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Abstract

This work introduces a new Transformer model called
Cached Transformer, which uses Gated Recurrent Cached
(GRC) attention to extend the self-attention mechanism with
a differentiable memory cache of tokens. GRC attention en-
ables attending to both past and current tokens, increasing the
receptive field of attention and allowing for exploring long-
range dependencies. By utilizing a recurrent gating unit to
continuously update the cache, our model achieves significant
advancements in six language and vision tasks, including lan-
guage modeling, machine translation, ListOPs, image classi-
fication, object detection, and instance segmentation. Further-
more, our approach surpasses previous memory-based tech-
niques in tasks such as language modeling and displays the
ability to be applied to a broader range of situations.

Introduction
The design of Transformer (Vaswani et al. 2017), a deep
model stacking self-attention and feed-forward layers, has
achieved remarkable progress in various tasks. Compared
to the traditional deep models, a key characteristic of
Transformer is the self-attention mechanism, which enables
global receptive field and allows each token to access all the
other tokens in a data batch, providing a flexible scheme
to capture contextual representation (Vaswani et al. 2017;
Dosovitskiy et al. 2021; Carion et al. 2020) . Such paradigm
is however in a complexity square to sequence length, thus
not suitable to model long-term dependencies. In this work,
we aim to extend the conventional transformer models using
attention with a long-term token representation in a mem-
ory cache, which enables larger and longer receptive field at
minimal additional computations.

Capturing long-range relationships between tokens and
samples is crucial for various tasks due to several reasons.
(i) In sequential data such as language sentences, there can
exist dependencies between tokens that are far away from
each other. For example, an event or character can be re-
ferred to from time to time across multiple paragraphs in an
article. Failing to capture such dependencies can result in
poor performance in natural language processing tasks. (ii)
Modeling cross-sample relationships can also be useful for
non-sequential data like images. For example, incorporating
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Figure 1: Performance-Complexity Curve: Top-1 accuracy
(%) comparisons on ImageNet with respect to model capac-
ity (FLOPs) using vision transformers (Parameter-efficiency
curves).Curves of our cached models are consistently on top
of their corresponding baselines (PVT and PVTv2), indi-
cating the effectiveness of GRC-cached models considering
both complexity and accuracy.
a memory module that stores prototypical feature represen-
tations can enable instance-invariant feature learning, lead-
ing to improved performance in vision tasks (Long et al.
2022; Deng et al. 2022). Furthermore, other studies (Wang
et al. 2020b; Zhong et al. 2019) have demonstrated that us-
ing cross-batch memory to store previous embeddings can
be beneficial for visual representation learning. (iii) Longer-
range attention has also been shown to enhance the represen-
tation learning ability of models, as demonstrated in works
like (Dai et al. 2019; Wu et al. 2022; Tay et al. 2021b).

However, longer dependency modeling makes computa-
tions more expensive. For example, the vanilla Transformer
has O(T 2) computational complexity in each attention mod-
ule when handling a token sequence of length T . Although
some works apply efficient alternatives, such as low-rank de-
composition (Wang et al. 2020a; Zhu et al. 2021), block-
based sparsification (Zaheer et al. 2020), and local sensi-
tive hashing (Kitaev, Kaiser, and Levskaya 2020), they still
have complexity linear to the token length (O(T )) and thus
unable to efficiently capture sparse long-range dependency.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16935



Another line of research (Wu et al. 2022) reduces the com-
plexity of attention module by selecting top-k token pairs
from a memory cache for the current tokens, but the cost
of maintaining a huge cache of tokens for all layers is still
significant. Hence, developing efficient and effective mech-
anisms for capturing long-range dependencies remains an
active area of research.

To address these issues, we propose a novel family of
Transformer models called Cached Transformer, which has
a Gated Recurrent Cache (GRC) that enables Transform-
ers to access historical knowledge, as ilustrated in Fig. 2.
The GRC is implemented as a meta-learner that compresses
the historical representation into embedding vectors and up-
dates them adaptively with a gating mechanism, avoiding
the need for a large memory cache. The GRC updates the
past representation with a reset gate that suppresses histor-
ical caches and an update gate that further updates the sup-
pressed caches using the current token sequences. This de-
sign allows the GRC to access previously seen knowledge
in a computationally efficient way. Based on the GRC, we
implement a semi-cached attention mechanism that attends
to both the latent and current tokens.

