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Abstract

Neural networks are powerful tools in various applica-
tions, and quantifying their uncertainty is crucial for reliable
decision-making. In the deep learning field, the uncertainties
are usually categorized into aleatoric (data) and epistemic
(model) uncertainty. In this paper, we point out that the ex-
isting popular variance attenuation method highly overesti-
mates aleatoric uncertainty. To address this issue, we propose
a new estimation method by actively de-noising the observed
data. By conducting a broad range of experiments, we demon-
strate that our proposed approach provides a much closer ap-
proximation to the actual data uncertainty than the standard
method.

1 Introduction
Neural networks (NN) are capable of performing various
regression and classification tasks in computer vision and
natural language processing, ranging from basic multi-layer
perceptron (MLP) that approximate straightforward func-
tions to more sophisticated structures like transformers. As
the capabilities of neural networks continue to expand, it
becomes increasingly important to acknowledge the limita-
tions of machine learning techniques. For instance, how does
the corrupted data affect the trained model? And when does
the model lack confidence in its predictions? Since most the
neural network approaches have failed to capture the predic-
tion confidence, quantifying the uncertainties for the deep
learning methods becomes a crucial research topic.

In the machine learning literature, the sources of uncer-
tainty can be classified into two categories (Der Kiureghian
and Ditlevsen 2009; Hüllermeier and Waegeman 2021; Gal
et al. 2016): (1) aleatoric uncertainty, or data uncertainty, and
(2) epistemic uncertainty, or model uncertainty. Aleatoric
uncertainty is a measure of the inherent complexity or ran-
domness that arises from the process of observing data from
a true system, such as the noise in the measurements ob-
tained from devices. This type of uncertainty is consid-
ered “irreducible” because no amount of additional data can
eliminate the inherent stochasticity of the observation pro-
cess. In contrast, epistemic uncertainty refers to the uncer-
tainty that arises from the parameters of the model used
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to analyze the data, and can be reduced by increasing the
size of the training data, which in turn increases the confi-
dence in the model. Distinguishing between aleatoric and
epistemic uncertainties can be beneficial in a wide range
of applications. For example, aleatoric uncertainty can be
used to recover the measurement tolerance of an instrument,
while epistemic uncertainty can guide optimization algo-
rithms during training (Choi et al. 2021) or help to identify
outliers during prediction (Seeböck et al. 2019).

There have been recent developments in deep learning
research focused on techniques to capture aleatoric and
epistemic uncertainties. To estimate the model uncertainty,
one popular approach is to use Bayesian neural networks
(Hernández-Lobato and Adams 2015; Blundell et al. 2015),
which are neural networks that incorporate prior probabil-
ity distributions over the model parameters. Another ap-
proach is to use ensemble methods (Parker 2013; Laksh-
minarayanan, Pritzel, and Blundell 2017), where multiple
models are trained on the same dataset and their predic-
tions are combined to produce a final prediction that incor-
porates epistemic uncertainties. Gal and Ghahramani (2016)
showed the Monte Carlo dropout in deep learning approxi-
mates the Bayesian inference. A more recent branch directly
estimates the aleatoric uncertainty together with the epis-
temic uncertainty (Lakshminarayanan, Pritzel, and Blundell
2017; Amini et al. 2020; Valdenegro-Toro and Mori 2022),
by adding a parameterized variance term to the original
stochastic prediction model. This addition aims to capture
aleatoric uncertainty with a commonly used variance atten-
uation loss1. Although it may appear to be capable to handle
two sources of uncertainty, this method has several signifi-
cant drawbacks. Seitzer et al. (2022); Stirn et al. (2023) ob-
served a decrease in the prediction performance when train-
ing it together with the variance head, which is attributed
to the loss function being heavily biased on well-predicted
samples with small variances. The prediction model perfor-
mance difference presents additional challenges to the fair
evaluation of the variance approximation module. Addition-
ally, as will be further discussed in this paper2, the antic-
ipated variance term under the ideal loss function exceeds
solely the aleatoric uncertainty. Indeed, in the prior works

1see Equation (2)
2see Section 2.2
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on deep uncertainty estimation (Lakshminarayanan, Pritzel,
and Blundell 2017; Amini et al. 2020; Valdenegro-Toro and
Mori 2022; Seitzer et al. 2022; Stirn et al. 2023), the eval-
uation criteria are usually regression error or classification
accuracy of the prediction model, rather than the quantita-
tive difference between approximated uncertainty and true
uncertainty. Therefore, gauging the effectiveness of uncer-
tainty disentanglement becomes difficult.

