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Abstract

The representative k-median problem generalizes the classi-
cal clustering formulations in that it partitions the data points
into several disjoint demographic groups and poses a lower-
bound constraint on the number of opened facilities from
each group, such that all the groups are fairly represented by
the opened facilities. Due to its simplicity, the local-search
heuristic that optimizes an initial solution by iteratively swap-
ping at most a constant number of closed facilities for the
same number of opened ones (denoted by the O(1)-swap
heuristic) has been frequently used in the representative k-
median problem. Unfortunately, despite its good performance
exhibited in experiments, whether the O(1)-swap heuristic
has provable approximation guarantees for the case where the
number of groups is more than 2 remains an open question for
a long time. As an answer to this question, we show that the
O(1)-swap heuristic

(i) is guaranteed to yield a constant-factor approximation
solution if the number of groups is a constant, and

(ii) has an unbounded approximation ratio otherwise.

Our main technical contribution is a new approach for theo-
retically analyzing local-search heuristics, which derives the
approximation ratio of the O(1)-swap heuristic via linearly
combining the increased clustering costs induced by a set of
hierarchically organized swaps.

1 Introduction
Center-based clustering is one of the fundamental problems
in the field of unsupervised learning, which aims to locate fa-
cilities (or called clustering centers) to serve a set of clients
as cheaply as possible. This problem is useful in the task
of data summarization, where the set of opened facilities
is viewed as a summary of the data set. Despite its sim-
plicity and popularity, algorithms for center-based cluster-
ing can yield unfair representations of the underlying groups
of clients. One such example is in image searching for oc-
cupations (Kay, Matuszek, and Munson 2015). Here, the
search result is a small but representative subset of the im-
age database, in which fairly reflecting demographics (e.g.,
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race and gender) is necessary, and classical clustering algo-
rithms are not guaranteed to yield the desired results since
they tend to minimize the clustering cost without concerning
the attributes of the facilities. Motivated thus, lots of atten-
tion has been paid on clustering with fair-center represen-
tation, where the number of opened facilities from each de-
mographic group is constrained to ensure fairness across de-
mographics (Kleindessner, Awasthi, and Morgenstern 2019;
Chiplunkar, Kale, and Ramamoorthy 2020; Thejaswi, Or-
dozgoiti, and Gionis 2021; Thejaswi et al. 2022; Angelidakis
et al. 2022; Nguyen, Nguyen, and Jones 2022; Hotegni, Ma-
habadi, and Vakilian 2023).

Clustering with fair-center representation was recently
formalized as the representative k-median (REP-k-MED)
problem (Thejaswi, Ordozgoiti, and Gionis 2021; Thejaswi
et al. 2022). As in the classical k-median problem, the goal
of REP-k-MED is to open at most k facilities such that the
sum of the distances from the clients to the nearest opened
facilities is minimized. In REP-k-MED, however, the data
points are partitioned into ` disjoint demographic groups and
it is required that at least a given number of opened facilities
are belong to each group. Formally, REP-k-MED is defined
as follows.

Definition 1 (REP-k-MED) An instance of REP-k-MED is
specified by a metric space (X , d) with distance function
d, a set C ⊆ X of clients, a set F ⊆ X of facilities,
a collection G = {G1, . . . ,G`} of ` disjoint subsets of
F satisfying

⋃`
t=1 Gt = F , an integer k ∈ [1, |F|], and

a vector ~r = (r[1], . . . , r[`]) of ` positive integers satis-
fying

∑`
t=1 r[t] ≤ k. A feasible solution to the instance

is a subset S ⊆ F of facilities satisfying |S| ≤ k and
|S ∩ Gt| ≥ r[t] ∀ t ∈ {1, . . . , `}. The cost of such a solution
is
∑
j∈C d(j,S), where d(j,S) denotes the distance from j

to its nearest facility in S . The goal of REP-k-MED is to find
a feasible solution with minimal cost.

Thejaswi, Ordozgoiti, and Gionis (2021) experimentally
showed that a multi-swap local-search heuristic yields high-
quality solutions for REP-k-MED in real-world datasets, al-
beit how to analyze its approximation ratio was left as an
open question. Starting with an arbitrary feasible solution,
such a heuristic iteratively swaps a set of closed facilities
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Algorithm 1: The p-swap heuristic for REP-k-MED

Input: An instance I = ((X , d), C,F ,G, `, k, ~r) of REP-k-
MED and an integer p ≥ 1
Output: A locally-optimal solution S to I

1: Let S be an arbitrary feasible solution to I satisfying
|S| = k.

2: while there exists a feasible solution S ′ to I satisfying
|S ′ − S| ≤ p and

∑
j∈C d(j,S ′) <

∑
j∈C d(j,S) do

3: S ⇐ S ′.
4: return S

for the same number of opened ones to reduce the clustering
cost, until a locally-optimal solution that cannot be improved
by any of such swaps is constructed.