We propose Cached Transformer with Gated Recurrent
Cache (GRC) and make the following contributions, which
make it more appealing than prior arts in several aspects.
• GRC is built on a general differentiable formulation and

is compatible with various attention schemes, Trans-
former networks, and tasks. We demonstrate that GRC
can be easily plugged into diverse Transformer-variants
such as Transformer-XL (Dai et al. 2019), ViT (Doso-
vitskiy et al. 2021), PVT (Wang et al. 2021, 2022),
Swin (Liu et al. 2021) Bigbird (Zaheer et al. 2020), and
Reformer (Kitaev, Kaiser, and Levskaya 2020).

• GRC can cache all representations of arbitrary length re-
currently, independent of sequence length, while exist-
ing cache-based methods can only capture recent tokens
(Rae et al. 2019; Dai et al. 2019) or require KNN search-
ing at each step (Wu et al. 2022).

• Besides efficiency, GRC surpasses previous memory-
based methods (Dai et al. 2019; Burtsev et al. 2020; Bu-
latov, Kuratov, and Burtsev 2022) by a large margin on
both vision (Table 2) and language tasks (Table 5).

• GRC yields consistent improvements not only in sequen-
tial data such as texts but also in spatial context such as
image classification (Table 1) and object detection (Ta-
ble 3). To our knowledge, existing works of Vision Trans-
formers mainly focused on learning intra-sample tokens,
while GRC is the first attempt to model cross-sample re-
lationships by attending over inter-sample tokens, such
as tokens from different independent images.

• We observe that models with GRC may attend more
over the cache than the regular self-attention. We inves-
tigate this behavior in image classification and find that
GRC can separate features into two parts, attending over
caches yielding instance-invariant features, as well as
attending over self, yielding instance-specific features
(See in Fig. 4). This behavior is similar to that of a vec-
tor prototype (Caron et al. 2020), which enables cross-
sample regularization to avoid overfitting.

Extensive experiments show that the Cached Transformer
with GRC achieves promising results on various vision
and language Transformer backbones. (i) Language: In
the IWSLT14 De-En benchmark for machine translation,
PreNormed Transformer+GRC yields 36.0 BLEU, outper-
forming the baselines by 0.5. In the challenging long-range-
arena benchmark (Tay et al. 2021a), GRC improves state-of-
the-art methods with different attention types including Re-
former (Kitaev, Kaiser, and Levskaya 2020), Bigbird (Za-
heer et al. 2020), and regular Transformer (Vaswani et al.
2017) consistently by up to 1.2% accuracy. (ii) Vision: For
image classification on ImageNet (Krizhevsky, Sutskever,
and Hinton 2012), we plug GRC into the recent vision trans-
formers of different scales, such as ViT (Dosovitskiy et al.
2021), PVT (Wang et al. 2021), PVTv2 (Wang et al. 2022),
Swin (Liu et al. 2021), and obtain up to 3.3% accuracy gain.
As shown in Fig. 1, our cached model with PVTv2 backbone
achieves superior performance considering both the model
complexity and accuracy. We further evaluate GRC on the
COCO (Lin et al. 2014) dataset for object detection and in-
stance segmentation, where PVT+GRC can yield more than
4.0 box AP improvement.

Related Works
Cached Language Models. Cache models are effective in
long-range modeling , and are firstly introduced by (Kupiec
1989; Kuhn and De Mori 1990) for speech recognition. In
general, a cache model stores representations of the past,
which are usually unigrams or key-value pairs for future
computation. Transformer-XL (Dai et al. 2019) further ap-
plies this technique to transformers, where the cache stores
previous key-value pairs in attentions from previous training
steps. Many memory-based methods are explored following
Transformer-XL: For instance, MT (Burtsev et al. 2020) and
RMT (Bulatov, Kuratov, and Burtsev 2022) use extra mem-
ory tokens to store local and global information for different
segments of inputs. (Rae et al. 2019) compress the tokens
before they’re saved in the cache to reduce memories and
computations. However, these methods often use cache in a
fixed-length and first-in-first-out (FIFO) manner, which lim-
its the amount of tokens that can be memorized in sequence.
In contrast, our proposed GRC-based Cached Transformers
learn to build the cache adaptively with a complexity that is
independent of the attention range.