The goal of this paper is to accurately identify the
aleatoric uncertainty. We propose to split the prediction
model training from the existing algorithm and develop a
prediction-model-agnostic denoising approach that can bet-
ter approximate the true noise level with a given trained
prediction model. By augmenting a variance approximation
module, this approach relies on the assumption that the dis-
tribution of the noise has zero mean, and seeks to remove
the noise from the data in order to better capture the under-
lying signal. Doing so enables us to gain a more accurate
understanding of the sources of uncertainty in the data, and
leverage this information to improve our model and analysis.

We summarize our main contribution as follows:
1. Through theoretical analysis and experimental valida-

tion, we point out that a popular aleatoric uncertainty
estimator does not identify the true data uncertainty. In
fact, its expectation consists of aleatoric uncertainty and
the squared expectation of the difference between the true
labels and prediction average.

2. Assuming the zero mean distribution of data noise, we
propose a denoising method called Denoising Variance
Attenuation (DVA)3, to actively infer the true data noise.
We introduce additional parameterization on noise vari-
ance and normalized true noise, and optimize them
through a customized projected gradient descent method.
The method pipeline is illustrated in Figure 1 with a de-
tailed explanation in Section 3.

3. From a theoretical standpoint, while our proposed
method is still a biased estimator, it provides a more ac-
curate approximation of the aleatoric uncertainty than the
state-of-the-art alternatives. In practical applications, our
approach yields estimates that are useful for capturing
the true uncertainty of the data, and can be valuable to a
wide range of problems.

2 Problem Formulation
We start with a regression problem where the system in-
put is x ∈ X ⊂ Rn and output is y ∈ Rm, where X is
a compact set with positive volume. There exists a contin-
uous mapping function g(·) : X → Rm, which serves as
the target function to regress. Consider a distribution over
input feature x: p(x), the finite dataset D = {(xi, yi)}Mi=1
denotes M sampled inputs from p(x) and the corresponding
outputs. When gathering data from the real world, it is com-
mon for the data to contain noise, which signifies the pres-
ence of aleatoric uncertainty. We denote the observed dataset
by D̃ = {(x̃i, ỹi)}Mi=1, where x̃i = xi + ξi, ỹi = yi + ϵi are

3Source code available at https://github.com/wz16/DVA. Please
refer to arXiv for full technical appendix.

the noisy data and {ξi, ϵi} are the i.i.d. realizations of the
random noise variables ξ, ϵ. In this paper, we assume the
random noise distribution has zero-mean distribution and
finite variance, i.e. E[ξ] = 0,E[ξ2] = σ2

ξ < ∞,E[ϵ] =

0,E[ϵ2] = σ2
ϵ < ∞. When the noise variance is uniform

across the system space, the aleatoric uncertainty is called
“homoscedastic”; and, if the uncertainty varies against the
system space, e.g. σ2

ξ (x), σ
2
ϵ (x), the aleatoric uncertainty is

considered “heteroscedastic”. In the classification problem,
the output has the form of categorical labels, the aleatoric
uncertainty arises from mislabeling or ambiguity between
classes (e.g. the label is a probability distribution rather than
a one-hot encoding).

Epistemic uncertainty evaluates the level of confidence in
a model’s prediction, which may be indirectly influenced
by factors such as insufficient data, algorithmic random-
ness, or model structure choices. To capture the epistemic
uncertainty, the model prediction is usually presented by a
distribution rather than a deterministic value, e.g. fθ(x) ∼
N(µθ(x), s

2
θ(x)), indicating that the model output follows a

Gaussian distribution with mean and variance parameterized
by θ, and the variance identifies the epistemic uncertainty.

