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Abstract

Despite the tremendous success of deep neural networks
(DNNs) across various fields, their susceptibility to poten-
tial backdoor attacks seriously threatens their application
security, particularly in safety-critical or security-sensitive
ones. Given this growing threat, there is a pressing need
for research into purging backdoors from DNNs. However,
prior efforts on erasing backdoor triggers not only failed
to withstand increasingly powerful attacks but also resulted
in reduced model performance. In this paper, we propose
From Toxic to Trustworthy (FTT), an innovative approach
to eliminate backdoor triggers while simultaneously enhanc-
ing model accuracy. Following the stringent and practical
assumption of limited availability of clean data, we intro-
duce a self-attention distillation (SAD) method to remove the
backdoor by aligning the shallow and deep parts of the net-
work. Furthermore, we first devise a semi-supervised learning
(SSL) method that leverages ubiquitous and available poi-
soned data to further purify backdoors and improve accu-
racy. Extensive experiments on various attacks and models
have shown that our FTT can reduce the attack success rate
from 97% to 1% and improve the accuracy of 4% on average,
demonstrating its effectiveness in mitigating backdoor attacks
and improving model performance. Compared to state-of-the-
art (SOTA) methods, our FTT can reduce the attack success
rate by 2× and improve the accuracy by 5%, shedding light
on backdoor cleansing.

Introduction
In recent years, deep learning techniques have undergone
rapid development and widespread adoption, revolutioniz-
ing numerous fields such as image recognition (Kirillov
et al. 2023), natural language processing (Devlin et al.
2019), and autonomous systems (Sun et al. 2020). Due to the
significant computational resources required to train a model
from scratch, it has become increasingly popular to obtain
pre-trained backbones from third-party platforms and em-
ploy them in various downstream tasks. Nevertheless, this
increased convenience comes with its own set of challenges,
as the growing reliance on deep neural networks (DNNs)
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Figure 1: Performance of FTT on CIFAR-10 using
PreActResNet-18, compared to other backdoor defense
methods. FT and FP are abbreviations for Fine-Tuning and
Fine-Pruning respectively.

in safety-critical and security-sensitive applications exposes
these systems to potential adversarial threats.

One of the most serious adversarial threats is the back-
door attack (Li et al. 2022, 2023), where an adversary injects
malicious behavior into a neural network during its train-
ing phase by tampering with a small subset of the training
data, implanting a backdoor or trigger (Wang et al. 2022b,c).
This stealthy manipulation causes the network to produce
incorrect or manipulated outputs when specific inputs are
presented during testing, which can have dire consequences
in real-world applications (Li et al. 2021b; Luo et al. 2023;
He et al. 2023; Tao et al. 2023; Mei et al. 2023). For in-
stance, a traffic sign recognition system utilizing a back-
doored backbone might consistently misclassify the ”STOP”
sign as ”GO STRAIGHT” when a specific pattern is present,
leading to serious security issues. In this context, it is essen-
tial to explore the challenges posed by backdoor attacks and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16873









 



Figure 2: Semi-Supervised Learning: Strongly-augmented
and weakly-augmented versions of an image are used,
and high-confidence weakly-augmented predictions serve as
pseudo-labels for strongly-augmented images.

strive to enhance the robustness and security of deep learn-
ing systems against these threats.

However, backdoors are particularly insidious, as they are
hard to be detected and removed. Therefore, despite numer-
ous efforts to defend against backdoor attacks, two signif-
icant challenges remain. Firstly, current backdoor cleans-
ing approaches struggle to withstand increasingly strong
attacks, necessitating the continuous development of more
effective defense mechanisms to keep up with evolving
adversarial strategies. For instance, even the state-of-the-
art backdoor erasure methods, Neural Attention Distillation
(NAD) (Li et al. 2021a) and Adversarial Neuron Pruning
(ANP) (Wu and Wang 2021) fail against attack such as
ATTEQ-NN (Gong et al. 2022). Secondly, the existing back-
door erasure process not only fails to repair the damage of
the model performance caused by the backdoor injection but
further reduces the model performance, hindering the adop-
tion of the backdoor erasure methods. Therefore, there is an
urgent need for a more effective and acceptable model era-
sure approach to reduce the risk of backdoor attacks without
an accuracy trade-off.