Vision Transformers. Vision transformers and their vari-
ants have recently achieved remarkable success in various
vision tasks. The original Vision Transformer (ViT) model
(Dosovitskiy et al. 2021) was the first to split images into
patch sequences and feed them into transformer encoders.
However, existing methods focus mainly on intra-sample
tokens, whereas our proposed GRC enhances vision trans-
formers by learning instance-invariant features via attend-
ing over inter-sample tokens. This allows GRC-based trans-
formers to capture richer contextual information and achieve
even better performance on vision tasks. For a more compre-
hensive understanding of the related literature, please refer
to the Appendix.
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Figure 2: Comparisons of vanilla self-attention and cached
attentions at training stage. The self-attention only attends
to the token itself (Xt). While in cached attention, outputs
at training step t (denoted by Yt) are derived by attending
over a Gated Recurrent Cache (GRC, i.e., Ct derived from
historical tokens X0 to Xt), and the current token (Xt).

Methodology
In this section, we first revisit the vanilla language and vi-
sion transformer models, then introduce implementation of
Cached Transformers with Gated Recurrent Cache(GRC).

Vanilla Transformer
We begin with a brief review of the standard transformer
architecture. The transformer model (Vaswani et al. 2017)
is constructed by stacking multi-head self-attention blocks
and feed-forward layers which is usually a two-layer lin-
ear transformation with activation. Each transformer block
is fed with T × D input tokens, where T is the number of
tokens and D represents the size of token embedding.

Self-attention mechanism. As shown in Fig.2, the self-
attention module first projects each input X into Q (query),
K (key), and V (value) using linear transformations. Typi-
cally, the self-attention is performed in a multi-head manner
where the input will be divided into multiple heads for par-
allel computation. The output of the attention head h can be
written as :

ohself = softmax(QhK
T
h /

√
D/H)Vh, (1)

where ohself is the output of head h of the self-attention and
H is the number of heads. The output from heads will be
concatenated and then fed into another linear transforma-
tions with normalization and residual connections.

Limitations. As shown in Eqn.(1), the vanilla self-
attention mechanism used in Transformers is highly sen-
sitive to sequence length, with a computational complex-
ity of O(T 2) with respect to the sequence length T . This
means that the computational cost grows rapidly as the se-
quence length increases, which limits the model’s ability
to capture long-term relationships in the data. As a result,
vanilla Transformers can only model relatively short se-
quences of tokens in language tasks, and it also makes it
challenging to develop cross-task memory modules (Wang
et al. 2020b; Zhong et al. 2019) in a attention-based way
for vision tasks. Towards this issue, we introduce the pro-
posed Cached Transformers, which provides a more flexible

paradigm for capturing long-term dependencies, leading to
consistent improvements for both vision and language tasks.

Cached Transformer
To extend receptive fields of both language and vision trans-
formers, in this section we will introduce our implementa-
tions of Cached Transformers, which maintains a continu-
ous cache termed Gated Recurrent Cache (GRC) to support
efficient long-term representation learning. The core idea
is to hold token embedding as caches which can dynam-
ically record historical samples according to their signifi-
cance. The Cached Transformer will then gain additional ca-
pabilities to encode both the current and accumulated infor-
mation by attending to the gathering of caches C and inputs
X . Such an attention scheme is described as GRC-Attention,
and the following parts present more details.

General implementations. The proposed Cached Trans-
formers enable attending over caches on arbitrary multi-
layers architectures accepting sequential inputs. Typically,
the Cached Transformer models can be derived by replac-
ing their self-attention blocks with the proposed GRC-
Attention. Fig. 3 (b) gives overall illustrations of how the
GRC-Attention is conducted.

