
Learning Multi-Task Sparse Representation Based on Fisher Information

Yayu Zhang1,3, Yuhua Qian1*, Guoshuai Ma2, Keyin Zheng1, Guoqing Liu1,3 , Qingfu Zhang3, 4

1 Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006, China
2 School of Computer Science and Technology, North University of China, Taiyuan, Shanxi, 030051, China.

3 Department of Computer Science, City University of Hong Kong, Hong Kong, China
4 The City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

{zhang yayu93, jinchengqyh, maguoshuaixy}@126.com, {zhengkeyin1221, guoqingl1001}@163.com
qingfu.zhang@cityu.edu.hk

Abstract
Multi-task learning deals with multiple related tasks simul-
taneously by sharing knowledge. In a typical deep multi-
task learning model, all tasks use the same feature space and
share the latent knowledge. If the tasks are weakly corre-
lated or some features are negatively correlated, sharing all
knowledge often leads to negative knowledge transfer among.
To overcome this issue, this paper proposes a Fisher sparse
multi-task learning method. It can obtain a sparse sharing
representation for each task. In such a way, tasks share fea-
tures on a sparse subspace. Our method can ensure that the
knowledge transferred among tasks is beneficial. Specifically,
we first propose a sparse deep multi-task learning model,
and then introduce Fisher sparse module into traditional deep
multi-task learning to learn the sparse variables of task. By al-
ternately updating the neural network parameters and sparse
variables, a sparse sharing representation can be learned for
each task. In addition, in order to reduce the computational
overhead, an heuristic method is used to estimate the Fisher
information of neural network parameters. Experimental re-
sults show that, comparing with other methods, our proposed
method can improve the performance for all tasks, and has
high sparsity in multi-task learning.

Introduction
Human possess an extraordinary capacity for inducing and
transferring knowledge, enabling us to generalize and ap-
ply existing knowledge to new situations. However, conven-
tional machine learning models have not adapted well to
challenges such as multi-task, multi-scenario and still lack
sufficient generalization ability. Taking inspiration from the
knowledge transfer mechanism observed in human cogni-
tion, the concept of transfer learning (Weiss, Khoshgoftaar,
and Wang 2016) has emerged as a novel learning paradigm.
This paradigm facilitates the transfer of knowledge among
tasks, resulting in expedited and effective model training,
often yielding superior performance outcomes. Multi-task
learning(MTL) (Caruana 1997) as a special case of transfer
learning, which combines multiple related tasks to train the
model together and improve the performance of all tasks.
During the training process, knowledge is adeptly trans-
ferred across tasks, forging a dynamic learning synergy.
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Figure 1: The two modeling approaches of multi-task learn-
ing. The layers inside the red dotted box are task-sharing
layers. It can also be regarded as a feature extractor to ob-
tain the feature representation shared by tasks. The layers at
the top of the model are task-specific layers. It decodes the
sharing feature to the task-specific feature space. The blue
block represents the tasks sharing parameters; The yellow
and red blocks are the task-specific parameters.

As shown in Fig. 1(a), the architecture of the general
deep MTL model comprises a feature extractor and multi-
ple decoders(Crawshaw 2020). The feature extractor learns
the nonlinear and high-dimensional representation of multi-
ple tasks. Subsequently, the decoder maps the output of the
encoder to a task-specific representation space. This model-
ing approach is assumed that all tasks share identical depen-
dencies and utilize a shared feature space. Nevertheless, this
assumption often falls short in real-world scenarios, where
correlations between latent features among tasks are some-
times limited. The inclusion of irrelevant shared information
during multi-task training can induce negative knowledge
transfer among tasks (Sun et al. 2020a). Thus, there arises
a necessity to explore novel modeling approaches that can
effectively address this aforementioned challenge.

Sparse modeling is assumed that all tasks share knowl-
edge within a sparse subspace. This assumption can en-
hance the robustness and generalization capabilities of a
multi-task learner by eliminating negative correlations and
redundant features during training. Moreover, the acquired
sparse model effectively reduces storage demands and can
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be conveniently accommodated within embedded devices.
Consequently, the sparse modeling approach has garnered
increasing interest among deep multi-task learning (DMTL)
researchers.