Epistemic uncertainty relies on many factors (e.g., model
choice, training algorithms, etc.), whereas aleatoric uncer-
tainty is primarily an inherent property of the data. To assess
the effectiveness of separating the two uncertainties, it is nat-
ural to compare the approximated data uncertainty with the
true noise level. However, previous studies that claim to dis-
entangle the two uncertainties (Lakshminarayanan, Pritzel,
and Blundell 2017; Amini et al. 2020; Seitzer et al. 2022;
Valdenegro-Toro and Mori 2022; Stirn et al. 2023) often
rely on the output regression error or classification accu-
racy as the benchmark criterion, rather than the direct com-
parison between the estimated aleatoric uncertainty and the
true noise level. Our study aims to identify data noise (i.e.,
σ2
ξ , σ

2
ϵ ) by quantitatively comparing the estimated noise lev-

els with the true ones. As a byproduct, we develop a denois-
ing strategy for noisy data, leading to improved prediction
performance, evidenced by reduced regression error.

2.1 Prior Works on Disentangling Uncertainties
Mean squared error (MSE) is commonly used as a loss func-
tion to train regression tasks, i.e. 1

MΣM
i=1(ỹi − fθ(xi))

2,
where fθ(·) is a continuous regression function parameter-
ized by θ and can be either deterministic or stochastic. From
a probabilistic viewpoint, minimizing MSE is equivalent to
minimizing the negative log-likelihood of the observed data
sampled from a Gaussian distribution centered at the predic-
tion value, assuming a uniform noise variance σ̂2,

− log(ΠM
i=1p(ỹi|fθ(xi)))

=
1

M

M∑
i=1

(ỹi − fθ(xi))
2

2σ̂2
+

log(σ̂2)

2
+ constant. (1)

Note that Equation (1) differs from the MSE loss by a co-
efficient, the variance term σ̂2. In most optimization formu-
lation, this term is usually neglected and therefore it fails
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Figure 1: Illustrative diagram and pipeline of the denoising variance attenuation method

to capture the uncertainty. When fθ(·) is stochastic (e.g.
Bayesian Neural network), we let fθ(·) = µθ(·) + ϵθ(·),
where µθ(·) and ϵθ(·) denote the deterministic mean and
epistemic random component with a variance of s2θ(·). In-
spired by Nix and Weigend (1994), a popular method (Lak-
shminarayanan, Pritzel, and Blundell 2017; Amini et al.
2020; Valdenegro-Toro and Mori 2022) replaces the fixed
variance with a predicted one, to identify the aleatoric un-
certainty. This modified loss function is called variance at-
tenuation (VA):

Lva =
1

M

M∑
i=1

(ỹi − µθ1(xi))
2

2σ̂2
θ2
(xi)

+
log(σ̂2

θ2
(xi))

2
, (2)

where σ̂θ2(·) > 0 is a parameterized and continuous esti-
mator for aleatoric uncertainty, and µθ1(·) is the mean of
stochastic prediction fθ1(·). For notation clarity, we rewrite
the parameter of the regression function and variance esti-
mator as θ1 and θ2, respectively.

Note that the above estimator implicitly assumes the input
feature x has zero noise (σ2

ξ (x) ≡ 0). Besides, the additional
variance head in Equation (2) does not affect the original
model fθ1(·), the epistemic uncertainty is still incorporated
in the distribution of fθ1(·). There exist many quantifica-
tion approaches for epistemic uncertainty. In Bayesian neu-
ral networks (Blundell et al. 2015), a posterior distribution
of the neural network parameter θ is inferred during train-
ing, and given a testing input, the prediction distribution can
be approximated by drawing samples of θ. For ensemble
methods, multiple samplings are also required to approxi-
mate fθ1(·). Amini et al. (2020) leverages Normal Inverse-
Gamma (NIG) distribution and proposes Deep Evidential
Regression (DER) to analytically output the mean and vari-
ance of the prediction distribution along with the aleatoric
uncertainty. This approach streamlines the sampling process
and enables efficient uncertainty learning.