As a simple and efficient way to obtain a locally-optimal
solution, much work has been devoted on experimentally
and theoretically understanding the effectiveness of local
search for REP-k-MED (Thejaswi, Ordozgoiti, and Gionis
2021; Thejaswi et al. 2022), including studies on a special
case of REP-k-MED referred to as red-blue median where
the sum of the lower bounds on the number of opened fa-
cilities from the demographic groups equals k (Hajiaghayi,
Khandekar, and Kortsarz 2010, 2012; Friggstad and Zhang
2016). It has been proved that the local-search heuristic try-
ing to swap at most a constant number of facilities in each
iteration yields constant-factor approximation for REP-k-
MED if ` ≤ 2. However, for the harder case where ` > 2,
whether such a simple heuristic has provable approximation
guarantees for REP-k-MED (including its special case called
red-blue median) has remained an open question for a long
time, see discussions in (Hajiaghayi, Khandekar, and Kort-
sarz 2012; Friggstad and Zhang 2016; Thejaswi, Ordozgoiti,
and Gionis 2021).

The number of groups is more than 2 in most practical
situations concerning REP-k-MED (e.g., where the groups
encode age, race, or ethnicity), and requiring ` ≤ 2 means
that the algorithm is quite limited in its applicability. Thus,
it is necessary to consider a more general case where ` can
be an arbitrary positive integer.

1.1 Our Results
In this paper we take a step further in analyzing the effec-
tiveness of local search for REP-k-MED. Specifically, we
analyze the p-swap heuristic described in Algorithm 1, and
obtain the following guarantee.

Theorem 1 Given an instance of REP-k-MED with ` de-
mographic groups, the cost of each locally-optimal solution
constructed by the (`+ 1)2-swap heuristic is at most 4`+ 5
times the cost of an optimal solution to the instance.

Theorem 1 says that the local-search heuristic using
constant-size swaps has a constant-factor approximation
guarantee, on the condition that ` is upper-bounded by a
constant. For fixed `, this affirmatively answers the open
question about the effectiveness of local search proposed in
(Hajiaghayi, Khandekar, and Kortsarz 2012; Friggstad and
Zhang 2016; Thejaswi, Ordozgoiti, and Gionis 2021). We

also give a lower bound on the swap size keeping the ap-
proximation ratio bounded, as described in Theorem 2.

Theorem 2 There exists an instance of REP-k-MED with
n clients and ` demographic groups satisfying n � `, such
that each p-swap heuristic with p < ` has a locally-optimal
solution whose cost is more than n`−1 − 1 times the cost of
an optimal solution to the instance.

Theorem 2 implies that bounding ` by a constant when us-
ing local-search heuristics is necessary from the theoretical
point of view: It follows immediately that the local-search
heuristic cannot approximate REP-k-MED within a factor
less than n`−1−1 using constant-size swaps when ` is super-
constant. As a corollary of Theorem 1 and Theorem 2, we
can answer the question of whether the local-search heuristic
using constant-size swaps has provable approximation guar-
antees for REP-k-MED as follows.

(i) The local-search heuristic using constant-size swaps
has the guarantee of yielding a constant-factor approx-
imation solution when ` is a constant, and

(ii) has an unbounded approximation ratio when ` is super-
constant.

1.2 Our Techniques
The analyses of local-search heuristics for clustering prob-
lems commonly construct a set of test swaps that close some
facilities from the considered locally-optimal solution and
open some facilities from an optimal one, so that the ratio
between the costs of the locally-optimal and optimal solu-
tions can be bounded using the fact that no such swap yields
an improved solution. The approaches given in (Hajiaghayi,
Khandekar, and Kortsarz 2010, 2012; Friggstad and Zhang
2016) partition the facilities from the locally-optimal and
optimal solutions into a set of blocks, each of which consists
of the facilities closed and opened in a test swap. These ap-
proaches associate the facilities from the locally-optimal so-
lution with different labels depending on their demographic
attributes and distances to the facilities from the optimal so-
lution, and carefully select the members of each block ac-
cording to the facility-labels, such that the changes in the
cost induced by the corresponding swaps can be easily es-
timated and combined to yield an upper bound on the cost
of the locally-optimal solution. This provides a clear way
for deriving the approximation ratio of the locally-optimal
solution. Unfortunately, the difficulty of constructing the
blocks increases with the number of demographic groups
(i.e., `): Compared with the case where we only consider
no more than two groups, balancing the numbers of opened
and closed facilities from each group to construct valid and
cost-bounded test swaps is much more challenging for the
case where ` > 2. This was verified in (Friggstad and Zhang
2016), where it was pointed out that getting the well struc-
tured blocks when ` is an arbitrary constant instead of upper-
bounded by 2 is not possible.