Considering input sequence Xt ∈ RB×T×D, where B is
the batch size and t denotes training steps, GRC-attention
attends to both the memory cache and the current tokens.
We formulate GRC-attention by

Oh = σ(λh) ∗ ohmem + (1− σ(λh)) ∗ ohself , (2)

where Oh and ohmem are the outputs of the GRC-attention
and Cached attention (i.e., attention over memory cache)
in the head h, respectively. ohself is the output of the self-
attention in Eqn.(1). Moreover, in Eqn.(2), σ(·) is the sig-
moid function and λh is a head-wise learnable ratio trading
off self-attention and Cached attention 1.

To construct the triplet key, query and value for Cached
attention, we choose a portion of Xt as input X̄t ∈
RB×T×Dm , which is derived by slicing Xt on channel di-
mension. Note that Dm = rD2 indicates channels used
for memorizing the past tokens embedding, where r is the
caching ratio. With X̄t, the accumulated cache Ct−1 will
then be updated to Ct according to the GRC update rules
as shown in Fig. 3. We describe the construction of GRC in
Sec in detail. The Cached attention can be then conducted
by using X̄t as queries and Ct as keys and values, written
as:

ohmem = softmax(Q̄hK̄
T
h /

√
Dm/H)V̄h, (3)

where Q̄h, K̄h and V̄h are obtained by linear projections of
h-th head of X̄t, Ct and Ct respectively.

Generalizations. Note that while we typically formulate
Cached Transformer as a self-attention based model, it can
also be an arbitrary transformer variant. In other words,
the attention mechanism used to acquire ohself and ohmem in

1All of the λh is initialized to be 0.
2At most cases we adopt Dm = D

2
to reduce the complexity

of Cached attention , which means we choose half of the inputs to
update caches
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Figure 3: The illustration of proposed GRC-Attention in Cached Transformers. (a) Details of the updating process of Gated
Recurrent Cache. The updated cache Ct is derived based on current tokens X̄t and cache of last step Ct−1. The reset gates gr
reset the previous cache Ct−1 to reset cache C̃t, and the update gates gu controls the update intensity. (b) Overall pipeline of
GRC-Attention. Inputs will attend over cache and themselves respectively, and the outputs are formulated as interpolation of
the two attention results.

Eqn.(2) can be substituted by any other attention-like func-
tions, such as sparse attentions (Zaheer et al. 2020) or local
hashing (Kitaev, Kaiser, and Levskaya 2020). Further ex-
periments will provide validations of Cached Transformers
on several transformer variants.

Gated Recurrent Cache Update
This section describes the formulation and updating of pro-
posed Gated Recurrent Cache (GRC).

Cache Initialization. The GRC is characterized to be
fixed-length vectors Ct ∈ RTm×Dm . Unlike previous works
that formulate cache to be tokens or words directly (Tu et al.
2018; Dai et al. 2019), GRC embeds historical tokens im-
plicitly. By learning to embed arbitrary length samples into
Ct, GRC allows traversing caches in constant time that is
independent of the number of memorized tokens. The cache
C0 will be initialized to be Tm-length zero vectors before
training, and then updated as depicted in Fig. 3(a).

Gating Mechanism. Inspired by gated RNNs (Cho et al.
2014), we adopt the gating mechanism to enable GRC to
dynamically capture dependencies at different time scales.
Specifically, the updating process of Ct is filtered by update
gates gu and reset gates gr. Considering updating GRC at
time step t, we first calculate the gates gu and gr:
gu = σ(Wu[X̄t, Ct−1]) and gr = σ(Wr[X̄t, Ct−1]), (4)

where σ denotes sigmoid function and [·, ·] concatenates to-
kens in channel dimension. For valid concatenation, X̄t is
interpolated into a Tm-by-Dm token. The updated cache Ct

is formulated by a linear interpolation as given by:

Ct = (1− gu)Ct−1 + guC̃t and C̃t = Wc[X̄t, gr ⊙ Ct−1]
(5)

where ⊙ is element-wise multiplication. In above process,
the update gates gu decides how much current sample X̄t

updates the cache and the reset gates gr suppress the accu-
mulated cache to forget unimportant components. Note that
shape of the derived Ct is B × Tm ×Dm as Xt is involved,
and we therefore average across the batch dimension to fit
the cache size.

