language Processing tasks
to express the complexity of a sentence or paragraph (Tay
et al. 2019; Platanios et al. 2019). Similarly, information en-
tropy is widely used for tabular data (el Bouri et al. 2020),
while measures such as data source (Chen and Gupta 2015),
signal intensity (Choi et al. 2019), and human-annotation-
based image difficulty scores (Tudor Ionescu et al. 2016)
have been designed for image data. But these predefined dif-
ficulty measures remain fixed during training and do not in-
tegrate the model’s feedback (Wang, Chen, and Zhu 2021).
To address this limitation, Kumar, Packer, and Koller (2010)
introduced Self-Paced Learning (SPL), which dynamically
updates the difficulty measure by using the example-wise
training loss of the current model as a criterion. SPL has
been successfully applied to various areas, including Multi-
Task Learning (Li et al. 2017a), Active Learning (Tang and
Huang 2019), Object Detection (Sangineto et al. 2018), and
Domain Adaptation (Soviany et al. 2021). Nonetheless, the
effectiveness of SPL in DG has yet to be explored.
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Preliminaries
Notation. Let X denote an input feature space with di-
mension d and Y a target label space. A domain is com-
posed of data sampled from a distribution D, where D =
(xi, yi)

n
i=1 ∼ P(X,Y ), x ∈ X ⊂ Rd, y ∈ Y ⊂ R and n is

the number of data in the domain. Here, P(X,Y ) denotes the
joint distribution of the input sample and output label, where
X and Y denote the corresponding random variables (Zhou
et al. 2022; Wang et al. 2022).
Domain Generalization. For the task of domain general-
ization, the input is N source domains (training set), S ={
Di | i = 1, · · · , N

}
, where Di =

{(
xi
j , y

i
j

)}ni

j=1
denotes

the ith domain. The joint distributions between each pair of
domains are different: P (i)

(X,Y ) ̸= P
(j)
(X,Y ), i ̸= j. The goal of

domain generalization is to learn a robust and generalizable
predictive function f : X → Y from the N source domains
to achieve a minimum prediction error on an unseen target
domain T , where T cannot be accessed during training and
P

(T )
(X,Y ) ̸= P

(i)
(X,Y ) for i ∈ {1, · · · , N}.

Methodology
We begin by describing the learning objective of SSPL,
followed by the proposed Symmetric Self-Paced training
scheduler. Then we outline the proposed Gradient-based
Difficulty Measure. The structure of SSPL is illustrated in
Figure 2, and the algorithm is summarized in Algorithm 1.

Learning Objective
The learning objective of Symmetric Self-Paced Learning
for domain generalization is formulated as follows:

min
w

E(w)
N∑
i=1

vi(ℓ (fw(T (xi)), yi)). (1)

Here, vi ∈ [0, 1] denotes the weight assigned to example
xi and dynamically changes as the training proceeds; ℓ(·, ·)
denotes the loss function; fw(·) denotes the predictive func-
tion, parameterized by w; and T (·) denotes the domain gen-
eralization methods, which can be any existing DG method.

Symmetric Self-Paced Training Scheduler
Conventional Curriculum Learning and Self-Paced Learn-
ing training schedulers progressively increase the training
set from easier to harder examples until the entire training
set is included (Wang, Chen, and Zhu 2021; Soviany et al.
2022). However, this approach biases the training towards
easy examples, which are trained more frequently than hard
ones. Although frequently trained easy examples accelerate
initial convergence, hard examples are more informative for
learning in the later stages (Shrivastava, Gupta, and Girshick
2016). Overlooking these hard examples compromises data
sample diversity, resulting in a suboptimal training process
and guiding the model towards a suboptimal solution. In do-
main generalization, easy examples are often from domains
with small domain gaps. Overemphasizing these examples
while overlooking hard examples hampers the model’s gen-
eralizability to domains with large domain gaps.

Algorithm 1: Symmetric Self-Paced Learning for Domain
Generalization

1: Input: D: training set; fw(·): the learning model pa-
rameterized by w; T (·): domain generalization method;
ℓ(·, ·): loss function; ne: maximum number of epochs.