In this paper we deal with the case where ` > 2. As
mentioned above, constructing the nicely structured test
swaps according to the facility-labels, as done by the block-
based approaches, seems unlikely in this harder case. Thus,
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we no longer label the facilities and constrain the label-
distributions of the test swaps. This weakens the properties
guaranteed by the test swaps and makes them harder to an-
alyze. As a remedy, we analyze the test swaps in a more re-
fined hierarchical way, which we now briefly describe. For
each to-be-clustered client j, denote by Sj and Oj the clus-
tering costs of j induced by the locally-optimal and opti-
mal solutions, respectively. It is shown that the changes in
the cost of the locally-optimal solution induced by the test
swaps can be upper-bounded by arithmetic expressions con-
sisting of the terms of “+Sj”, “−Sj”, and “+Oj” for some
clients. Our goal is to add these expressions together to get
“α

∑
j Oj − β

∑
j Sj” for two real numbers α and β satis-

fying α > β ≥ 1, which immediately indicates the approx-
imation ratio of the heuristic due to the fact that the locally-
optimal solution cannot be improved by the test swaps and
the changes in the cost induced by these swaps are non-
negative. To achieve this goal, we need to eliminate all the
“+Sj” terms. We prove that our test swaps can be hierar-
chically organized into different levels such that the “+Sj”
terms induced by each swap can be counteracted by repeat-
edly using the arithmetic expressions corresponding to the
swaps with higher levels. These ideas lead to the proof of
approximation guarantees of the local-search heuristic.

In our opinion, the method for hierarchically organizing
and analyzing the test swaps and the construction of the
swaps allowing the existence of such a hierarchical structure
are our main technical contributions and the keys in obtain-
ing the desired approximation guarantee.

1.3 Related Work
Clustering with fair-center representation was first stud-
ied by Kleindessner, Awasthi, and Morgenstern (2019), in-
spired by applications in data summarization for socioe-
conomic data (Moens, Uyttendaele, and Dumortier 1999;
Girdhar and Dudek 2012; Kay, Matuszek, and Munson
2015). Since then this problem has been extensively stud-
ied under various objective functions, including k-center
(Chiplunkar, Kale, and Ramamoorthy 2020; Angelidakis
et al. 2022; Nguyen, Nguyen, and Jones 2022; Hotegni,
Mahabadi, and Vakilian 2023), k-median (Thejaswi, Ordoz-
goiti, and Gionis 2021; Thejaswi et al. 2022; Hotegni, Ma-
habadi, and Vakilian 2023), and k-means (Thejaswi et al.
2022; Hotegni, Mahabadi, and Vakilian 2023). Thejaswi,
Ordozgoiti, and Gionis (2021) showed that REP-k-MED can
be reduced to the matroid median problem (Krishnaswamy
et al. 2011) if the number of demographic groups is a con-
stant, and can be approximated to a constant ratio based
on the linear programming-based approaches for the latter
(Li 2011; Swamy 2014; Krishnaswamy, Li, and Sandeep
2018). Hotegni, Mahabadi, and Vakilian (2023) gave a more
scalable O(1)-approximation algorithm for the problem us-
ing small-size linear programming formulations, which can
also work in a more general setting where the number of
opened facilities from each demographic group is bounded
by the given lower and upper bounds. Thejaswi et al. (2022)
showed that combining a submodular optimization approach
with the method for data reduction given in (Chen 2006)
yields a (1 + 2e−1 + ε)-approximation algorithm for REP-

k-MED with running time exponential in k, `, and ε, where
k is the upper bound on the number of opened facilities and
` is the number of demographic groups.

Another line of work on REP-k-MED is devoted on de-
signing practical algorithms for the problem. Specifically,
the technique of local search has been frequently used in
REP-k-MED and exhibited good performance in plenty of
experiments (Thejaswi, Ordozgoiti, and Gionis 2021; The-
jaswi et al. 2022). Compared with the linear programming-
based algorithms, the local-search heuristic is purely com-
binatorial and hence much easier to be implemented. More-
over, one can easily trade off the computational complex-
ity against the solution quality when using the local-search
heuristic, by changing the swap size, termination condition,
and search range. Due to these reasons, much more atten-
tion has been paid on the local-search heuristics than the
linear programming-based algorithms from the experimental
point of view. This motivates our work in this paper where
we theoretically analyze the effectiveness of the local-search
heuristic.

The technique of local search plays an important role
in many clustering problems (Cohen-Addad, Klein, and
Mathieu 2019; Friggstad, Rezapour, and Salavatipour 2019;
Cohen-Addad et al. 2022; Gupta et al. 2017; Bansal, Garg,
and Gupta 2012; Zhang 2007). For example, the best ap-
proximation guarantee for the standard k-median problem
was based on the local-search heuristic for almost 10 years
(Arya et al. 2001). However, the analysis of the local-search
heuristic for the standard k-median problem does not ex-
tend easily to REP-k-MED due to the increased difficulty in
constructing feasible swap operations. Consider two disjoint
demographic groups G1 and G2 as an example: After closing
a facility from G1, to keep the cost bounded, we may need to
open a facility from G2 to serve the clients previously served
by the just-closed facility, in which case we are forced to si-
multaneously swap another pair of facilities to balance the
number of opened facilities from each demographic group.
This makes the cost of the solution after performing a test
swap much more complex to analyze. In this paper we deal
with this issue based on a new technique that hierarchically
organizes the test swaps, which adds to the body of work
exploring the power of local search.