Architecture Top-1 (%) Top-5 (%) ∆ Top-1 (%)
ViT-S 79.9 95.0 -
ViT-S (Cached) 81.3 95.5 + 1.4
PVT-T 75.1 92.3 -
PVT-T (Cached) 78.4 94.2 + 3.3
PVT-S 79.9 95.0 -
PVT-S (Cached) 81.8 95.9 + 1.9
PVT-M 81.2 95.7 -
PVT-M (Cached) 83.0 96.4 + 1.8
Swin-T 81.2 95.5 -
Swin-T (Cached) 82.1 95.9 + 0.9
PVTv2-B2 82.0 95.9 -
PVTv2-B2 (Cached) 82.6 96.2 + 0.6
PVTv2-B 83.2 96.3 -
PVTv2-B3 (Cached) 83.7 96.4 + 0.5
PVTv2-B4 83.6 96.3 -
PVTv2-B4 (Cached ) 84.1 96.6 + 0.5

Table 1: Performance of various Cached Transformers eval-
uated on ImageNet. ”(Cached)” indicates models imple-
mented with the proposed GRC-Attention. Top-1 / Top-5 / ∆
Top-1 denotes top-1 accuracy / top-5 accuracy / top-1 accu-
racy difference respectively. The cached models outperform
their corresponding baselines consistently.

Experiments

This section extensively evaluates the effectiveness of the
proposed Cached Transformer and Gated Recurrent Cache
(GRC) in both vision and language tasks, including language
modeling on WikiText-103, Long Listops of Long Range
Arena (Tay et al. 2021a), machine translation on IWSLT14
(Cettolo et al. 2014) / IWSLT15 (Cettolo et al. 2015), im-
age classification on ImageNet (Krizhevsky, Sutskever, and
Hinton 2012), and object detection and instance segmenta-
tion on COCO2017 (Lin et al. 2014). In addition, as the
cached models are newly introduced to vision transformers,
we also perform thorough discussions on the role of the pro-
posed caches and their significance. All of the experiments
are conducted on Tesla V100 GPUs.
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Figure 4: Visualizations of averaged features output from self-attention and cached attention, which is obtained by feeding
images of ImageNet validation sets to trained cached ViT-S. The results are obtained by averaging features over channel(and
head) dimension. Both ōself and ōmem are unflattened to 14× 14 for better comparisons. Dark pixels mean small values.

Image Classification
Experiments Setup. We first evaluate our methods on
Imagenet-1k for image classification. We implement our
GRC-Attention as a general pytorch module which main-
tains fixed-length buffers as cache. In image classification
task, we set the cache ratio r to be 0.5 and keep cache length
Tm equal to the length of image patches T . For fair com-
parisons, we directly replace the self-attention layers in cor-
responding transformers with our GRC-Attention module
without varying the architecture and hyperparameters. To
maintain spatial token structures, we add positional encod-
ings to our proposed GRC-Attention like other vision trans-
formers. Both the baselines and their cached counterparts are
trained with 224 × 224 size inputs using 16 GPUs. To fully
validate the proposed cache mechanism, we evaluate GRC-
Attention on four recent vision transformers including: ViTs
(Dosovitskiy et al. 2021), PVT (Wang et al. 2021), Swin-
Transformer (Liu et al. 2021) and PVT-v2 (Wang et al.
2022). Without bells and whistles, all of the training settings
for cached models are kept consistent with the original base-
lines including data augmentation, optimizer type, learning
rates and training epochs.

Classification Results. Table 1 reports overall perfor-
mance of cached transformers on corresponding baselines.
As shown, transformers implemented with GRC-Attention
consistently outperform their no-cache counterparts by
yielding significantly higher accuracy, demonstrating the ef-
fectiveness of our proposed caching mechanism. For in-
stance, by enabling cache, PVT-Tiny can achieve 78.4% top-
1 accuracy and 94.2% top-5 accuracy, surpassing the orig-
inal PVT-Tiny by 3.3% and 1.9% respectively. Moreover,
even for the recent stronger backbone PVTv2, our proposed
cached mechanism can still keep > 0.5 top-1 improvements.