2: Output: w∗: the optimal parameters for fw(·)
3: Compute γe by Eq. 2 ▷ Compute epoch step size
4: for i = 1 to ne do
5: Compute vie by Eq. 3 ▷ Compute the weight

assigned to the easiest example in epoch i
6: Compute vih by Eq. 4 ▷ Compute the weight

assigned to the hardest example in epoch i
7: Compute γi

d by Eq. 5 ▷ Compute element step size
for epoch i

8: Compute ξx by Eq. 8 ▷ Compute difficulty for each
example

9: Sort(D, ξx) ▷ Sort examples according to their
difficulty rank.

10: Compute vix by Eq. 6 ▷ Compute weight for each
example according to their difficulty

11: ℓx = vix · ℓ(fw(T (x)), y) ▷ Compute weighted loss
12: Update w∗

13: end for

To address this challenge, we propose a Symmetric Self-
Paced training scheduler that ensures balanced attention is
given to examples with different difficulties. The proposed
training scheduler dynamically adjusts weights assigned to
easy and hard examples, resulting in a reversal of weights
between easy and hard examples at the end of training. As
depicted in Figure 1, in the first epoch, the easiest examples
receive a weight of one while the hardest ones are assigned
zero weight. Throughout the training, the weights of easy
examples gradually decrease while those of hard examples
increase. By the last epoch, the weights assigned to the eas-
iest and hardest examples have been reversed.

As previously mentioned, throughout the training process,
from the first epoch to the final one, the weight assigned to
the easiest example decreases from one to zero, while the
weight assigned to the hardest example increases from zero
to one. Consequently, the epoch step size γe, which signifies
the magnitude of the weight modifications for the easiest and
hardest examples, is computed with the following equation,

γe =
v1e − vne

e

ne
=

1

ne
. (2)

In this context, ne is the number of training epochs, while
v1e and vne

e designate the weights assigned to the easiest ex-
ample in the first and final epochs, respectively, with v1e = 1
and vne

e = 0. Therefore, the weights assigned to the easiest
and hardest examples in epoch i, denoted as vie and vih, are
computed with Equations 3 and 4.

vie = v1e − γe · (i− 1) = 1− i− 1

ne
(3)

vih = v1h + γe · (i− 1) = 0 +
i− 1

ne
(4)
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Figure 2: Overview of the Symmetric-Self Paced Learning (SSPL) for domain generalization within one epoch. Given training
data x and domain generalization function T (·), the target predictive function fw(·) yields the original loss ℓx. Subsequently,
SSPL calculates the difficulty ξx for x with the provided difficulty measure, and the training scheduler determines its weight,
vix, based on the difficulty rank. Then, fw(·) is updated using the weighted loss.

γi
d =

vie − vih
nd

(5)

Once vie and vih are calculated, the element step size, γi
d, can

be determined, which represents the magnitude of weight
changes for each example within the ith epoch. The compu-
tation of γi

d is depicted in Equation 5, where nd is the total
number of examples.

Finally, the proposed training scheduler calculates the
weight, denoted as vij , for each example within the ith

epoch, where j signifies the example ranked jth in terms
of difficulty. The weight vij is calculated by Equation 6.

vij = v1e − γe · (i− 1)− γi
d · j (6)

Note that γi
d can be computed either globally or locally.

When computed globally, γi
d is computed over the entire

dataset at once for each epoch. This approach assigns unique
weights to examples based on their difficulty rank across the
entire dataset, thereby providing precise weight calculation.
However, computing γi

d globally can be computationally ex-
pensive as it necessitates storing difficulty information for
each example until the end of an epoch, limiting its scala-
bility for large datasets. To address this limitation, γi

d can be
computed locally with Equation 7,

γi
d =

vie − vih
nb

, (7)

where nb denotes the batch size used for model training. The
local γi

d is computed batch-wise and weights are assigned to
examples based on their difficulty rank within a batch. Since
each batch is sampled independently, the local γi

d serves as
an estimate of the global γi

d. As the batch size increases,
the local γi

d approximates the global γi
d more closely. When

the batch size equals the dataset size, the local γi
d will be

equivalent to the global γi
d. Although the local γi

d is less
precise than the global γi

d, it is fast to compute and devoid
of the need to store the difficulty of examples. The trade-off
between accuracy and computational efficiency makes the
local γi

d a practical alternative in scenarios where the com-
putational overhead or memory constraints are a concern.