In the context of DMTL, the notion of sparsity often
guides the identification of parameters that warrant sharing
among tasks. Precisely, the parameters within the feature
extractor are allocated across distinct tasks, as exemplified
in Fig. 1(b). Knowledge transfer between tasks is confined
solely to these shared parameters. However, most prevail-
ing methodologies distribute the parameters in the feature
extractor randomly. In 2020, Sun et.al. (Sun et al. 2020a)
introduced the concept of sparse sharing in multi-task learn-
ing, whereby a set of masks for each task is obtained ran-
domly, and subsequently, the optimal mask for each task
is chosen for multi-task training. Another technique, known
as task routing (Strezoski, Noord, and Worring 2019), pro-
cures the sparse optimization path for a task through ran-
dom exclusion of the shared layer filter’s output. Pascal et
al. (2021) (Pascal et al. 2021) employ the maximum roam-
ing method, introducing random variations in parameter al-
location via dropout. These randomized approaches at times
yield unstable, uncertain, and unexplainable experimental
outcomes. The ESSR method(Zhang et al. 2023) acquires
task sparse representations through evolutionary processes.
However, its feasibility is restricted for extensive computer
vision tasks due to the demand for substantial computational
resources.

Thus, in this paper, a statistical measurement approach is
adopted to derive the sparse sharing representation of tasks.
This methodology surpasses the limitations of both random
and evolutionary methods, providing a balanced and con-
trolled means to enhance the efficiency and effectiveness of
multi-task learning. The proposed method is called Fisher
sparse multi-task learning, abbreviated as FSMTL. This ap-
proach integrates a Fisher information module into DMTL,
facilitating the estimation of shared parameters’ significance
for each task. The task will select the K parameters with the
highest Fisher information. During training, each task only
optimizes these chosen parameters. The knowledge trans-
fer among tasks takes place through the parameters jointly
optimized by these tasks. In particular, we begin by for-
malizing the sparse model of DMTL, introducing a binary
sparse variable set denoted as S within the general model.
Subsequently, we formulate a bi-level optimization problem
encompassing two types of variables: the network parame-
ters and the sparse variables set. Then the neural network
parameters and sparse variables are updated alternately by
fixed variables. Notably, the sparse variable of task is learned
based on the Fisher information of shared parameters. Ulti-
mately, the proposed method learns a sparse representation
for each task. And every task obtains a smaller inference
model.

The proposed method presents several key contributions
and advantages, outlined as follows:

• The sparse DMTL model is formalized, and a novel
method for sparse multi-task learning is proposed. It de-
termines which knowledge should be shared among tasks

by adding a Fisher sparse module.
• The Fisher information is incorporated as a priori to at-

tain the sparse representation of each task, with time effi-
ciency being optimized through the utilization of an em-
pirical estimation method instead of the conventional ap-
proach for Fisher information estimation.

• The efficacy of the proposed method is verified across
three distinct types of multi-task datasets. The results
show that the proposed method improves the perfor-
mance of each task, and has better sparsity than related
methods.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys different deep multi-task learning methods.
Section 3 proposes the concept of multi-task sparse repre-
sentation and develops a novel sparse multi-task learning
method. Section 4 presents the performance evaluation of
the proposed method against related methods. Finally, we
draw conclusions in Section 5.

Related Work
In this section, we summarize the related works on solving
task interference. We roughly divide them into the following
four categories.

Multi-Task Network Architecture Learning. These
method obtains the shared Architecture of the task by di-
viding the model structure or adding task modules. Cross-
stitch networks(Misra et al. 2016) model shared represen-
tations by adding a cross-stitch unit. Single-tasking mul-
tiple tasks method decode the tasks’ common representa-
tion by adding a squeezeand-excitation (SE) modulation be-
tween encoder and decoder. AdaShare(Sun et al. 2020b)
is to learn which layers to excute for a given task in the
multi-task network. And gumbel-softmax sampling is intro-
duced to resolve this non-differentiability and enable direct
optimization of the discrete policy using back-propagation.
Stochastic filter groups method(Bragman et al. 2019) as-
signs the convolution kernels to task-specific and shared
groups. Evolutionary architecture search(EAS)(Liang, Mey-
erson, and Miikkulainen 2018) develops an automated, flex-
ible approach for evolving architectures of deep multitask
networks.