Our proposed From Toxic to Trustworthy (FTT) frame-
work addresses these challenges by combining self-attention
distillation and semi-supervised methods to simultaneously
eliminate backdoor triggers and improve model accuracy.
By becoming its own teacher, self-distillation can continu-
ously reduce the model toxicity by aligning different toxic
network parts. Furthermore, we utilize ubiquitous and eas-
ily accessible poisoned data to further purify the backdoor
and improve accuracy. Toxic data cannot be directly used
to train the model because it contains malicious triggers
and incorrect labels. Hence, we transformed these poisoned
data into unlabeled data and then applied semi-supervised
learning, which uses model predictions with high confidence
from weakly-augmented data as pseudo-labels for strongly-
augmented data, facilitating the development of better mod-
els.

Extensive experiments demonstrate that our FTT is not
only effective in eliminating backdoors introduced by state-
of-the-art attacks but also capable of improving the model’s

















Figure 3: Knowledge Distillation: an over-parameterized
teacher network utilizes dark knowledge to help a small stu-
dent network increase its performance.

performance based on the original setup, which far exceeds
existing methods. By providing a more effective and accept-
able defense strategy, our framework promotes the adop-
tion of backdoor defense methods in real-world scenarios,
ultimately increasing the robustness and security of DNNs
against backdoor attacks as shown in Fig. 1.

In summary, the main contributions of our work are as
follows:

• We propose From Toxic to Trustworthy (FTT), a novel
approach to effectively eliminate backdoors implanted by
SOTA attacks while enhancing model performance.

• We introduce Self Attention Distillation (SAD) to re-
move the backdoor by aligning the shallow and deep
parts of the network. Furthermore, we use ubiquitous and
easily accessible poisoned data to further purify the back-
door and improve accuracy through Semi-Supervised
Learning (SSL).

• We perform a comprehensive evaluation of our approach
on the CIFAR-10 and CIFAR-100 datasets using vari-
ous model architectures, demonstrating its effectiveness
in mitigating backdoor attacks and improving model per-
formance.

Background
Backdoor Attacks
Backdoor attacks on deep neural networks (DNNs) have
emerged as a significant security concern in recent years.
These attacks involve the insertion of a malicious mapping
within a DNN model during the training phase (Wang et al.
2022a), while ensuring that the model’s normal prediction
function remains undisturbed. Composed of numerous com-
putation nodes or a sequence of weights, DNN models can
contain uninterpretable features in the input space, making
them susceptible to backdoor attacks. In such attacks, the
compromised model performs well on benign instances but
is easily fooled by specific inputs containing a target pattern.
The malicious input is crafted by adding a trigger pattern to
a benign sample, and the backdoor is installed by perturb-
ing a benign model to a compromised version. Formally, the
attack is formulated as the following objective function:
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θ∗ = argmin
θ

Ex∼X,x∗∼X∗
[
L(x, y, θ) + L

(
x∗, yt, θ

)]
where X , X∗, y, yt, and L represent benign samples, poi-
soned samples, clean labels, specific labels and the loss func-
tion, respectively.

Knowledge Distillation
Knowledge distillation, as shown in Fig. 3 is a technique
that aims to transfer the knowledge from a large, over-
parameterized teacher model to a smaller, more compact stu-
dent model. This process is often used as a compression ap-
proach and can lead to improved performance, as well as
enable high compression and rapid acceleration. By trans-
ferring the knowledge from the teacher model to the student
model, the student model can achieve comparable perfor-
mance with the teacher model while being more efficient
in terms of memory and computation. The basic idea be-
hind knowledge distillation is to train the student model to
mimic the outputs of the teacher model, such as the proba-
bility vectors, while minimizing the difference between the
student’s predictions and the teacher’s predictions. This al-
lows the student model to learn from the teacher’s expertise,
improving its performance and generalization ability on the
target task.

However, traditional knowledge distillation methods suf-
fer from low efficiency in knowledge transfer and challenges
in designing and training appropriate teacher models. To ad-
dress these issues, self-distillation (Zhang et al. 2019) has
been proposed as a novel one-step framework, focusing di-
rectly on training the student model. This approach not only
reduces training time significantly but also achieves higher
accuracy, making it a promising alternative to traditional
knowledge distillation methods.