Gradient-based Difficulty Measure
Current methods evaluate example difficulty through prede-
fined metrics, such as sentence length, or dynamically up-
date it based on training loss, such as cross-entropy loss.
However, predefined difficulty measures do not integrate the
model’s feedback, and training loss, focusing only on the
difference between predictions and ground truth, raises an
inaccurate difficulty measurement issue when different ex-
amples yield identical training losses.

To address these limitations, we propose the Gradient-
based Difficulty Measure (GDM), which evaluates exam-
ple difficulty through dynamic measurement of the gradient
magnitude with respect to the example itself. Unlike train-
ing loss, the gradient avoids inaccurate difficulty assessment
by taking input features into account. As a result, even if
examples yield the same loss, their gradients can differ. Ad-
ditionally, loss landscapes can encompass plateaus or sad-
dle points, where training loss remains relatively stable even
with substantial shifts in model parameters. In these scenar-
ios, utilizing training loss for evaluating example difficulty
can be misleading. Conversely, the gradient provides finer-
grained insights into changes in model parameters, mak-
ing the gradient magnitude a more informative approach for
evaluating difficulty. The GDM is computed with Equation
8, where ξx denotes the difficulty of the example x.

ξx =

∥∥∥∥∂ℓ(f(x), y)∂x

∥∥∥∥
2

(8)

Experiments
Experiment Setting
Datasets. The proposed approach is evaluated on five popu-
lar domain generalization benchmark datasets, which cover
a variety of image classification problems. (1) Digits (Zhou
et al. 2020) consists of four digit recognition tasks, namely
MNIST (LeCun et al. 1998), MNIST-M (Ganin and Lempit-
sky 2015), SVHN (Netzer et al. 2011), and SYN (Ganin and
Lempitsky 2015). (2) PACS (Li et al. 2017b) consists of four
domains, namely Photo, Art Painting, Cartoon and Sketch.
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(3) Office-Home (Venkateswara et al. 2017) was initially in-
troduced for domain adaptation and is becoming popular in
the DG community (Carlucci et al. 2019). It contains four
domains: Artistic, Clipart, Product, and Real World, where
each domain has 65 classes related to office and home ob-
jects. (4) VLCS (Fang, Xu, and Rockmore 2013) consists
of four domains of data collected from Caltech101 (Fei-
Fei, Fergus, and Perona 2004), PASCAL (Everingham et al.
2010), LabelMe (Russell et al. 2008), and SUN (Choi et al.
2010), where five common categories are collected: bird,
car, chair, dog and person. (5) NICO++ (Zhang et al.
2023) is the latest domain generalization dataset that was
constructed in 2023 for OOD (Out-of-Distribution) image
classification. Compared with the previous four datasets,
NICO++ is much larger in scale, with 88,866 images in total.
Figure 3 depicts example images showcasing domain gaps
across benchmark datasets. Due to page constraints, a com-
prehensive illustration is provided in the supplementary1.
Baselines. We assess the efficacy and mode-agnostic char-

Figure 3: Example images from Digits (1st row 1-4
columns), PACS (2nd row 1-4 columns), Office-Home (1st
row 5-8 columns), and VLCS (2nd row 5-8 columns)
datasets demonstrate the presence of domain gaps, posing
significant challenges for domain generalization.