2 The Approximation Guarantee of the
(`+ 1)2-Swap Heuristic

In this section we prove Theorem 1. Generally speaking, we
organize the proof as follows. In Section 2.1, we construct
a set of test swaps between a locally-optimal solution given
by Algorithm 1 and an optimal solution to the instance. After
this, we estimate the changes in the cost induced by perform-
ing these swaps in Section 2.2. Finally, in Section 2.3, we hi-
erarchically organize the test swaps, and show that summing
the changes in the cost induced by them yields an expression
linearly combining the costs of the locally-optimal and op-
timal solutions. Based on such an expression and the local
optimality of the solution, we get the approximation ratio of
the considered heuristic.

We now introduce some notations to be used through-
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(a) (b)

V+

V−

U+

U−

i+

i−

Figure 1: On the left is an example of the valid swaps, and
on the right is an example of the almost-valid swaps, where
facilities with the same color have the same demographic
attribute. We have g−(U) = g(i−) and g+(U) = g(i+).

out this section. Let I = ((X , d), C,F ,G, `, k, ~r) denote
an instance of REP-k-MED, where G = {G1, . . . ,G`} and
~r = (r[1], . . . , r[`]). Define [t] = {1, . . . , t} for each inte-
ger t ≥ 1. Let O ⊆ F be an optimal solution to I with
|O| = k and S ⊆ F be a locally-optimal solution given by
the (` + 1)2-swap heuristic described in Algorithm 1. We
assume S ∩O = ∅, which is without loss of generality since
one can duplicate each i ∈ F and assert that S contains
only the copies and O contains only the original facilities.
For each j ∈ C, let oj and sj denote the facility nearest to
j from O and S respectively, and define Sj = d(j, sj) and
Oj = d(j, oj), where ties are broken arbitrarily. For each
i ∈ O and O′ ⊆ O, define J ∗(i) = {j ∈ C : oj = i} and
J ∗(O′) =

⋃
i′∈O′ J ∗(i′). Similarly, define J (i) = {j ∈

C : sj = i} and J (S ′) =
⋃
i∈S′ J (i) for each i ∈ S and

S ′ ⊆ S . Given two real numbers t1 and t2, let ∆(t1, t2) = 1
if t1 = t2, and let ∆(t1, t2) = 0 otherwise.

For the case where k >
∑`
t=1 r[t], the number of facili-

ties from each demographic group opened by a feasible so-
lution is indeterminate, and thus O and S may have differ-
ent demographic distributions. This increases the difficul-
ties in analyzing the approximation ratio of S . As a rem-
edy to this issue, we unify the demographic distributions of
O and S by defining an additional demographic group for
2(k−

∑`
t=1 r[t]) facilities fromO∪S . Specifically, let St be

an arbitrary subset of S ∩Gt satisfying |St| = r[t] andOt be
an arbitrary subset ofO∩Gt with |Ot| = r[t] for each t ∈ [`],
and define S`+1 = S\

⋃`
t=1 St and O`+1 = O\

⋃`
t=1Ot.

For each t ∈ [` + 1] and i ∈ St ∪ Ot, we call g(i) = t the
demographic attribute of i.

2.1 Constructing the Test Swaps
A test swap considered in this section closes a set V− ⊆ S of
facilities and opens the facilities from another set V+ ⊆ O.
Denote by V = (V− | V+) such a swap. We call V a valid
swap if |V−| = |V+| 6= 0 and |V−∩St| = |V+∩Ot| for each
t ∈ [`+ 1], and a non-valid swap otherwise. It can be shown
that S is still a feasible solution to I after performing a valid
swap. Given a non-valid swap U = (U− | U+), we call U an
almost-valid swap if there exist two facilities i− ∈ U− and
i+ ∈ U+ such that (U−\{i−} | U+\{i+}) is a valid swap
or (U− | U+) = ({i−} | {i+}), and let g−(U) = g(i−)
and g+(U) = g(i+). Examples of the valid and almost-valid

Algorithm 2: Constructing the test swaps

1: V⇐ ∅, U⇐ ∅.
2: S† ⇐ {i ∈ S : τ−1(i) 6= ∅}, O† ⇐ {γ(i) : i ∈ S†},
S‡ ⇐ S\S†, O‡ ⇐ O\O†.

3: while ∃S ′ ⊆ S† s.t. |S ′| ≤ (` + 1)2 and V = (S ′ |⋃
i∈S′{γ(i)}) is a valid swap do . Loop-1

4: V⇐ V ∪ {V}.
5: S† ⇐ S†\S ′, O† ⇐ O†\

⋃
i∈S′{γ(i)}.

6: for each i ∈ S† do
7: U⇐ U ∪ {({i} | {γ(i)})}.
8: while ∃ {U1,U2} ⊆ U s.t. U = (U−1 ∪ U

−
2 | U

+
1 ∪ U

+
2 )

is an almost-valid swap do . Loop-2
9: U⇐ U ∪ {U}\{U1,U2}.