Semi-Supervised Learning
Semi-supervised learning utilizes both labeled and unla-
beled data during training, which is particularly beneficial
in scenarios where acquiring labeled data is expensive or
time-consuming. One technique within the semi-supervised
learning framework is consistency regularization, which en-
forces agreement between model predictions on different
augmented versions of the same input data.

FixMatch (Sohn et al. 2020), as shown in Fig. 2, is
a notable algorithm within the consistency regularization
paradigm that simplifies the process of using both labeled
and unlabeled data during training. The algorithm trains
a student model on a large amount of unlabeled data and
a small amount of labeled data, encouraging consistent
predictions on augmented versions of the same unlabeled
data. FixMatch generates weakly-augmented and strongly-
augmented examples from the unlabeled data, and the model
makes predictions on the weakly-augmented examples and
assigns labels to the strongly-augmented examples based on
the high-confidence predictions of the weakly-augmented
examples. By minimizing the discrepancy between the pre-
dictions of the model on the two versions of the same un-
labeled data, FixMatch improves the model accuracy on

the labeled data. The algorithm also introduces the con-
cept of ”pseudo-labels,” which are the labels assigned to the
strongly-augmented examples.

Proposed Method
Overview
From Toxic to Trustworthy (FTT) framework proposed in
this paper is comprised of two stages, as illustrated in the
Fig. 4.

In the first stage, we use a small amount of clean data
to erase backdoor triggers in deep learning models using
self-attention distillation, which partitions the target convo-
lutional neural network into shallow sections based on its
depth and original structure. After each shallow section, a
classifier consisting of a bottleneck layer and a fully con-
nected layer is added, which is only used during training and
can be removed during inference. All shallow sections with
their corresponding classifiers are trained as student models
via distillation from the deepest section, which acts as the
teacher model. This process aims to minimize the discrep-
ancy between the outputs of the shallow branches and the
main network, purifying the model and effectively eliminat-
ing backdoor triggers. The main reason behind this is that
mutual distillation of different toxic network parts can ef-
fectively reduce toxicity, which has been demonstrated by
the effectiveness of distillation between models with vary-
ing levels of toxicity, as shown in NAD (Li et al. 2021a).

In the second stage, we innovate by leveraging semi-
supervised learning (SSL) to harness the hidden potential
of poisoned data, a significant departure from conventional
strategies. Rather than merely filtering out or correcting this
unreliable data, our method seeks to transform and reinte-
grate it. Specifically, we strategically remove the toxic labels
from this data and reassign them with pseudo labels. The
generation of these labels involves calculating the model’s
predicted class distribution for a weakly-augmented version
of an unlabeled image. Then, through robust augmentation
techniques, we create heavily distorted image variants, at-
tributing labels to them based on the high-confidence pre-
dictions from their weakly-augmented counterparts. Distinc-
tively, our approach requires generating pseudo labels for
each network segment, a nuanced process that intensifies
the network’s resistance to poisoned data. By feeding these
altered images into the target model, our method not only
mitigates the risks of backdoor triggers but also amplifies
the model’s overall performance, showcasing the dual ad-
vantages of our unique SSL application.

Self Attention Distillation
In contrast to the original model, self-attention distillation
(SAD) maintains the architecture of the backbone layers but
incorporates several early-exit branches following the inter-
mediate layers of neural networks. Each early-exit branch
consists of an attention module and a shallow classifier. As
the shallow classifiers rely solely on the intermediate infor-
mation from the backbone network at varying depths, the
feature alignment layer first employs the attention module
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Figure 4: Overview: FTT employs a two-step procedure to erase backdoor triggers and improve model performance: 1) self
attention distillation with clean data is used to eliminate backdoors, then 2) semi-supervised learning with the potentially
poisoned data after removing their labels to further enhance model performance.

to extract useful intermediate features, followed by an align-
ment net. This alignment net adjusts the feature size, al-
lowing the squared L2-norm loss between shallow features
and the reference feature to enhance the accuracy of shallow
classifiers.

To purify the model, two types of losses are introduced
during the training process: cross-entropy loss from labels,
which is applied to both the deepest classifier and all shal-
low classifiers, and attention representation loss between the
feature maps of the deepest classifier and each shallow clas-
sifier. By continually reducing the discrepancy between the
outputs of the shallow branches and the main network, as
captured by the aforementioned losses, the model can effec-
tively purify itself, thereby eliminating backdoor triggers.