acteristic of our learning strategy by incorporating several
state-of-the-art domain generalization methods from various
categories. These methods include CrossGrad (Shankar et al.
2018), MixStyle (Zhou et al. 2021), DomainMix (Sun et al.
2022), and EFDMix (Zhang et al. 2022). Additionally, we
apply our strategy alongside classic data augmentation tech-
niques such as RandomErasing, RandomRotation, Flip, and
ColorJitter. An Empirical Risk Minimization (ERM) base-
line is also included, which merges data from all source do-
mains without utilizing domain generalization techniques.
Evaluation Metrics. We adopt the leave-one-out-test eval-
uation strategy as the evaluation metric following the prior
works (Li et al. 2017b; Carlucci et al. 2019; Li et al. 2019;
Zhou et al. 2022). Specifically, we select one domain as the
test domain at a time and use the remaining domains as the
source domains for training. We report the accuracy for each
separate domain. Performance measures are reported as top-
1 classification accuracy (%) averaged over ten runs, along
with their corresponding 95% confidence intervals.
Network Structure. The network structure is chosen by fol-
lowing the previous work (Carlucci et al. 2019; Li et al.
2019; Zhou et al. 2020). In the Digits dataset, images are
resized to 32 × 32 and converted to RGB by replicating
channels. The backbone of the neural network is constructed
by 3 × 3 Conv layers (64 kernels), each followed by a

1Please refer to the version with Appendix in arXiv.

ReLU activation function and a 2×2 max-pooling layer. For
the PACS, Office-Home, VLCS and NICO++ datasets, im-
ages are resized to 224 × 224, and the ImageNet pretrained
ResNet18 (He et al. 2016) was chosen as the backbone.
Training. Our methodology is implemented using the
PyTorch libraries. The optimizer utilized for training is
Stochastic Gradient Descent (SGD), with a momentum of
0.9 and a weight decay of 5e-4. For the Digits dataset, we
train the networks with an initial learning rate of 0.05 and a
batch size of 64 for 50 epochs. The learning rate is decayed
by a factor of 0.1 every 20 epochs. For the PACS, Office-
Home, and VLCS datasets, the networks are trained with a
learning rate of 0.01 and a batch size of 32 for 50 epochs. For
the NICO++ dataset, the networks are trained with a learn-
ing rate of 0.005 and a batch size of 64 for 50 epochs. All
experiments are conducted on NVIDIA Tesla A100 GPUs.

MNIST MNIST-M SVHN SYN

ERM 96.4 ± .2 62.6 ± .1 66.7 ± .1 83.8 ± .2
ERMSS 96.9 ± .1 65.5 ± .4 67.7 ± .4 84.4 ± .3
Improv. ↑0.54% ↑4.61% ↑1.42% ↑0.67%
Erasing 95.0 ± .2 55.4 ± .2 68.5 ± .4 83.7 ± .4
ErasingSS 95.9 ± .1 57.9 ± .4 71.6 ± .4 84.9 ± .5
Improv. ↑0.93% ↑4.49% ↑4.57% ↑1.41%
Rotation 95.0 ± .5 55.4 ± .6 68.4 ± .4 83.7 ± .4
RotationSS 97.3 ± .2 64.5 ± .3 69.9 ± .4 88.6 ± .7
Improv. ↑2.42% ↑16.31% ↑2.12% ↑5.84%
ColorJitter 96.6 ± .3 65.7 ± .3 68.8 ± .3 83.8 ± .3
ColorJitterSS 96.9 ± .3 68.2 ± .3 70.5 ± .4 85.1 ± .6
Improv. ↑0.17% ↑3.71% ↑2.34% ↑1.53%
CrossGrad 96.1 ± .3 62.2 ± .3 65.6 ± .3 83.3 ± .3
CrossGradSS 97.1 ± .4 63.5 ± .6 68.9 ± .4 84.2 ± .2
Improv. ↑0.96% ↑2.07% ↑4.92% ↑0.97%
MixStyle 96.7 ± .2 64.4 ± .4 71.1 ± .2 85.3 ± .3
MixStyleSS 97.3 ± .4 65.9 ± .4 72.7 ± .4 86.7 ± .3
Improv. ↑0.55% ↑2.20% ↑2.26% ↑1.59%
DomainMix 95.1 ± .4 57.4 ± .3 66.3 ± .5 77.6 ± .4
DomainMixSS 96.3 ± .6 61.0 ± .3 69.4 ± .6 77.8 ± .4
Improv. ↑1.23% ↑6.09% ↑4.57% ↑0.23%

EFDMix 96.4 ± .2 65.1 ± .6 73.1 ± .4 85.7 ± .4
EFDMixSS 96.6 ± .2 67.0 ± .4 74.2 ± .6 87.2 ± .5
Improv. ↑0.16% ↑2.84% ↑1.42% ↑1.73%

Table 1: Leave-one-domain-out results on Digit dataset
(with 95% confidence intervals).