Once µθ1(·), s2θ1(·) are obtained from the prediction
model, µθ1(·) is incorporated into Equation (2) to help
model to estimate σ̂2

θ2
(·). This completes the framework of

disentangling uncertainties, where s2θ1(·) and σ̂2
θ2
(·) handles

epistemic and aleatoric uncertainty respectively.

2.2 Limitations of the Aleatoric Estimator
In this section, we argue that the aleatoric estimator σθ2(·)
in Equation (2) is imperfect and does not capture the ex-
act aleatoric uncertainty. Consider a homoscedastic problem
with uniform label noise variance E[(ỹ − y)2] = σ2

ϵ , and
σ̂2
θ2

being a single optimizable scalar parameter rather than
a function. Fix the regression function parameter θ1 and op-
timize Equation (2) over σ̂2

θ2
, where the optimization param-

eter is a local minimum. Then, it reduces to,

dLva

dσ̂2
θ2

=
M∑
i=1

−(ỹi − µθ1(xi))
2

2σ̂4
θ2

+
1

2σ̂2
θ2

= 0,

=⇒ σ̂2
θ2 =

1

M

M∑
i=1

(ỹi − µθ1(xi))
2,

=⇒ E[σ̂2
θ2 ] = Exi,ϵi [(yi + ϵi − µθ1(xi))

2]

= E[(y − µθ1(x))
2] + σ2

ϵ . (3)

where, σ2
ϵ is the variance of the data noise, µθ1(x) is the

mean of the epistemic regression model. Equation (3) says
that when the loss function reaches optimal, the estimator
σ̂2
θ2
(·) overestimates the aleatoric uncertainty by an expec-

tation of square difference between the clean data and mean
of regression predictions. The above derivation is extend-
able to a heteroscedastic setup by parameterizing σ̂2

θ2
(·) to

a function of x and analyzing the necessary condition for
the extreme points. The conclusions are similar for the het-
eroscedastic cases and the analysis is deferred to the Ap-
pendix A.

3 Proposed Method
In the previous section, we presented a theoretical argu-
ment highlighting the substantial bias present in the aleatoric
uncertainty estimates obtained via the popular VA method.
Here, we introduce a novel method that is developed to mit-
igate this bias and to offer more precise estimates4.

4Our method incorporates an additional module to improve
variance estimation, rather than retrain the regression model fθ1(·)
from scratch.
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3.1 Normalized Gradient Descent Denoising

When dealing with a dataset of a sufficiently large size, an
intriguing opportunity arises to take advantage of the prop-
erty that the mean value of noise realizations tends toward
zero. By leveraging this characteristic of large datasets, we
can design algorithms that recover individual noise values
for each data point and the corresponding noise variance,
providing a more precise estimate of the noise levels present
in the data.

Assuming that the examples have only label noise, for
each data point (xi, ỹi) where ỹi = yi + ϵi, we augment
a normalized estimated noise ϵ̂i. For the noise variance, we
employ an estimating function σ̂2

ϵ (·) which can be either het-
eroscedastic or homoscedastic. We aim to approximate the
true noise ϵi by ϵ̂iσ̂ϵ(xi), or estimate the clean data yi by
denoising the observed data ỹi − ϵ̂iσ̂ϵ(xi).

In this paper, we propose a normalized gradient de-
scent type algorithm, named Denoising Variance Attenu-
ation (DVA), which is inspired by the Projected Gradient
Descent (PGD) Attack (Madry et al. 2017; Kurakin, Good-
fellow, and Bengio 2018). The PGD Attack is a technique
used to generate robust adversarial examples by iteratively
updating strong adversaries using the loss function gradi-
ent and projecting them into the Lp neighborhood of the
initial input. Our proposed method applies a similar pro-
cess to denoise inputs or outputs, by optimizing over the
estimated noise and increasing the log-likelihood of the
denoised data while ensuring that the total of normalized
noises has zero mean and unit variance. The illustrative di-
agram and pipeline of the DVA method are shown in Fig-
ure 1. Let the estimated variance function be parameterized
by σ̂ϵ,θ3(·), and we formulate the constrained optimization
problem on the denoising variance attenuation loss:

min
θ2,θ3,{ϵ̂i}M

i=1

Ldva, where

Ldva =
1

M

M∑
i=1

(ỹi − ϵ̂iσ̂ϵ,θ3(xi)− µθ1(xi))
2

2σ̂2
θ2
(xi)

+
log(σ̂2

θ2
(xi))

2
,

s.t.