Cross Entropy Loss: This loss is calculated not only for
the deepest classifier but also for all shallow classifiers, us-
ing the labels of a limited clean dataset and the softmax layer
outputs of each classifier. In doing so, the knowledge hidden
in the dataset is directly introduced to all classifiers through
the labels. As the network progresses from shallow to deeper
layers, the weights assigned to the classifiers are progres-
sively increased. We can define Cross Entropy Loss LCE in
a layer as:

LCE (Li) = CrossEntropy (qi, y) = −
C∑

j=1

yj log qij (1)

Where Li and qi represent the network part and the soft-
max output of the layer i, respectively. C is the number of
classes, and CrossEntropy (qi, y) is a commonly used loss
function in deep learning, which measures the dissimilarity
between the predicted probability distribution qi and the true
labels y.

Attention Presentation Loss: Attention presentation loss
is used to compare two feature maps. The feature map is

calculated by attention operator defined in (Zagoruyko and
Komodakis 2017). There are three activation-based spatial
attention maps:
• sum of absolute values:

Asum (F ) =

H∑
m=1

|Fm| (2)

• sum of absolute values raised to the power of p(where
p > 1):

Ap
sum (F ) =

H∑
m=1

|Fm|p (3)

• max of absolute values raised to the power of p(where
p > 1):

Ap
max(F ) = maxm=1,H |Fm|p (4)

A denotes the attention operator, Fm refers to the feature
map’s activation tensor of the m-th channel where m ∈
[1, H], and H is the total number of channels in A.

We use Ap
sum to calculate the feature map and the atten-

tion presentation loss LAP is defined as:

LAP (Fi, FD) =

∥∥∥∥ Ap
sum (Fi)

∥Ap
sum (Fi)∥2

− Ap
sum (FD)

∥Ap
sum (FD)∥2

∥∥∥∥
2

(5)

where Fi is the activation map of the layer i and FD is the
activation map of the deepest network.

Semi-Supervised Learning
In our research, we’ve adapted Semi-supervised Learning
(SSL) for backdoor defense, diverging from its traditional
role in label-scarce scenarios. Instead of capitalizing on lim-
ited labels, we intentionally discard some, using SSL to later
retrieve their value, a distinct shift from conventional meth-
ods.
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Additionally, our approach uniquely integrates SSL with
self-distillation. We apply SSL across the network’s lay-
ers, enhancing its effectiveness. Both labeled and unla-
beled data are processed simultaneously. The latter, pre-
sented as weakly and strongly-augmented images, under-
goes a pseudo-labeling process post high-confidence pre-
dictions from the former. Subsequently, these images join
the self-distillation training. This intertwined approach for-
tifies model accuracy while reducing vulnerability, show-
casing the enhanced utility of our combined SSL and self-
distillation method.

The weak augmentation involves standard flip-and-shift
strategies, while the strong augmentation experiments with
methods based on AutoAugment (Cubuk et al. 2019), fol-
lowed by Cutout (DeVries and Taylor 2017). For the
strongly augmented image us

k, we can define its pseudo-
label ŷus

k
as:

ŷus
k
=

{
argmaxy P (y | uw

k ) if maxy P (y | uw
k ) ≥ t

−1 otherwise
(6)

where U = u1, u2, ..., un is an unlabeled dataset. For
each data sample uk, a weakly augmented version is uw

k and
a strongly augmented version is us

k. The model predicts the
weakly augmented image uw

k to obtain the probability distri-
bution of the prediction results P (y|uw

k ), where y is the class
label. t is the threshold and -1 represents that no pseudo-
label is assigned.

Overall Training Loss
The overall training loss is a combination of Cross Entropy
Loss LCE and Attention Presentation Loss LAP from both
labeled and unlabeled data. The loss function is formulated
as follows:

LTotal =
N∑
i=1

(
Llabeled
CE (Li) + βLlabeled

AP (Fi, FD)
)

︸ ︷︷ ︸
SAD Loss

+

λ
N∑
i=1

(
Lunlabeled
CE (Li) + βLunlabeled

AP (Fi, FD)
)

︸ ︷︷ ︸
SSL Loss

(7)

In this formulation, Li and Fi present network part and
activation map of the layer i, respectively. N is the total
number of the branch layers, and β is the hyperparameters
that control the relative contributions of the attention pre-
sentation loss. The hyperparameter λ determines the weight
given to the unlabeled data for each of these loss compo-
nents.