Experimental Results
In the presented tables, significant improvements are high-
lighted in bold, while minor improvements and declines re-
main in regular text. The subscripts S and SS denote the re-
sults of the baseline integrated with classic SPL and SSPL,
respectively. Due to page constraints, we only show evalu-
ation results of the Digits, PACS, Office-Home, and VLCS
datasets. Please refer to the supplementary material for the
results of the Flip baseline and NICO++ dataset.
Evaluation on Digits. Table 1 presents the enhanced per-
formance achieved through our SSPL strategy across all do-
mains, in combination with various baselines. Notable im-
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provements of up to 2.42%, 16.31%, 4.92%, and 5.84% are
observed in the MNIST, MNIST-M, SVHN, and SYN do-
mains, respectively. Intriguingly, SSPL amplifies the effec-
tiveness of Random Rotation, achieving state-of-the-art per-
formance in the MNIST and SYN domains, surpassing most
existing Domain Generalization techniques. Although Ran-
dom Rotation alone yields a modest 55.41% accuracy in the
MNIST-M domain, integrating it with SSPL boosts perfor-
mance to 64.45%, aligning with most baselines. As reflected
in Table 1, SSPL significantly enhances the model’s gen-
eralization performance to target domains with substantial
domain gaps, such as MNIST-M and SVHN. On the other
hand, SSPL also achieves modest improvements in domains
with a smaller domain gap, like MNIST.
Evaluation on PACS. The key findings from Table 2 are
summarized as follows. (1) Our SSPL strategy gains ac-
curacy improvement of up to 4.58%, 6.12%, 1.11%, and
10.41% in the Art Painting, Cartoon, Photo, and Sketch do-
mains, respectively. (2) These improvements are not linked
to specific domain generalization methods but are more
closely correlated to the magnitude of the domain gap. As
earlier noted, regardless of baseline methods, SSPL consis-
tently yields significant improvements in domains with large
domain gaps, such as Cartoon and Sketch, and moderate im-
provements in the domains with smaller gaps, like Photo
(see Figure 3). This observation underscores the model-
agnostic attributes of the proposed learning strategy.

Art Cartoon Photo Sketch

ERM 75.8 ± .4 72.7 ± .2 94.9 ± .2 62.9 ± .1
ERMSS 79.3 ± .4 75.3 ± .2 95.9 ± .5 69.5 ± .4
Improv. ↑4.58% ↑3.66% ↑1.11% ↑10.41%
Erasing 77.2 ± .4 71.5 ± .3 95.6 ± .3 63.0 ± .4
ErasingSS 80.1 ± .4 73.4 ± .3 95.9 ± .5 66.8 ± .5
Improv. ↑3.82% ↑2.67% ↑0.38% ↑5.99%
Rotation 76.8 ± .4 69.7 ± .5 95.6 ± .4 67.9 ± .4
RotationSS 79.5 ± .5 71.6 ± .5 95.7 ± .4 69.9 ± .3
Improv. ↑3.53% ↑2.74% ↑0.14% ↑2.90%
ColorJitter 76.3 ± .1 67.3 ± .3 94.7 ± .3 68.6 ± .5
ColorJitterSS 79.0 ± .3 71.5 ± .6 95.4 ± .4 72.1 ± .4
Improv. ↑3.47% ↑6.12% ↑0.73% ↑5.03%
CrossGrad 76.5 ± .3 72.3 ± .3 94.9 ± .5 61.8 ± .7
CrossGradSS 79.1 ± .2 74.7 ± .6 95.5 ± .4 65.8 ± .3
Improv. ↑3.44% ↑3.36% ↑0.63% ↑6.41%
MixStyle 77.8 ± .5 73.8 ± .3 95.6 ± .6 64.6 ± .8
MixStyleSS 80.8 ± .6 75.5 ± .6 96.0 ± .5 69.3 ± .4
Improv. ↑3.83% ↑2.28% ↑0.41% ↑7.26%
DomainMix 77.9 ± .5 64.1 ± .3 94.1 ± .7 58.6 ± .3
DomainMixSS 79.2 ± .5 67.2 ± .5 94.3 ± .3 62.4 ± .6
Improv. ↑1.63% ↑4.95% ↑0.19% ↑6.38%
EFDMix 82.3 ± .3 75.4 ± .4 95.7 ± .5 71.6 ± .3
EFDMixSS 83.6 ± .3 77.3 ± .5 96.0 ± .3 74.2 ± .7
Improv. ↑1.65% ↑2.44% ↑0.29% ↑3.66%