Complexity Analysis. In current settings where cache ra-
tio r = 0.5, replacing all the attention layers with GRC-
Attention will cost approximately an extra 10% − 15%
FLOPs and Params. Considering the performance improve-
ments, the extra computations are acceptable (See in Fig. 1)
and more efficient than increasing the depth and width of
models.

Significance of Cached Attention. To verify that the
above performance gains mainly come from attending over
caches, we analyze the contribution of omem by visualizing
the learnable attention ratio σ(λh). Please be reminded that
in Eq 2, outputs of GRC-Attention is derived by interpolat-
ing outputs of cached attention ohmem and self-attention ohself
according to σ(λh). Hence, σ(λh) can be used to represent
the relative significance of ohmem and ohself . Fig. 5 depicts
the learned σ(λh) for each head respect to layers in ViT-S,
PVT-Tiny and PVT-Small. As we can see, for more than half
of the layers, σ(λh) is larger than 0.5, denoting that outputs
of those layers are highly dependent on the cached attention.
Besides, we also notice an interesting fact that the models al-
ways prefer more cached attention except for the last several
layers. This makes us curious about the roles of cached at-
tention: what is the feature that models actually learn by at-
tending over caches? The following paragraph answers this
question.

Roles of Cached Attention. We investigate the function
of GRC-Attention by visualizing their interior feature maps.
We choose the middle layers of cached ViT-S, averaging
the outputs from self-attention oself and cached attention
(omem) across the head and channel dimension, and then
normalizing them into [0, 1]. The corresponding results are
denoting as ōself and ōmem, respectively. Fig. 4 provides
visualizations of ōself and ōmem obtained by feedings im-
ages of ImageNet validation sets to trained cached ViT-S.
As ōself and ōmem are sequences of patches, they are unflat-
tened to 14×14 shape for better comparison. From Fig. 4 we
can see, features derived by the above two attentions are vi-
sually complementary. In GRC-Attention, omem is derived
by attending over the proposed cache (GRC) containing
compressive representations of historical samples, and thus
being adept in recognizing public and frequently showing-
up patches of this class. While for oself from self-attention
branch, it can focus on finding out more private and charac-
teristic features of current instance.

With above postulates, we can attempt to explain the reg-
ularity of σ(λh) in Fig. 5: employing more omem (larger
σ(λh) ) in former layers can help the network to distinguish
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Figure 5: Visualizations of learned σ(λh) for each head with respect to layer number (from shallow to deep) in different models:
ViT-S, PVT-Tiny and PVT-Small. Note that the ViT-S has 6 heads for all the layers, while PVT-Tiny and PVT-Small adopt a
progressive head strategy where head numbers increase from 1 to 8 gradually. Circles with different colors denote those different
heads. σ(λh) controls the interpolation ratio of cached attention outputs omem which reflects head-wise contributions of cached
attention to the final outputs. Note that σ(λh) > 0.5 means cached attention contributes more than self-attention. As shown, in
all of the three models, σ(λh) > 0.5 holds for more than half of the GRC-Attention layers, deducing that the model outputs are
significantly dependent on the cache.

Model No cache Attention-based cache GRC
ViT-S 79.9 80.0 81.3
PVT-T 75.1 74.8 78.4
PVT-S 79.9 79.6 81.8

Table 2: Performance(Top-1 Accuracy) comparisons of
cached models using GRC and attention-based

Architecture APb APb
50 APb

75 APm APm
50 APm

75

PVT-Tiny 36.7 59.2 39.3 35.1 56.7 37.3
+ Cached 41.0 63.4 44.8 38.3 60.4 41.1
PVT-Small 40.4 62.9 43.8 36.3 60.1 40.3
+ Cached 44.5 67.1 48.6 41.0 64.0 44.1
PVT-Medium 42.0 64.4 45.6 39.0 61.6 42.1
+ Cached 46.6 68.2 51.0 42.3 65.3 45.5

Table 3: Object detection and instance segmentation perfor-
mance on COCO val2017 following Mask R-CNN 1× set-
tings.

this instance coarsely, and employing more oself (smaller
σ(λh)) enable the model to make fine-grained decision.