10: while ∃U′ ⊆ U, Q− ⊆ S‡, and Q+ ⊆
τ−1(

⋃
U∈U′ U−)∩O‡ s.t. |U′| = |Q−| = |Q+| ≤ `+ 1

and V = (
⋃
U∈U′ U−∪Q− |

⋃
U∈U′ U+∪Q+) is a valid

swap do . Loop-3
11: V⇐ V ∪ {V}.
12: U⇐ U\U′, S‡ ⇐ S‡\Q−,O‡ ⇐ O‡\Q+.
13: while ∃U ∈ U, i− ∈ S‡, and i+ ∈ O‡ s.t. swap V =

(U− ∪ {i−} | U+ ∪ {i+}) is valid do . Loop-4
14: V⇐ V ∪ {V}.
15: U⇐ U\{U}, S‡ ⇐ S‡\{i−},O‡ ⇐ O‡\{i+}.
16: while ∃ i− ∈ S‡ and i+ ∈ O‡ s.t. V = ({i−} | {i+}) is

a valid swap do . Loop-5
17: V⇐ V ∪ {V}.
18: S‡ ⇐ S‡\{i−},O‡ ⇐ O‡\{i+}.
19: return V

swaps are given in Figure 1.
Our test swaps are constructed based on the following two

functions that capture the neighbors of the facilities from
O ∪ S: Let τ(i) denote the facility from S nearest to i for
each i ∈ O, and let γ(i′) denote the facility from τ−1(i′)
nearest to i′ for each i′ ∈ S satisfying τ−1(i′) 6= ∅, where
ties are broken arbitrarily. Let τ−1(S ′) =

⋃
i∈S′ τ

−1(i) for
each S ′ ⊆ S . The procedure for constructing the test swaps
is described in Algorithm 2. Note that this procedure is used
only in our analysis.

To demonstrate Algorithm 2, we construct test swaps for
the example given in Figure 2. We have S† = {r1, r3, b1},
S‡ = {r2, b2, b3},O† = {r∗2 , r∗3 , b∗2}, andO‡ = {r∗1 , b∗1, b∗3}
in the initialization step. In loop-1, V1 = ({r1} | {γ(r1)}) is
added to V since it is a valid swap. In the for-loop and loop-
2, a set U of almost-valid swaps satisfying

⋃
i∈U−{γ(i)} =

U+ for each U ∈ U is constructed, and we have U =
{({b1} | {γ(b1)}), ({r3} | {γ(r3)})}. Algorithm 2 com-
bines the almost-valid swaps from U with some facilities
from S‡ ∪ O‡ to construct a set of valid swaps in loop-
3 and loop-4. Define U1 = ({b1} | {γ(b1)}) and U2 =
({r3} | {γ(r3)}). In loop-3, U1 and two facilities r2 ∈ S‡
and b∗3 ∈ τ−1(U−11 ) are combined into a valid swap V2. Sim-
ilarly, in loop-4, U2 and two facilities b2 ∈ S‡ and r∗1 ∈ O‡
are combined into a valid swap V3. Finally, the remained two
facilities are combined into a valid swap V4 = ({b3} | {b∗1})
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r∗1 r∗2 r∗3 b∗1 b∗2 b∗3

r1 r2 r3 b1 b2 b3

Figure 2: S = {r1, r2, r3, b1, b2, b3} and O =
{r∗1 , r∗2 , r∗3 , b∗1, b∗2, b∗3} are the locally-optimal and optimal
solutions respectively, where facilities with the same color
have the same demographic attribute. For each i ∈ S sat-
isfying τ−1(i) 6= ∅ and i∗ ∈ τ−1(i)\{γ(i)}, we connect i
and γ(i) with a solid line, and connect i and i∗ with a dashed
line.

r∗3 b∗3 r∗2 r∗1 b∗2 b∗1

r1 b1 r2 r3 b2 b3

V1 V2 V3 V4

Figure 3: An example of the test swaps constructed by Al-
gorithm 2.

in loop-5. These constructed swaps are shown in Figure 3.
Intuitively, the idea of this procedure can be summarized as
follows.

(i) For each i ∈ S satisfying τ−1(i) 6= ∅, Algorithm 2
assigns i and γ(i) to the same swap, such that the
increased cost induced by the swap closing i can be
bounded, which we detail in Section 2.2.

(ii) Algorithm 2 constructs the swaps V satisfying V+ ⊆
τ−1(V−) in priority, until the termination condition of
loop-3 is reached and the remained facilities cannot
form a swap satisfying the desired property. This pro-
vides a workable way for hierarchically organizing the
swaps, as detailed in Section 2.3.

Let V denote the set of valid swaps constructed by Algo-
rithm 2, and let U denote the set of almost-valid swaps con-
structed in loop-2. We define S†,O†, S‡, andO‡ as the same
way as Algorithm 2, that is, let S† = {i ∈ S : τ−1(i) 6= ∅},
O† = {γ(i) : i ∈ S†}, S‡ = S\S†, and O‡ = O\O†.
Define T + = {t ∈ [` + 1] :

∑
U∈U ∆(g+(U), t) > 0} and

T − = {t ∈ [` + 1] :
∑
U∈U ∆(g−(U), t) > 0} for brevity.