Table 2: Leave-one-domain-out results on PACS dataset
(with 95% confidence intervals).

Evaluation on Office-Home and VLCS. From Tables 3
and 4, we observe similar results as in Tables 1 and 2. In

the Office-Home dataset, SSPL gains improvements of up
to 2.27%, 5.33%, 2.07%, and 1.42% in the Artistic, Clipart,
Product, and RealWorld domains. Similarly, in the VLCS
dataset, SSPL gains improvements of up to 2.11%, 5.37%,
3.26%, and 7.49% in the Caltech, Labelme, Pascal, and Sun
domains. Once more, SSPL consistently achieves notable
improvements in domains with large domain gaps and mod-
est improvements in domains with smaller domain gaps.
These results further underscore the effectiveness of SSPL
in addressing domain generalization challenges, particularly
in contexts with substantial domain shifts.

Artistic Clipart Product RealWorld

ERM 58.6 ± .3 47.9 ± .4 73.7 ± .4 75.8 ± .4
ERMSS 59.4 ± .4 49.2 ± .2 74.3 ± .3 76.0 ± .3
Improv. ↑1.28% ↑2.67% ↑0.73% ↑0.21%

Erasing 59.5 ± .6 47.1 ± .4 73.6 ± .3 75.2 ± .3
ErasingSS 59.7 ± .3 49.1 ± .4 75.1 ± .6 76.3 ± .3
Improv. ↑0.49% ↑4.31% ↑2.07% ↑1.42%
Rotation 57.3 ± .5 45.5 ± .5 73.7 ± .4 74.4 ± .3
RotationSS 58.2 ± .4 46.3 ± .3 74.5 ± .4 74.6 ± .4
Improv. ↑1.59% ↑1.78% ↑1.13% ↑0.14%

ColorJitter 56.8 ± .3 48.0 ± .4 70.9 ± .3 73.2 ± .4
ColorJitterSS 58.1 ± .5 50.6 ± .5 71.3 ± .4 73.7 ± .4
Improv. ↑2.27% ↑5.33% ↑0.49% ↑0.59%

CrossGrad 58.4 ± .6 47.9 ± .5 73.7 ± .2 75.2 ± .3
CrossGradSS 59.4 ± .3 48.2 ± .3 74.5 ± .3 75.6 ± .5
Improv. ↑1.69% ↑0.69% ↑1.00% ↑0.48%

MixStyle 59.2 ± .3 48.6 ± .3 73.9 ± .4 75.4 ± .2
MixStyleSS 60.2 ± .3 49.9 ± .6 74.5 ± .5 75.5 ± .3
Improv. ↑1.69% ↑2.51% ↑0.76% ↑0.17%

DomainMix 57.4 ± .4 45.8 ± .5 73.1 ± .4 75.2 ± .4
DomainMixSS 58.4 ± .3 47.2 ± .4 73.9 ± .3 75.3 ± .2
Improv. ↑1.83% ↑2.86% ↑1.05% ↑0.20%

EFDMix 60.1 ± .3 52.0 ± .4 73.8 ± .4 75.2 ± .3
EFDMixSS 60.4 ± .3 53.5 ± .3 74.5 ± .4 75.3 ± .2
Improv. ↑0.58% ↑2.87% ↑0.92% ↑0.06%

Table 3: Leave-one-domain-out results on Office-Home
dataset (with 95% confidence intervals).