Adaptive Loss Weighting. GradNorm method(Chen
et al. 2018) automatically balances training in deep multitask
models by dynamically tuning gradient magnitudes. Uncer-
tainty weigh losses method(Kendall, Gal, and Cipolla 2018)
proposes a principled approach to multi-task deep learning
which weighs multiple loss functions by considering the ho-
moscedastic uncertainty of each task. Dynamic weight av-
erage method(Liu, Johns, and Davison 2019) requires the
numerical task loss, and therefore its implementation is far
simpler. Just Pick a Sign(Chen et al. 2020) method opti-
mizing deep multitask models with gradient sign dropout.
Lin et.al. (Lin et al. 2021) propose the random weighting
method, where an MTL model is trained with random loss/-
gradient weights sampled from a distribution.

Trade-off Gradient Direction. The concept of multi-
objective multi-task learning (MOMTL)(Sener and Koltun
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2018) was first proposed by Sener and Koltum in 2018. Dif-
ferent from general multi-task learning problems, it mainly
focuses on multi-task learning problems with conflicts. The
optimization objective is to find the trade-off solution among
tasks. PCGrad (Yu et al. 2020) mitigating gradient interfer-
ence by altering the gradients directly. CAGrad(Liu et al.
2021a) minimizes the average loss function, while leverag-
ing the worst local improvement of individual tasks to reg-
ularize the algorithm trajectory. Impartial multi-task learn-
ing(IMTL)(Liu et al. 2021b) is proposed to balance the
weight of gradient and loss in multi-task learning. Stochastic
multi-objective gradient correction (MoCo)(Fernando et al.
2023) guarantees convergence without increasing the batch
size even in the nonconvex setting.

Multi-Objective Multi-Task Learning. The above meth-
ods only obtain a solution instead of a Pareto set when faced
with task gradient conflicts. The Pareto multi-task learn-
ing(Lin et al. 2019) decomposes the MTL problem into
multiple sub-problems with constraints to obtain a Pareto
set under multiple preferences. Controllable Pareto multi-
task(Lin et al. 2020) formulates the MTL as a preference-
conditioned multi objective optimization problem, with a
parametric mapping from preferences to the corresponding
trade-off solutions. Exact Pareto optimal (EPO)(Mahapatra
and Rajan 2020) develops the first gradient-based multi-
objective MTL algorithm to find a preference-specific Pareto
optimal solution. Continuous Pareto MTL(Ma, Du, and Ma-
tusik 2020) presents a novel and efficient method that gen-
erates locally continuous Pareto sets and Pareto fronts.

Methodology
Suppose that T1, T2, ..., Tt ∈ T are t supervised learning
tasks. Each task is associated with a set of training data
Dt = {(xt

i, y
t
i)}

Nt

i=1 ⊂ Rd × R, where Nt is the number
of samples. When t1 ̸= t2, xt1

i = xt2
i , it means that tasks

share the same training data. MTL aims to learning a map-
ping ft : Xt → Yt for each task simultaneously. For general
DMTL model, the mapping can divided into two parts: (1) a
feature extractor Φ : Xt → Z , with parameters θsh, which
obtain the sharing feature of tasks; (2) multiple decoders
(e.g., regressor or classifier) gt : Z → Yt, parameterized
by θt, which map sharing features into different tasks. The
prediction label of task Tt can be written in the following
form

ft(x) = gt(Φ(xt, θ
sh); θt), (1)

where zt = Φ(xt, θ
sh) is the latent representation of the

input xt and the feature mapping function Φ is learned
by jointly all tasks. Information sharing among tasks is
realized through θsh. The task-specific loss functions is
Lt(θ

sh, θt) = 1
Nt

∑Nt

i l(f̂ t
i , y

t
i). The objective function is

described as empirical risk minimization formulation:

min
θsh

θ1,...θT

T∑
t=1

wtLt(θ
sh, θt), (2)

wt is the weight of the t-th task.

The conventional MTL paradigm mentioned above as-
sumes that all tasks employ an identical feature space, im-
plying uniform relevance among tasks and equal informa-
tion sharing. However, this assumption is evidently unreal-
istic. As a remedy, we introduce the Fisher Sparse Multi-
Task Learning (FSMTL) approach, designed to optimize the
effectiveness of knowledge transfer among tasks.