In the following we give some useful properties of the swaps
constructed by Algorithm 2.

The fact that Algorithm 2 iteratively combines two
almost-valid swaps into a new one in loop-2 implies the fol-
lowing lemma.
Lemma 1 T − ∩ T + = ∅.

The following result says that each swap from V is of size

no more than (`+ 1)2, and thus performing it cannot reduce
the cost of S due to the termination condition of the (`+1)2-
swap heuristic.
Lemma 2 For each V ∈ V, we have |V−| = |V+| ≤ (` +
1)2.

The almost-valid swaps from U are combined with some
facilities from S‡ ∪ O‡ into a set of valid swaps. The fol-
lowing is a useful structural property guaranteed by these
swaps.
Lemma 3 Considering two sets Q− ⊆ S‡ and Q+ ⊆
O‡ of facilities and a set U′ ⊆ U of almost-valid
swaps satisfying |U′| = |Q−| = |Q+|, if (

⋃
U∈U′ U− ∪

Q− |
⋃
U∈U′ U+ ∪ Q+) is a valid swap, then it is the

case that
∑
U∈U′ ∆(g−(U), t) =

∑
i∈Q+ ∆(g(i), t) and∑

U∈U′ ∆(g+(U), t) =
∑
i∈Q− ∆(g(i), t) for each t ∈

[`+ 1].

Finally, we are able to show that each facility from S ∪O
is involved in exactly one swap from V. When we combine
the increased costs induced by performing the swaps from
V to derive the approximation ratio of S , this result plays an
important role.
Lemma 4 We have S =

⊎
V∈V V− and O =

⊎
V∈V V+.

2.2 Estimating the Increased Costs
In this section we estimate the changes in the cost of S in-
duced by performing the swaps from V. Recall that i and
γ(i) are assigned to the same swap by Algorithm 2 for each
i ∈ S†. This immediately implies the following fact.
Fact 1 γ(i) ∈ V+ for each V ∈ V and i ∈ V− ∩ S†.

Let V denote a test swap from V. When performing V to
adjust the locally-optimal solution S , we open the facilities
from V+ and close the facilities from V−, and the cost of
the solution is changed to

∑
j∈C d(j,S ∪ V+\V−). Consid-

ering a client j ∈ C, Fact 1 implies that γ(τ(oj)) ∈ V+ for
the case where τ(oj) ∈ V−. Consequently, we know that
d(j,S ∪ V+\V−) can be upper-bounded by d(j, γ(τ(oj)))
if the swap closes τ(oj), and d(j, τ(oj)) otherwise. The fol-
lowing lemma implies that such an upper bound on d(j,S ∪
V+\V−) is guaranteed to be a combination of Sj and Oj .
Lemma 5 For each j ∈ C, we have d(j, τ(oj)) ≤ Sj +2Oj
and d(j, γ(τ(oj))) ≤ 2Sj + 3Oj .

To estimate the cost of the solution S ∪V+\V−, we parti-
tion C into several disjoint subsets and separately analyze the
clustering costs of the clients from each subset, as detailed
below.

(i) For each j ∈ C\(J (V−) ∪ J ∗(V+)), we have sj ∈
S ∪ V+\V− and d(j,S ∪ V+\V−) ≤ Sj .

(ii) For each j ∈ J ∗(V+), we have oj ∈ S ∪ V+\V− and
d(j,S ∪ V+\V−) ≤ Oj .

(iii) For each j ∈ J (V−)\J ∗(τ−1(V−)∪V+), the fact that
j /∈ J ∗(τ−1(V−)) implies that τ(oj) /∈ V−, which in
turn implies that τ(oj) ∈ S ∪ V+\V−, and we have
d(j,S ∪ V+\V−) ≤ d(j, τ(oj)) ≤ Sj + 2Oj due to
Lemma 5.
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(iv) For each j ∈ J (V−)∩J ∗(τ−1(V−)\V+), the fact that
j ∈ J ∗(τ−1(V−)) implies that τ(oj) ∈ V−, and we
have γ(τ(oj)) ∈ V+ due to Fact 1. Consequently, it is
the case that γ(τ(oj)) ∈ S ∪ V+\V−, and Lemma 5
implies that d(j,S ∪ V+\V−) ≤ d(j, γ(τ(oj))) ≤
2Sj + 3Oj .

By the argument above, we know that each V ∈ V satis-
fies

0 ≤
∑
j∈C

d(j,S ∪ V+\V−)−
∑
j∈C

Sj

≤
∑

j∈J ∗(V+)

(Oj − Sj) +
∑

j∈J (V−)\J ∗(τ−1(V−)∪V+)

2Oj

+
∑

j∈J (V−)∩J ∗(τ−1(V−)\V+)

(3Oj + Sj), (1)

where the first step follows from the termination condition
of the (`+ 1)2-swap heuristic described in Algorithm 1 and
Lemma 2.