Ablation Study
Comparison with Classic Self-Paced Learning (SPL) Al-
gorithms. To further validate the effectiveness of the pro-
posed learning strategy, we compare it with the classic Self-
Paced Learning (SPL) strategy. The comparison results are
shown in Table 5. Due to space constraints, Table 5 only in-
cludes comparison results using Empirical Risk Minimiza-
tion (ERM) as the baseline. A complete comparison across
all baselines is provided in the supplementary material.

Comparing the results presented in Tables 1 - 5, we can
see there is a notable decline in generalization performance
when integrating classic Self-Paced Learning strategy with
ERM, particularly in domains with large domain gaps, such
as SVHN, Sketch and Pascal. Additionally, there is an ap-
proximate 20% performance drop across all domains in the
Office-Home dataset. In contrast, SSPL demonstrates a sig-
nificant improvement in these domains. These observations
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Caltech Labelme Pascal Sun

ERM 96.0 ± .3 63.2 ± .4 74.1 ± .2 70.7 ± .6
ERMSS 96.9 ± .3 65.0 ± .2 75.7 ± .4 73.7 ± .4
Improv. ↑0.91% ↑2.78% ↑2.06% ↑4.26%
Erasing 96.0 ± .3 62.5 ± .4 75.3 ± .5 69.8 ± .3
ErasingSS 96.9 ± .4 64.0 ± .4 75.6 ± .6 71.6 ± .4
Improv. ↑0.90% ↑2.34% ↑0.38% ↑2.52%
Rotation 95.0 ± .5 61.4 ± .5 70.3 ± .3 67.2 ± .2
RotationSS 96.2 ± .2 62.8 ± .5 70.7 ± .4 70.4 ± .6
Improv. ↑1.28% ↑2.21% ↑0.48% ↑4.76%
ColorJitter 92.9 ± .6 64.0 ± .4 67.9 ± .3 62.9 ± .1
ColorJitterSS 94.0 ± .5 66.4 ± .5 69.4 ± .5 67.6 ± .4
Improv. ↑1.15% ↑3.72% ↑2.21% ↑7.49%
CrossGrad 96.2 ± .4 63.2 ± .2 74.2 ± .5 70.7 ± .5
CrossGradSS 97.2 ± .6 66.5 ± .3 75.0 ± .3 73.4 ± .4
Improv. ↑1.03% ↑5.37% ↑1.07% ↑3.95%
MixStyle 95.9 ± .3 63.3 ± .4 74.1 ± .4 70.3 ± .5
MixStyleSS 96.5 ± .3 64.5 ± .4 74.7 ± .4 73.0 ± .4
Improv. ↑0.58% ↑1.90% ↑0.81% ↑3.88%
DomainMix 93.9 ± .4 63.2 ± .3 70.0 ± .3 69.1 ± .3
DomainMixSS 95.9 ± .4 63.7 ± .4 72.3 ± .3 71.6 ± .4
Improv. ↑2.11% ↑0.86% ↑3.26% ↑3.60%
EFDMix 96.9 ± .4 62.9 ± .3 74.7 ± .3 70.3 ± .3
EFDMixSS 98.0 ± .5 63.8 ± .3 75.6 ± .3 73.3 ± .4
Improv. ↑1.17% ↑1.56% ↑1.18% ↑4.22%

Table 4: Leave-one-domain-out results on VLCS dataset
(with 95% confidence intervals).

further demonstrate the effectiveness of the proposed learn-
ing strategy and highlight the importance of hard examples
in enhancing model generalizability. Overlooking these ex-
amples hampers the model’s generalization performance in
unseen domains.

Effectiveness of GDM. To validate the effectiveness of our
proposed difficulty measure, we conduct a comparative anal-
ysis with the conventional difficulty measure, training loss,
as depicted in Table 6. Given that the benchmark datasets
are designed for image classification tasks, the training loss
criterion is based on cross-entropy. For this analysis, we
also use ERM as the baseline. As illustrated in Table 6, the
Gradient-based Difficulty Measure (GDM) consistently out-
performs cross-entropy loss, particularly in domains with
substantial domain gaps, such as MNIST-M, Cartoon, Cli-
part, and Sun. These results provide evidence of the effec-
tiveness of GDM, highlighting gradient magnitude as a more
informative approach for evaluating example difficulty in
domain generalization. Notably, even when solely utilizing
cross-entropy loss as the difficulty measure, our Symmetric
Self-Paced Learning strategy still yields significant perfor-
mance improvement across most domains, highlighting its
robustness and effectiveness. To further validate the effec-
tiveness of GDM, we also compare GDM and cross-entropy
loss within the classic SPL framework. Please refer to the
supplementary material for detailed results.