Cross-sample regularization. The above paragraph also
shows that our proposed cache performs similarly to vector
prototypes (Caron et al. 2020), storing public features of
the same class implicitly and allowing models to classify in-
puts with both the public and characteristic representations.
In such a way, the predictions are not only dependent on the
current inputs but also on related cached samples, thus pro-
viding a cross-sample regularization to avoid overfitting.

GRC v.s. other memory-based methods. We perform
further ablations to compare GRC and attention-based
memory for image classification in ImageNet-1k. We de-
ploy Transformer-XL-style caches to Vision Transform-
ers(including ViT-S, PVT-Tiny and PVT-Small) and com-
pare them to corresponding GRC-cached models. As shown
in Table 2, GRC-cached models consistently outperform
their attention-based cache and no-cache counterparts. Be-
sides, it can be noted that the attention-based cache can
hardly improve the model performance.

Object Detection and Instance Segmentation.
Experiments Setup. We further assess the generalization
of our GRC-Attention on object detection / instance segmen-
tation track using COCO2017 dataset (Lin et al. 2014). The
models are trained on the COCO train2017 (118k images)
and evaluated on val2017 (5k images). We use the cached
PVT as backbone and adopt the Mask R-CNN detector (He
et al. 2017) to verify the effectiveness of GRC-Attention.
The standard COCO metrics of Average Precision (AP) for
bounding box detection (APbb) and instance segmentation
(APm) are used to evaluate our methods. All of the train-
ing settings and hyperparameters are kept the same as PVT
original implementation (Wang et al. 2021), and all of the
involved models are trained for 12 epochs using 8 GPUs.
For both the cached PVT and baselines, backbones are firstly
pretrained on ImageNet and then fine-tuned for detection.

Resuts. As shown in Table 3, when using Mask R-CNN
for object detection, the cached PVTs significantly outper-
form their baselines. For example, the AP of cached PVT-
Medium is 4.6 (46.6 vs. 42.0) points better than its no-cache
counterparts. Similar results can also be found in instance
segmentation results, where cached PVT-Medium achieves
3.3 higher APm (39.0 vs. 42.3). These results demonstrate
the generalizability of the proposed caching mechanism.

Language Modeling
Experimental Setup In this work, we conduct exper-
iments to compare the performance of Gated Recurrent
Cache (GRC) with Transformer-XL (Dai et al. 2019) on a
language modeling task using the WikiText-103 benchmark.
To implement GRC-cached language models, we use the
publicly available fairseq framework and follow the default
memory-based Transformer-XL configurations as our base-
lines, including model architecture and training settings. To
ensure a fair comparison, we compare GRC-cached mod-
els with two other memory-based methods, Memory Trans-
fomer (MT) (Burtsev et al. 2020) and Recurrent Mem-
ory Transformer (RMT) (Bulatov, Kuratov, and Burtsev
2022). We implement GRC-cached models by replacing the
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Architecture IWSLT14 IWSLT15
De-En Es-En En-Fr De-En En-Vi Cs-En

Transformer 35.5 41.4 41.5 36.1 29.8 28.8
Transformer (GRC-cached) 36.0(+ 0.5) 41.8(+ 0.4) 41.7(+ 0.2) 36.3(+ 0.2) 30.2(+ 0.4) 29.4(+ 0.6)

Table 4: Neural machine translation results using Pre-Norm Transformers in terms of BLEU scores.

Architecture No cache MT RMT GRC
Transformer-XLbase 24.0 23.99 23.95 22.9
Transformer-XLlarge 18.3 - - 17.9

Table 5: Comparison of performance(Test PPL) for GRC
and other Memory-based methods (Burtsev et al. 2020; Bu-
latov, Kuratov, and Burtsev 2022) on WikiText-103. The
smaller is better. GRC outperform Transformer-XL and pre-
vious memory-based methods for language modeling by a
large margin of 1.1 PPL.

caching scheme with the GRC approach while keeping all
data augmentation and hyper-parameters unchanged for a
more fair comparison.