Sparse Deep Multi-Task Learning
In the FSMTL, we assume that the tasks share information
using a chosen subset of features. It means that original fea-
ture extractor Φ encompasses numerous parameters that are
equal to zero. The mode of information sharing has changed
from full sharing to sparse sharing. A primary objective of
FSMTL is the identification of these sparse subspaces. This
is achieved through the introduction of a sparse variable set,
denoted as S. Furthermore, the feature mapping from input
to output is restructured as follows:

ft(x) = g
(
Φ(x, St ⊙ θsh); θt

)
, t = 1, ..., T, (3)

where ⊙ denotes element-wise multiplication. S =
{S1, S2, ..., ST } is a set of task sparse variables. St is the
sparse encoding of task t, and it is a tensor filled with 0
and 1. And the dimension of St is the same as θsh. If the
sparse variable is given, the task’s sparse representation can
be derived. Sparse representations enable information shar-
ing among tasks through distinct parameters. Next, we em-
bed the sparse variables into neural network, and the details
are described as follows.

Suppose that feature extractor Φ of neural network has P
parameters, that is, θsh = {θ1, θ2, ..., θP }. And the sparse
variable of task Tt is recorded as St = {s1, s2, ..., sP }.
Then, the gradient is calculated as follows:

gtθp =

{∇θpLt, sp = 1

0, sp = 0
, (4)

If sp = 1, the p-th parameter of θsh is optimized by task
Tt. Conversely, if the elements of sp = 0, it corresponding
parameter is not optimized. By the above operation, the task
is encoded within a sparse subspace. The objective function
for MTL is reformulated as:

min
S

min
Θ

L
(
θsh, θt, S;D

)
, (5)

Θ =
{
θsh, θt

}T

t=1
. Eq. (5) is a bi-level optimization prob-

lem. Both the neural network parameters Θ and sparse vari-
able set S are need to be optimized. In the paper, two kinds
of parameters are alternately learned by fixed variable.

With the sparse variable set is provided, each task is asso-
ciated with a unique optimization path. The objective at the
inner level is jointly optimized through alternating iterations
across all tasks. However, optimizing high-dimensional dis-
crete task variable st poses computational feasibility chal-
lenges. So, the Fisher sparse module is introduced in this
study to aid in learning them. It can enhance the generaliza-
tion performance of a learner (Wang et al. 2023).
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Fisher Sparse Module
To avoid the challenges posed by discrete optimization, the
process of acquiring sparse variables can be reframed as a
parameter selection problem. It tries to seek the shared pa-
rameters within the feature extractor that offer the great-
est advantage to a given task. So, in the paper, the KL-
divergence is used to measure the impact of shared param-
eters on tasks’ prediction performance. The details are de-
scribed as follows.

The neural network is recognized as a discriminant
model (Bishop and Nasrabadi 2006). It achieves classi-
fication or regression tasks by modeling the conditional
probability distribution P (y|x, θ). Here, y denotes the tar-
get variable, x denotes the input features, and θ repre-
sents the network parameters. Through introducing a slight
perturbation δ to model’s parameter θ, the KL-divergence,
KL(pθ(y|x)||pθ+δ(y|x)), is used to quantify the disparity
between the original distribution pθ and the perturbation dis-
tribution pθ+δ . When use in DMTL, this measurement can
serve as an indicator of the significance of the shared pa-
rameters θsh in determining the model’s prediction perfor-
mance for a specific task. Therefore, we use this latent re-
lationship between sharing parameters and model predictive
performance to obtain the sparse variable of the task.

It is well known in the field of natural gradient, assuming
δ → 0, the KL-divergence can be approximate by its second
order Taylor series(Martens 2020):

Ex [KL(pθ(y|x)||pθ+δ(y|x))] = δTFθδ +O(δ3), (6)

where O(δ3) denotes terms of order 3 or higher in the en-
tries of δ. The Fθ represents the Fisher information matrix
of pθ(y|x) with respect to θ, and it is given by:

Fθ = EQx [EPy|x [∇θlogpθ(y|x)∇θlogpθ(y|x)T ]], (7)

Qx represents the target distribution of input vector x with
density function q(x). Formula (6) constructs the connection
between KL-divergence and Fisher information. It shows
that the difference between the two distributions is positively
linked to Fisher information. The model exhibits heightened
sensitivity towards parameters possessing greater Fisher in-
formation. In other words, the parameters with larger Fisher
information carry higher significance for the model’s perfor-
mance.