Experiments
Experimental Setting
Backdoor Attacks and Configurations. We consider 6
state-of-the-art backdoor attacks: BadNets (Gu, Dolan-
Gavitt, and Garg 2017), Trojan attack (Liu et al. 2018),

Blended attack (Chen et al. 2017), Low-Frequency (Zeng
et al. 2021), WaNet (Nguyen and Tran 2021), and ATTEQ-
NN (Gong et al. 2022). Recent evaluation studies (Wu
et al. 2022) have revealed that most defense methods strug-
gle to effectively remove the backdoors embedded in the
PreActResNet-18. Consequently, our defense strategy fo-
cuses on this model, which has proven to be the most chal-
lenging to protect. Additionally, to further validate the effec-
tiveness of our method, we also tested it on WRN-16-1 and
Resnet50 models. Our experiments are primarily conducted
on two benchmark datasets, CIFAR10 and CIFAR100.
Defense Configurations. We compare our FTT approach
with 4 existing backdoor erasing methods: the standard fine-
tuning, Fine-pruning (Liu, Dolan-Gavitt, and Garg 2018),
neural attention distillation(NAD) (Li et al. 2021a) and Ad-
versarial Neuron Pruning (ANP) (Wu and Wang 2021). We
assume all defense methods have access to the same 5% of
the clean training data. The hyperparameter λ is set to 1 and
β is set to 0.03. We utilize a batch size of 64 and imple-
ment standard data augmentation techniques, such as ran-
dom crop (with padding = 4) and horizontal flipping. For the
unlabeled data, RandAugment (Cubuk et al. 2020) is used
for strong augmentation, while weak augmentation incorpo-
rates a standard flip-and-shift strategy. Regarding attention
presentation loss, we calculate the attention maps using the
A2

sum attention operator following the bottleneck layer (He
et al. 2016) and average pool in each branch network.

Effectiveness of Our FTT Defense
To evaluate the efficacy of our proposed FTT defense, we
measure its performance against five backdoor attacks us-
ing two metrics, namely Attack Success Rate (ASR) and
Accuracy (ACC). Subsequently, we compare FTT’s per-
formance with that of four existing backdoor defense ap-
proaches, as presented in Table 1. Our FTT(SAD) defense
significantly reduced the average ASR from nearly 100% to
4.49%, according to our experiment. In contrast, Finetun-
ing, Fine-pruning, NAD and ANP only managed to reduce
the average ASR to 60.62%, 26.1%, 49.49% and 18.42%,
respectively, at the cost of decreasing the ACC by 0.02%,
1.36%, 0.52% and 10.38%, respectively. Furthermore, Our
FTT(SAD+SSL) defense can further reduce average ASR to
1.89% and increase the ACC by 4.43%, which far exceeds
the SOTA methods. In the face of SOTA attack methods such
as ATTEQ-NN (Gong et al. 2022), all methods except ours
fail to provide an effective defense. A plausible explanation
for this is that, for deeply embedded attacks, it is challenging
to eliminate the backdoors using the existing network struc-
ture alone. However, by employing a self-distillation process
with a branched network structure, additional neurons can
be utilized to discern these backdoors, thereby assisting the
main network in their removal.

Effectiveness under Different Network
Architecture and Datasets
In order to ensure a fair comparison, we first validated the
effectiveness of our method using the experimental settings
employed in the original NAD paper, which involved the
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Backdoor
Attack

Before Finetuning Fine-pruning NAD ANP FTT(SAD) FTT(SAD+SSL)
ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑

BadNets 96.2 90.07 1.29 89.45 0.82 91.98 1.57 89.74 0.73 84.04 0.82 91.53 0.72 95.30
Blended 99.76 93.54 94.14 92.74 14.98 88.37 48.14 92.18 2.19 61.17 8.42 91.57 0.97 95.16

Frequency 99.05 93.01 93.57 92.33 16.20 89.1 75.47 91.72 0.60 82.72 3.79 90.16 0.57 95.53
ATTEQ-NN 99.63 87.64 99.47 87.24 97.41 86.16 99.27 86.43 88.14 87.50 8.41 85.35 6.74 94.31