Comparison to Other Memory-Based Methods We
present the performance of GRC-cached models com-
pared to Transformer-XL baselines and other memory-based
methods in Table 5. The results show that GRC-cached mod-
els outperform Transformer-XL and other memory-based
methods in terms of perplexity on both base and large-scale
models. For instance, GRC-cached Transformer-XLbase

achieves up to 1.1 lower PPL compared to the baseline
Transformer-XL and 1.05 lower PPL to the RMT, demon-
strating the superiority of GRC over previous memory-based
Transformer methods.

Long Range Arena
Experiments Setup. We extensively conduct experiments
on recently proposed Long Range Arena (LRA) benchmarks
(Tay et al. 2021a) to validate our proposed methods under
the long-context scenario. To demonstrate the long-range se-
quence modeling capability of GRC-Attention and the cor-
responding cache mechanism, we choose the challenging
Long ListOps task in LRA, which is a longer variation of
ListOps task (Nangia and Bowman 2018) with up to 2k
length sequences and considerablely difficult. In this task,
we also extend GRC-Attention to efficient attention variants
by replacing the self-attention function (See section ). Con-
cretely, we compare GRC-Attention to their no-cache coun-
terparts on baselines including Transformer (Vaswani et al.
2017), BigBird (Zaheer et al. 2020) and Reformer (Kitaev,
Kaiser, and Levskaya 2020). For those efficient attentions
like BigBird and Reformer, we only import gated recurrent
cache and maintain their inner attention function unchanged.
All of the experiments are under default settings in (Tay
et al. 2021a).

Results. Table 6 reports Long ListOps results. As shown,
cached models consistently outperform their baselines (in-
cluding the SOTA methods Reformer) significantly. For in-
stance, by employing GRC, BigBird model can achieve 1.39
higher accuracy. These results show the long-range sequence
modeling ability of GRC as well as its generalizability to
other attention variants.

Architecture baseline GRC-cached ∆
Transformer 36.23 37.40 + 1.17
BigBird 36.06 37.45 + 1.39
Reformer 37.27 37.85 + 0.58

Table 6: Results on Long ListOPs task in LRA in terms
of accuracy. The ”cached” column indicates cached mod-
els whose attention layers are implemented as generalized
GRC-Attention. ∆ denotes the difference between proposed
cached models and baselines.

Neural Machine Translation
Experiments Setups. We experiment our methods on
widely used public datasets IWSLT14 and IWSLT15. Mul-
tiple language sources3are included to fully verify effective-
ness of the proposed GRC, and models are trained for each
track individually. We adopt the Pre-Norm Transformer set-
tings in (Wang et al. 2019) and implement the models using
fairseq-py (Ott et al. 2019) framework. Following (Wang
et al. 2019; Ott et al. 2019), we generally increase the learn-
ing rates by 2 and average the last 10 checkpoints for in-
ference. We employ the proposed GRC-cached models by
replacing all attention modules of transformer encoder lay-
ers with GRC-Attention. The cache length Tm is set to be
64 for all cached models. All the transformers in this task
are using six encoder layers and six decoder layers. For a
fair comparison, both the baselines and cached models are
trained under identical settings.

Results. We use BLEU (Papineni et al. 2002) as evalua-
tion metrics and compare GRC cached transformers to their
baselines in Table 4. It can be seen that consistent improve-
ments can be reached by applying GRC-Attention to base-
lines. For tracks like IWSLT14 De-En and IWSLT15 Cs-En,
the increments can achieve 0.5/0.6 points, which is actually
significant for these tasks.

Discussion
We introduce Cached Transformer with Gated Recurrent
Cache (GRC), a simple extension to Transformer-based
models that significantly increases the length of attention
context by allowing access to historical states through a gat-
ing mechanism. GRC embeds previous tokens, whether they
are close or distant, as fixed-length vectors, without com-
plexity dependence on the number of cached tokens. Con-
sequently, GRC model token dependencies over a broader
range of input, resulting in improved accuracy and perfor-
mance across diverse Transformers-variants with different
architectures and attention functions, on a variety of vision
and language tasks.

3IWSLT14: German-English(De-En), Spanish-English(Es-En)
and English-French(En-Fr), IWSLT15: German-English(De-En),
English-Vietnamese(En-Vi) and Czech-English(Cs-En)
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