Hence, we leverage above association to derive task’s
sparse variables in multi-task learning. In the context of gen-
eral DMTL, the conditional distribution of task t is extended
and redefined as P (yt|xt; θ

sh, θt), where yt represents the
output for a specific task, xt represents the corresponding
input, and θsh and θt represent the shared and task-specific
parameters, respectively. It density function is denoted as
pΘt

(yt|xt), Θt =
{
θsh, θt

}
. The Fisher information matrix

of task Tt can be described as follows:

FΘt
= EQxt

[EPyt|xt
[(∇Θt

logpΘt
)(∇Θt

logpΘt
)T ]]. (8)

In practice the real q(xt) and p(yt|xt) is unknown. Fisher
information matrix is often estimated using its empirical
version. The Fisher information of the multi-task learning

Algorithm 1: FSMTL Algorithm Framework

Input: D = {Dt}Ti=1: Multi-task dataset
Net: Base network
Nepoch: maximum iteration number
Output: Optimal network and sparse variable set
SD

1: Warm up Net
2: for i = 0 to Nepoch do
3: if Satisfy the update condition then
4: Updating S based on θsh

5: Updating network parameters
6: end if
7: end for
8: return Θ and S.

model on task Tt can be calculated by the following formula.

ˆFΘt
=

1

Nt

∑
x∈Dt

C∑
c=1

p(y = c) ∗ [∇Θt
logp(y = c|xti; θ)]

2,

(9)
where C refers to the number of categories of tasks. How-
ever, due to the large number of parameters in a neural net-
work, it is difficult to directly calculate the Fisher informa-
tion matrix. In order to improve computational efficiency, a
simplified estimation approach(Sung, Nair, and Raffel 2021)
is employed in this paper to approximate the Fisher informa-
tion of the parameter θ.

F̂Θt
=

1

Nt

∑
x∈Dt

(∇θlogp(y = bc|xti; Θt))
2 (10)

{xti}Nt

i=1 are Nt samples from training data Dt. bc is the
prediction label of learned model. Furthermore, the Eq: (10)
is faster to compute than the standard Fisher as long as
more than one sample is used to approximate the expecta-
tion Epy|xi

.
In the paper, the K parameters with the largest Fisher in-

formation in the feature extractor Φ are selected as task pa-
rameters. Let θp be the critical value, the mapping of a pa-
rameter to sparse variables will be established:

si =

{
1, Fθi ≥ Fθp
0, other

, i = 1, · · · , P. (11)

In this way, the task will acquire a unique optimized path.
During training, the task only updates parameters related to
itself. The parameters selected by multiple tasks will be op-
timized by them together. The knowledge transfer among
tasks occurs only for the co-optimized parameters. The Fig.
A1 in the Appendix shows the optimization path of the task
on the i-th epoch. By continuous alternate optimization of
neural network parameters and sparse variables, the pro-
posed method will find an optimal inference path for each
task.

Optimization and Implementation Detail
During training, the procedure handles two types of param-
eters: one is the parameter of neural network, the other is
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Algorithm 2: Updating Sparse Variable Set S
Input: T : The number of tasks
k: mask sparse level
D = {Dt}Ti=1: Multi-task dataset
Net: A base network
Output: S: Sparse Variable Set

1: for t = 1 to T do
2: Sample N examples DN

t from Dt

3: Compute gθ = ∇θLt(θ
sh;DN

t )
4: Compute g2θ or |gθ|
5: Sort sharing layer parameters

{
g2θi

}P

i=1
6: Obtain sparse variable St according to Eq. (11)
7: end for
8: return Sparse variable set S

sparse variable of tasks. They are updated by fixed variables.
Pseudo-code are shown in algorithm 1 to algorithm 2.

Model parameter optimization. When updating Θ with
fixed SD, the optimization problem can be written as:

min
θsh
t ,θt

1

Nt

n∑
i=1

Lt(g
(
Φ(xt

i, St ⊙ θsh); θt
)
, t = 1, ..., T

(12)
In homogeneous features MTL, the multi-task datasets

are fed to the network, and the tasks’ objective are optimized
in turns. In heterogeneous features MTL, all tasks come
from different feature space, that is xt1 ̸= xt2 . The tasks ex-
amples in min-batch are fed to network in order. And then
the average of all tasks gradients is taken as the final gradi-
ent of network parameter. The task gradient is obtained by
back propagation of its loss function. The details can refer
to Algorithm 1 in the Appendix.