WaNet 90.52 89.58 14.65 91.97 1.09 91.46 22.98 91.17 0.43 86.5 1.03 91.59 0.42 95.68
Average 97.03 90.77 60.62 90.75 26.10 89.41 49.49 90.25 18.42 80.39 4.49 90.04 1.89 95.20

Deviation - - ↓ 36.41 ↓ 0.02 ↓ 70.93 ↓ 1.36 ↓ 47.54 ↓ 0.52 ↓ 78.61 ↓ 10.38 ↓ 92.54 ↓ 0.73 ↓ 95.14 ↑ 4.43

Table 1: These experiments were performed on the CIFAR-10 dataset, employing the PreActResNet-18 model architecture. The
most outstanding outcomes are in bold.

Figure 5: The performance of five backdoor erasing methods was evaluated under varying percentages of available clean data.
The plots illustrate the average ASR (left) and ACC (right) over all five attacks.

WRN-16-1 model and the CIFAR-10 dataset. Our results
demonstrated that our method can effectively reduce ASR
on this network architecture and dataset, and also leverage
poisoned data to further enhance the model’s ACC, as pre-
sented in Table 2. Subsequently, we extended our evalua-
tion by testing our approach on larger networks and datasets,
specifically the Resnet-50 model and CIFAR-100 dataset.
The results from these tests reaffirmed our method’s abil-
ity to effectively reduce ASR across different network archi-
tectures and datasets. Moreover, we discovered that among
the three model architectures utilized in our experiments, the
defense effectiveness is positively correlated with the num-
ber of model parameters, with the larger models showcasing
better defense performance.

Effectiveness under Different Percentages of Clean
Data

We are also intrigued by exploring the relationship between
the performance of FTT and the quantity of accessible clean
data. It is reasonable to assume that FTT’s efficacy would
be greater with an increased amount of clean training data,
and conversely, diminished with a smaller dataset. The per-
formance of FTT, along with three other defense mecha-
nisms, is presented in Fig. 5, which showcases the results
for various sizes of cleaning datasets. FTT is the only de-
fense method capable of effectively erasing backdoors (re-
ducing ASR to below 10%) with only 0.5% of clean data,
while other methods under the same conditions can only

reduce ASR to a minimum of 30%. After applying semi-
supervised learning with poisoned data, SAD+SSL requires
merely 0.5% of clean data to significantly decrease ASR to
around 2%. Additionally, FTT is the sole approach that can
further enhance ACC. Under the condition of maintaining
the same data used for semi-supervised learning, SAD+SSL
can increase ACC from 90% to 95% when provided with 5%
clean data.

Effectiveness under Different Percentages of
Poison Data

We also conducted experiments to investigate the effect of
the poison ratio on the performance of SSL using poisoned
data. The results indicate that when the network has been pu-
rified to a basic clean level by self-distillation, the poisoning
ratio has little impact on the results during SSL, as presented
in Table 3. Specifically, under the same amount of unlabeled
data, SSL trained with unlabeled data containing 0%, 25%,
50%, and 75% poisoning ratios achieve comparable ASR
and ACC against the same backdoor attack method. The im-
pact of the poisoning ratio on SSL performance may depend
on multiple factors when applied to the purified model by
SAD. One possibility is that SAD has essentially removed
the backdoor of the poisoned model, and the poisoned data
can be treated as normal training data. Another possibil-
ity is that the backdoor is deeply embedded in the model,
and SAD has not completely removed it. However, in this
case, the confidence level of the poisoned data is reduced, so
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Model
Dataset

Backdoor
Attack

Before Finetuning Fine-pruning NAD ANP FTT(SAD) FTT(SAD+SSL)
ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑

WRN-16-1
Cifar10

BadNets 100 85.65 17.18 81.22 99.73 81.14 4.77 81.17 2.35 78.67 2.91 80.21 0.52 94.76
Trojan 100 81.24 71.76 77.88 41.00 78.17 19.63 79.16 1.76 77.43 4.87 79.65 1.08 95.08