2.3 Hierarchically Organizing the Test Swaps
It can be seen that inequality (1) involves “+Oj” and “−Sj”
terms for the clients from C. We want to add both sides
of this inequality over V ∈ V to get O(1)

∑
j∈C Oj −∑

j∈C Sj ≥ 0, which immediately indicates the desired ap-
proximation guarantee for the local-search heuristic. How-
ever, inequality (1) also involves a “+Sj” term that needs
to be counteracted. We show that the swaps from V allow
the existence of a hierarchical structure, which yields a fea-
sible way to deal with this issue, as detailed in the following
lemma.
Lemma 6 We can partition V into h disjoint subsets
V1, . . . ,Vh, such that

(i) h ∈ [3, `+ 2],
(ii)

⋃
V∈Vh

τ−1(V−) = ∅, and
(iii) each t ∈ [h − 1] satisfies

⋃
V∈Vt

τ−1(V−)\V+ ⊆⋃
V∈V+

t
V+, where V+

t =
⋃h
t′=t+1 Vt′ .

Instead of immediately proving Lemma 6, we first show
the implication of the lemma. Let V1, . . . ,Vh denote
the h subsets of V constructed by Lemma 6. We have⋃
V∈Vt

τ−1(V−)\V+ ⊆
⋃
V∈V+

t
V+ for each t ∈ [h − 1].

Combining this with the fact that given a swap V ∈ V, in-
equality (1) contains a “−Sj” term for each j ∈ J ∗(V+)
and a “+Sj” term for each j ∈ J (V−)∩J ∗(τ−1(V−)\V+),
we know that the “+Sj” terms induced by the swaps from
V1 can be counteracted via multiplying inequality (1) by a
factor of 2 for each V ∈ V+

1 . After this, the swaps from V2

induce some “+2Sj” terms, which can be canceled via mul-
tiplying inequality (1) by factor 3 for each V ∈ V+

2 . By the
same argument, we can multiply inequality (1) by factor t
for each t ∈ [h] and each swap from Vt to cancel all the
“+Sj” terms. It is shown in Lemma 7 that this yields the
desired approximation ratio of S .
Proof (of Lemma 6) Denote by V† the set of swaps con-
structed in loop-4 of Algorithm 2. For each swap V ∈ V†,

V is a combination of two facilities from S‡ ∪ O‡ and an
almost-valid swap U ∈ U, and we define g(V) = g−(U).
Define V†t = {V ∈ V† : g(V) = t} for each t ∈ [` + 1].
We construct a graph G according to the members of V† as
follows: We construct a vertex vt for each t ∈ [` + 1] satis-
fying V†t 6= ∅, and denote by P(G) the vertex set of G; for
each {t1, t2} ⊆ P(G), if there exists a swap V ∈ V†t1 and
a facility i ∈ τ−1(V−)\V+ satisfying g(i) = t2, then we
construct an arc from vt1 to vt2 . The following claim gives
a useful property of G.

Claim 1 G is a directed acyclic graph with |P(G)| ≤ `.
For each {v1, v2} ⊆ P(G), let f(v1, v2) be the number of

vertices lying in a longest path from v1 to v2 ifG has at least
one path from v1 to v2, and let f(v1, v2) = 2 otherwise.
Denote by P0(G) ⊆ P(G) the set of vertices with an in-
degree of 0. Let f(v) = 2 for each v ∈ P0(G) and f(v) =
maxv′∈P0(G) f(v′, v) + 1 for each v ∈ P(G)\P0(G). We
have f(v) ∈ [2, |P(G)| + 1] for each v ∈ P(G). Define
h = maxv∈P(G) f(v) + 1. Claim 1 implies that

3 ≤ h ≤ |P(G)|+ 2 ≤ `+ 2. (2)

Based on the graph G, we partition V as follows.

(i) Let V1 be the set of swaps constructed in loop-1 and
loop-3 of Algorithm 2,

(ii) let Vh be the set of swaps constructed in loop-5 of Al-
gorithm 2, and

(iii) let Vq =
⋃
f(vt)=q

V†t for each q ∈ {2, . . . , h− 1}.
Using Claim 1 and the structural properties of the swaps
from V given in Section 2.1, we obtain that such a partition
of V has the following guarantee.

Claim 2 Each t ∈ [h− 1] satisfies
⋃
V∈Vt

τ−1(V−)\V+ ⊆⋃
V∈V+

t
V+.

Considering a swap V ∈ Vh, we know that V is con-
structed in loop-5 of Algorithm 2 and hence V− ⊆ S‡.
Moreover, it is the case that τ−1(V−) = ∅ due to the defini-
tion of S‡. Combining this with inequality (2) and Claim 2,
we complete the proof of Lemma 6. �

Denote by V1, . . . ,Vh the h subsets of V constructed by
Lemma 6. Multiplying both sides of inequality (1) by a fac-
tor of t for each t ∈ [h] and V ∈ Vt, and summing both
sides of the inequality over V ∈ V, we get the following re-
sult, which says that S is a (4`+ 5)-approximation solution
to I and hence Theorem 1 is true.

Lemma 7
∑
j∈C Sj ≤ (4`+ 5)

∑
j∈C Oj .