Sparse variable updating. When the network parameter
is fixed, the second objective is to estimate Fisher informa-
tion of feature extractor parameters for each task. Specifi-
cally, for task Tt, we sample N examples DN

t from Dt and
input them to the network of current state. Then parameter
gradient gθ = ∇θp(yc|DN

t ) are obtained by back propa-
gation Lt(θ

sh, θt). The g2θ is proportional to F̂θ. Therefore,
within the algorithm, the elements in set

{
g2θi

}P

i=1
to assist

the selection of task parameters. Once sorted, the K param-
eters with the largest g2θ are designated as task parameters.

Experimental Studies
Datasets
This paper conducts experiments on three multi-task
datasets: DKL-mnist, CelebA, and CityScapes. They include
3, 8 and 8 tasks respectively. DKL-mnist is a heteroge-
neous feature multi-task dataset. CelebA and CityScapes
are homogeneous feature multi-task datasets. CelebA is a
multi-label dataset, with each instance belonging to multi-
ple classes. CityScapes is a computer vision dataset used to
evaluate two completely heterogeneous tasks: semantic seg-
mentation and depth estimation. The detailed description of
the datasets can be found in the Appendix.

Comparative Methods
We compare our method(FS) with 11 related methods on
three multi-task datasets. There are two baseline methods
(STL and MTL) and nine methods that address task in-
terference in MTL. GradNorm and MGDA-UB methods
mitigate task interference by adaptive loss weighting. CA-
Grad (Liu et al. 2021a) and Nash-MTL (Navon et al. 2022)
mitigate task interference by gradient weighting. Random
Loss method(RLW) (Lin et al. 2021) method train model
via random loss/gradient weights sampled from a distri-
bution. Squeezeand-Excitation(SE) (Maninis, Radosavovic,
and Kokkinos 2019), Task Routing(TR) (Strezoski, Noord,
and Worring 2019), Maximum Roming(MR) (Pascal et al.
2021), Random Sparse(RS) and Fisher Sparse(FS) divide
task parameters by different ways. The detailed description
of the related methods can be found in the Appendix.

Performance Metrics
Four metrics Accuracy, Precision, Recall, and F-score are
used to evaluate the performance of the classification
task. Intersection over Union (mIoU) and Pixel Accuracy
(Pix.ACC.) are used to evaluate the performance of the se-
mantic segmentation task. Average absolute (Abs.Err.) and
relative error (Rel.Err.) are used to evaluate the performance
of the depth estimation task.

Comparing with Related Methods
This section presents a comparative analysis of the perfor-
mance of FS with related works. The experimental results
are presented in Table 1 and Table 2. #N is the number of
tasks. The p denotes the “keep ratio” of parameters for RS
and FS. For TR and MR, the p denotes the “keep ratio” of
each layer of filters’ output. Each entry in the table repre-
sents the mean and standard deviation of three experiments
conducted for all tasks(presented as “mean ± std”). The op-
timal results are highlighted in boldface font. We compare
the performance of all algorithms on each task, and present
the results in Fig. 2 and Fig. 3. In addition, “Statistical Sig-
nificance Analysis” and “Ablation Study” can be found in
the Appendix. Considering the time cost, all analytical ex-
periments were conducted on the smaller datasets DKl-mnist
and CleabA. Based on the experimental results, some find-
ings are obtained:

(1) The approach of sparse sharing can alleviate task
interference. The experimental results on the DKL-mnist
and Cityscape datasets demonstrate that the performance
of MTL is worse than STL. This suggests that task trans-
fer in multi-task learning may contain destructive or nega-
tively correlated components. Despite the incapacity of other
compared methods to address this issue, our method also
achieves good learning performance. In particular, the FS
method can effectively address the issue when applied to the
Cityscape dataset, using only 30% of the parameters in each
iteration.