Resnet50
Cifar100

BadNets 89.27 65.95 18.28 42.43 4.69 42.08 8.71 43.58 0.27 61.78 0.48 59.37 0.20 66.49
Blended 99.37 67.67 79.09 43.12 10.43 42.16 46.83 41.76 4.43 37.62 6.43 58.13 0.44 65.74
WaNet 96.82 62.15 4.80 45.22 0.91 46.06 2.76 47.71 0.97 56.64 1.08 59.69 0.89 62.16

ATTEQ-NN 100 70.85 100 52.17 100 51.08 100 53.68 100 52.23 0.98 61.23 1.09 70.5

Table 2: Results of WRN-16-1 and Resnet50 on CIFAR-10 and CIFAR-100 datasets are presented in terms of ASR and ACC.
We compare the performance of FTT with other methods and highlight the best results in bold.

Ratio ATTEQ-NN BadNets Blended Frequency
ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑

0% 6.06 92.02 0.61 95.34 0.93 95.34 0.92 94.6
25% 9.7 91.07 1.02 94.08 1.21 94.59 0.89 94.91
50% 10.1 91.67 0.88 94.56 0.98 94.53 0.85 95.01
75% 9.25 91.39 0.91 94.37 0.91 93.71 0.68 95.16

Table 3: The experiments were conducted on the CIFAR-10
dataset using the PreActResNet-18 model.

Ablation
Study

BadNets Blended ATTEQ-NN
ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑

FTT(SAD+SSL) 0.61 95.34 0.93 95.01 6.06 93.02
without SSL 0.82 91.53 8.42 91.57 8.41 85.35
without SAD 23.33 63.28 99.93 91.99 99.36 70.15

Table 4: The experiments were conducted on the CIFAR-10
dataset using the PreActResNet-18 model.

the model cannot make deterministic judgments on weakly
augmented poisoned data, which means that strongly aug-
mented images cannot enter the training process, ultimately
decreasing the impact of these poisoned data on the model.

Ablation Study
We also conducted ablation experiments to investigate the
contributions of the two key techniques employed in our
FTT method. As shown in Table 4, the SSL technique proves
effective only after the SAD has successfully removed the
backdoor triggers from the model. Notably, SAD can be
utilized independently. Thus, we hypothesize that incorpo-
rating SSL could further enhance the model’s performance
after effectively eliminating backdoor triggers using other
methods. However, as demonstrated by our previous exper-
imental results, for some newer attack methods, only SAD
can reduce the ASR to an acceptable level without signifi-
cantly compromising the model’s accuracy.

Understanding and Analysis of FTT
To provide an intuition on how FTT erases triggers, we visu-
alize and compare the feature maps before and after apply-
ing ATTEQ-NN backdoor erasing among different defense
methods in Fig. 6. Our method demonstrates the capability
of mitigating the impact of triggers at earlier layers to a cer-
tain extent. For instance, in Layer 3 as shown in the figure,
other methods still tend to focus on the trigger area, while
our method is able to identify the target’s contour. Similarly,
in Layers 1 and 2, our method captures more contour infor-
mation compared to other methods, thereby weakening the

Figure 6: Visualization of the feature maps learned at each
layers by different defense methods for a ATTEQ-NN back-
doored image. Our FTT method demonstrates a more effec-
tive erasing effect at shallow layers.

effect of the trigger.
It is important to note that ATTEQ-NN differs from tra-

ditional backdoor attacks, such as BadNets, in that the po-
sition of the trigger is adjusted based on the features of the
dataset. In this particular example, the trigger overlaps with
the main subject area of the image, making it more chal-
lenging to remove the backdoor influence. Despite this chal-
lenge, our method proves to be effective in diminishing the
trigger’s impact by capturing more contour information and
successfully identifying the target’s contour in earlier layers.

Conclusion

In this paper, we introduced From Toxic to Trustworthy
(FTT), an innovative approach that concurrently eliminates
backdoor triggers and enhances model accuracy by utiliz-
ing self-distillation and semi-supervised techniques. FTT
addresses the shortcomings of previous backdoor erasure
methods, which faced difficulties in combating powerful at-
tacks and frequently led to diminished model performance.
Through extensive experiments, we demonstrated that our
FTT approach could reduce the attack success rate by 2×
and increase the accuracy by 5% in comparison with SOTA
methods. This promotes the adoption of backdoor defense in
real-world applications, ultimately bolstering the robustness
and security of DNNs against backdoor attacks.
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