MNIST MNIST-M SVHN SYN

ERMS 90.5 ± .5 55.4 ± .4 48.7 ± .4 64.9 ± .8
Improv. ↓6.07% ↓11.59% ↓26.99% ↓22.56%
ERMSS 96.9 ± .1 65.5 ± .4 67.7 ± .4 84.4 ± .3
Improv. ↑0.54% ↑4.61% ↑1.42% ↑0.67%

Art Cartoon Photo Sketch

ERMS 66.4 ± .9 71.0 ± .4 91.0 ± .2 55.3 ± .8
Improv. ↓12.43% ↓2.27% ↓4.07% ↓12.05%
ERMSS 79.3 ± .4 75.3 ± .2 95.9 ± .5 69.5 ± .4
Improv. ↑4.58% ↑3.66% ↑1.11% ↑10.49%

Artistic Clipart Product RealWorld

ERMS 48.0 ± .5 38.5 ± .4 60.0 ± .3 60.1 ± .7
Improv. ↓18.18% ↓19.56% ↓18.67% ↓20.66%
ERMSS 59.4 ± .4 49.2 ± .2 74.3 ± .3 76.0 ± .3
Improv. ↑1.28% ↑2.67% ↑0.73% ↑0.21%

Caltech Labelme Pascal Sun

ERMS 96.5 ± .4 64.0 ± .3 64.5 ± .5 54.0 ± .5
Improv. ↑0.49% ↑1.17% ↓13.06% ↓23.06%
ERMSS 96.9 ± .3 65.0 ± .2 75.7 ± .4 73.7 ± .4
Improv. ↑0.91% ↑2.78% ↑2.06% ↑4.26%

Table 5: Comparison between SSPL and SPL.

MNIST MNIST-M SVHN SYN

Loss 96.6 ± .3 64.7 ± .3 67.0 ± .2 84.1 ± .2
GDM 96.9 ± .1 65.5 ± .4 67.7 ± .4 84.4 ± .3

Art Cartoon Photo Sketch

Loss 77.8 ± .2 73.6 ± .3 95.3 ± .3 67.3 ± .2
GDM 79.3 ± .4 75.3 ± .2 95.9 ± .5 69.5 ± .4

Artistic Clipart Product RealWorld

Loss 59.2 ± .2 48.5 ± .3 74.1 ± .2 75.5 ± .1
GDM 59.4 ± .4 49.2 ± .2 74.3 ± .3 76.0 ± .3

Caltech Labelme Pascal Sun

Loss 96.6 ± .2 64.3 ± .3 75.0 ± .3 72.9 ± .2
GDM 96.9 ± .3 65.0 ± .2 75.7 ± .4 73.7 ± .4

Table 6: Comparison between GDM and Loss.

Conclusion
This paper proposes a novel learning strategy, Symmetric
Self-Paced Learning (SSPL), for domain generalization. It
effectively improves the model’s generalization ability to
unseen domains, particularly in domains with large domain
gaps. SSPL consists of a Symmetric Self-Paced training
scheduler and a Gradient-based Difficulty Measure (GDM).
The proposed Symmetric Self-Paced training scheduler en-
sures balanced attention is given to examples with different
difficulties by gradually shifting emphasis from easy to hard
examples as training progresses. The proposed difficulty
measure dynamically evaluates example difficulty through
the gradient magnitude with respect to the example itself.
GDM avoids the inaccurate example difficulty measurement
issue and provides a more informative difficulty evaluation.
In future research, we aim to extend SSPL to other challeng-
ing tasks, such as person re-identification, semantic segmen-
tation, and machine translation.
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