(2) The FS can improve the performance of each task.
In Figure 2 and Figure 3, we compare the accuracy and
F-score of all algorithms on each task for datasets DKL-
mnist and CelebA, respectively. Results show that FS out-
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Datasets #N Model p
Multi-Attribute Classification↑ Avg. Rank

Accuracy Precision Recall F-score

DKL-mnist 3

STL 0.877 ± 0.002 0.807 ± 0.006 0.807 ± 0.005 0.797 ± 0.006 -
MTL 100% 0.869 ± 0.002 0.793 ± 0.001 0.796 ± 0.002 0.784 ± 0.002 3
CAGrad 100% 0.866 ± 0.006 0.791 ± 0 007 0.793 ± 0.006 0.780 ± 0.007 3.875
RGW 100% 0.870 ± 0.004 0.796 ± 0.004 0.799 ± 0.004 0.786 ± 0.004 2
Nash-MTL 100% 0.866 ± 0.001 0.788 ± 0.002 0.791 ± 0.002 0.778 ± 0.002 4.625
SE - 0.859 ± 0.005 0.777 ± 0.007 0.782 ± 0.006 0.767 ± 0.007 8
TR 90% 0.859 ± 0.003 0.781 ± 0.004 0.784 ± 0.003 0.771 ± 0.003 6.5
MR 90% 0.859 ± 0.009 0.780 ± 0.014 0.784 ± 0.012 0.770 ± 0.013 7.75
RS 90% 0.851 ± 0.009 0.780 ± 0.010 0.787 ± 0.010 0.771 ± 0.009 6.75
FS 90% 0.880 ± 0.001 0.811 ± 0.006 0.813 ± 0.007 0.801 ± 0.007 1

CelebA 8

STL 0.879 ± 0.002 0.629 ± 0.004 0.620 ± 0.005 0.624 ± 0.003 -
MTL 100% 0.894 ± 0.001 0.689 ± 0.006 0.597 ± 0.003 0.632 ± 0.001 10.5
GradNorm 100% 0.895 ± 0.004 0.693 ± 0.003 0.599 ± 0.008 0.634 ± 0.002 10
MGDA-UB 100% 0.898 ± 0.0003 0.706 ± 0.001 0.595 ± 0.003 0.636 ± 0.002 7.5
CAGrad 100% 0.897 ± 0.001 0.704 ± 0.004 0.597 ± 0.001 0.638 ± 0.0001 7.25
RLW 100% 0.896 ± 0.002 0.697 ± 0.033 0.596 ± 0.006 0.635 ± 0.001 9.75
RGW 100% 0.893 ± 0.003 0.688 ± 0.011 0.603 ± 0.004 0.635 ± 0.002 9.75
Nash-MTL 100% 0.896 ± 0.002 0.700 ± 0.009 0.602 ± 0.004 0.639 ± 0.003 7.25
SE - 0.899 ± 0.002 0.702 ± 0.003 0.626 ± 0.005 0.659 ± 0.002 4
TR 90% 0.901 ± 0.002 0.718 ± 0.012 0.611 ± 0.009 0.651 ± 0.004 4
MR 90% 0.899 ± 0.002 0.704 ± 0.009 0.622 ± 0.003 0.654 ± 0.001 4.25
RS 90% 0.904 ± 0.001 0.728 ± 0.004 0.613 ± 0.002 0.654 ± 0.001 2.75
FS 10% 0.910 ± 0.0003 0.753 ± 0.002 0.637 ± 0.003 0.681 ± 0.0004 1

Table 1: Comparative study of related algorithms on DKL-mnist and CelebA dataset

(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 1 (e) Task 2 (f) Task 3

Figure 2: Comparison of the accuracy and F-score of all algorithms across each task of DKL-mnist dataset. (a)-(c) and (d)-(f)
present a comparison of six algorithms’ Accuracy and F-SCORE across every task, respectively.

performs the comparative algorithms on all tasks, espe-
cially for the more challenging optimization tasks where FS
method demonstrated a more evident superiority. For ex-
ample, task 3 on the DKL-mnist dataset and task 5 on the
CelebA dataset.

(3) The FS uses fewer parameters and obtains better
performance compared with related methods. Table 1 and
2 presents the optimum p values obtained from the results.
The TR, MR, and RS methods show optimal performance at
p = 90%, whereas the FS method shows good performance
for CelebA at p = 10%, utilizing parameters of only 10%.
Although the FS achieves optimal performance at p = 90%
for the DKL-mnist, it also yields an improvement of 30%
in F-score. Experiments on Cityscapes also demonstrate the
significant advantage of the proposed method.