3 The Locality Gap of the (`− 1)-Swap
Heuristic

In this section we prove Theorem 2. Define [t] = {1, . . . , t}
for each positive integer t. Motivated by a lower bound for
the red-blue median problem given in (Krishnaswamy et al.
2011), we construct a bad instance of REP-k-MED, which
is illustrated in Figure 4. In this instance, we are given `
demographic groups {i∗1, i1}, . . . , {i∗` , i`} of facilities and a
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i∗1

C1

i∗2

C2

i1

i∗3

C3

i2

i∗`

C`

i`−1 i`

j′

Figure 4: Illustration of a bad instance of REP-k-MED. For
each j ∈

⋃
t∈[`] Ct ∪ {j′} and i ∈

⋃
t∈[`]{i∗t , it}, we have

d(i, j) = 0 if i and j are connected with a dashed line and
d(i, j) = 1 otherwise.

set
⋃
t∈[`] Ct∪{j′} of clients satisfying |Ct| = m for each t ∈

[`]. The constraint posed on the instance is that the number of
the opened facilities is upper-bounded by `, and at least one
facility from each demographic group needs to be opened.
As shown in Figure 4, the instance involves `+ 1 locations,
the distance between each pair of which is 1. Here, i∗1 and the
clients from C1 are in the first location, j′ is in the (` + 1)-
th location, and for each t ∈ {2, . . . , `}, the facilities from
{i∗t , it−1} and the clients from Ct are in the t-th location.

Define C =
⋃
t∈[`] Ct ∪ {j′}, O = {i∗t : t ∈ [`]}, and

S = {it : t ∈ [`]}. Let n = |C| = m` + 1 denote
the number of clients involved in the instance. It can be
seen that O is an optimal solution to the instance, whose
cost is

∑
j∈C d(j, O) = d(j′, O) = 1. Moreover, we have∑

j∈C d(j, S) =
∑
j∈C1 d(j, S) = m, and thus∑

j∈C d(j, S)∑
j∈C d(j, O)

= m > n`−1 − 1. (3)

If we can show that swapping less than ` facilities between
S and O cannot reduce the cost of S , then the termination
condition of Algorithm 1 implies that S is a locally-optimal
solution for each p-swap heuristic satisfying p < `. Com-
bining this with inequality (3), we can complete the proof of
Theorem 2.

It remains to consider the changes in the cost of S induced
by the swaps of size less than `. For the sake of contradiction,
assume that there exists a set V− ⊂ S and a set V+ ⊂ O,
such that |V−| = |V+| < ` and S\V− ∪V+ is a feasible so-
lution satisfying

∑
j∈C d(j,S\V− ∪ V+) <

∑
j∈C d(j,S).

Define S ′ = S\V−∪V+ for brevity. We separately consider
the following two cases: (1) i∗1 /∈ S ′, and (2) i∗1 ∈ S ′.

For case (1), we have∑
j∈C

d(j,S ′) ≥
∑
j∈C1

d(j,S ′) = m =
∑
j∈C

d(j,S),

which is a contradiction.
For case (2), the assumption that S ′ has lower cost than S

implies that

∑̀
t=2

∑
j∈Ct

d(j,S ′) <
∑
j∈C

d(j,S) = m,

which in turn implies that

S ′ ∩ {i∗t , it−1} 6= ∅ (4)

for each t ∈ {2, . . . , `}. Moreover, the fact that a feasible
solution to the considered instance opens at least one facility
from each demographic group implies that

S ′ ∩ {i∗t , it} 6= ∅ (5)

for each t ∈ [`], and the fact that the number of opened
facilities is upper-bounded by ` implies that

|S ′| ≤ `. (6)

Combining inequality (6) with inequality (4) and the as-
sumption that i∗1 ∈ S ′ yields

|S ′ ∩ {i∗t , it−1}| = 1 (7)

for each t ∈ {2, . . . , `}, and combining inequality (6) with
inequality (5) yields

|S ′ ∩ {i∗t , it}| = 1 (8)

for each t ∈ [`]. Using inequality (7), inequality (8), and the
assumption that i∗1 ∈ S ′, we have it /∈ S ′ for each t ∈ [`],
which implies that S ′ ∩ S = ∅ and thus |V−| = |S| = `.
This contradicts the assumption that |V−| < `.

By the argument above, we know that S is a locally-
optimal solution with approximation ratio larger than
n`−1 − 1 for each p-swap heuristic with p < `. This im-
plies that Theorem 2 is true.

4 Conclusions
In this paper we study the effectiveness of the local-search
heuristic with constant-size swaps for the representative k-
median problem. It is shown that such a heuristic yields a
constant-factor approximation if the number of demographic
groups, denoted by `, is a constant, and has an unbounded
approximation ratio otherwise. This answers the open ques-
tion that whether the local-search heuristic has provable ap-
proximation guarantees when there are more than two de-
mographic groups, which has existed for a long time. We
give a lower bound of ` on the swap size keeping the ap-
proximation ratio bounded, while the swap size selected in
this paper is (`+ 1)2. How to decrease this gap seems to be
an interesting question.
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