(4) The FS has more obvious advantages in homoge-
neous feature tasks. In comparison, the FS method demon-
strates significantly better performance on the homogeneous

feature multi-task learning datasets CelebA and Cityscapes,
compared to the heterogeneous feature multi-task dataset
DKL-minst. This result suggests that the proposed method
is more prone to interference in heterogeneous tasks owing
to differences in tasks’ data distributions.

(5) The performance of the simple FS method closely
that of the EFS method. We also compared the perfor-
mance of the FS and EFS methods on both DKL-mnist and
CelebA datasets. The results are presented in Fig. 4. The re-
sults show that the FS and EFS are consistent on the same
dataset with the increase of “keep ratio”. Sometimes, the
performance of the FS method is even better than that of the
EFS method, such as when the keep ratio is 0.1 on CelebA.

Conclusion
To overcome the negative knowledge transfer existing in
multi-task learning, this paper proposes a sparse sharing
method based on the Fisher information of neural network
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Datasets #N Model p
Segmentation↑ Depth estimation↓ Avg. Rank

mIoU Pix. Acc. Abs. Err. Rel. Err.

Cityscape 8

STL 58.57 ± 0.49 97.46 ± 0.03 0.0141 ± 0.0002 22.59 ± 1.15 -
MTL 100% 56.57 ± 0.22 97.36 ± 0.02 0.0170 ± 0.0006 43.99 ± 5.53 6.75
GradNorm 100% 56.77 ± 0.08 97.37 ± 0.02 0.0199 ± 0.0004 68.13 ± 4.48 5.875
MGDA-UB 100% 56.19 ± 0.24 97.33 ± 0.01 0.0130 ± 0.0001 25.09 ± 0.28 3.75
SE - 55.45 ± 1.03 97.24 ± 0.10 0.0160 ± 0.0006 35.72 ± 1.62 6.625
TR 60% 56.52 ± 0.41 97.24 ± 0.04 0.0155 ± 0.0003 31.47 ± 0.55 5.625
MR 60% 57.93 ± 0.20 97.37 ± 0.02 0.0143 ± 0.0001 29.38 ± 1.66 3.5
RS 30% 60.50 ± 0.19 97.53 ± 0.05 0.0143 ± 0.0003 25.87 ± 0.58 2.375
FS 30% 66.24 ± 0.34 98.05 ± 0.02 0.0125 ± 0.0001 25.86 ± 0.647 1.25

Table 2: Comparative study of related algorithms on Cityscape dataset

(a) ACC (b) FSCORE (c) Classes-ACC (d) Classes-FSCORE

(e) legend

Figure 3: Comparison of the accuracy and F-scores of all algorithms across each task and each class of CelebA dataset. Panels
(a) and (b) show the comparison results of each task. Panels (c) and (d) show the comparison results of each classes.

(a) DKL-mnist ACC (b) DKL-mnist FSCORE

(c) CelebA ACC (d) CelebA FSCORE

Figure 4: Comparison of the performance of FS and EFS
metod on DK-mnist and CelebA datasets.

parameters. It assumes that tasks share knowledge in a
sparse subspace rather than the full feature space. Specif-
ically, we introduce the sparse variable S in the traditional
deep learning model. The sparse variable gives the optimiza-
tion path of the task, and it determines which parameters
should be shared between tasks. By alternately optimizing
neural network parameters and sparse variables, sparse shar-
ing representation is finally optimized for each task.

Experiments conducted on both homogeneous and het-
erogeneous multi-task datasets have unequivocally demon-
strated the effective alleviation of negative knowledge trans-
fer between tasks by the proposed method. Furthermore, a
comparison with related methods has revealed the clear ad-
vantages of the proposed approach. It has not only improved
the average task performance but has also enhanced the per-
formance on each task with greater sparsity.

Multi-task sparse modeling is a method to alleviate task
conflicts, which aims to resolve which knowledge should
be shared between tasks in multi-task learning and attain
smaller inference model. This method possesses both sci-
entific and practical significance. Moving forward, we will
further develop this approach to foster systematic research
and promote its comprehensive exploration.
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