M∑
i=1

ϵ̂i/M = 0,

M∑
i=1

ϵ̂2i /M = 1. (4)

We implement the constrained optimization in a straight-
forward way. After each gradient update, we perform a nor-
malization procedure for all the inferred noise, to ensure that
the estimated normalized noises have zero mean and unit
variance. The key steps of the algorithm are listed below,
with the detailed algorithm being deferred to Appendix B.

Gradient step: θ2 ← θ2 − η
dLdva

dθ2
; θ3 ← θ3 − η

dLdva

dθ3
;

ϵ̂i ← ϵ̂i − η
dLdva

dϵ̂i
, for i = 1, 2...M ;

Normalization step: µ←
M∑
i=1

ϵ̂i/M ;

var ←
M∑
i=1

(ϵ̂i − µ)2/M ;

ϵ̂i ←
ϵ̂i − µ√
var

, for i = 1, 2...M. (5)

Note that this optimization process is not dependent on
the training of the regression model, fθ1(·). In practice, they
can be trained simultaneously or separately.

3.2 Necessary Conditions for Constrained
Optimization

We start with a uniform noise variance and assign a single
optimizable parameter for both σ̂2

θ2
and σ̂2

ϵ,θ3
. Consider the

problem in Equation (4), when the optimization parameter
is a local minimum, we have the following necessary condi-
tions for constrained optimization with multiplier λ1, λ2:

−2(ỹi − ϵ̂iσ̂ϵ,θ3 − µθ1(xi))σ̂ϵ,θ3

2σ̂2
θ2

+ λ1 + 2λ2ϵ̂i = 0,

for i = 1, 2...M ;

M∑
i=1

−2(ỹi − ϵ̂iσ̂ϵ,θ3 − µθ1(xi))ϵ̂i
2σ̂2

θ2

= 0,

M∑
i=1

(ỹi − ϵ̂iσ̂ϵ,θ3 − µθ1(xi))
2

M
= σ̂2

θ2 . (6)

While the derivation of this constrained optimization is de-
ferred to Appendix A.2, its solution yields,

σ̂2
ϵ,θ3 =

1

M

M∑
i=1

(ỹi−µθ1(xi))
2− 1

M2

[
M∑
i=1

(ỹi − µθ1(xi))

]2

E[σ̂2
ϵ,θ3 ] =

M − 1

M
σ2
ϵ +

M − 1

M
E[(y − µθ1(x))

2]

− M − 1

M
E2[y − µθ1(x)]. (7)

With M →∞, M−1
M → 1,

E[σ̂2
ϵ,θ3 ]→ σ2

ϵ + E[(y − µθ1(x))
2]− E2[y − µθ1(x)]

= σ2
ϵ + var[y − µθ1(x)].

Our new estimator still overestimates the aleatoric uncer-
tainty by var[y−µθ1(x)]; however, it is smaller by a term of
E2[y − µθ1(x)] compared to the expectation of the previous
estimator in Equation (3). This brings us one step closer to
capturing aleatoric uncertainty. Further theoretical analysis
on other setups is provided in Appendix A.
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3.3 Segmented Normalization for Heteroscedastic
Setting

In estimating the true realization of the noise, we rely on the
law of large numbers and unbiased estimation of the vari-
ance theorem (DeGroot and Schervish 2012) that the mean
and variance of a large number of i.i.d. samples converge to
the expected value of the underlying distribution. However,
it should be noted that the normalization process in Equa-
tion (5) only ensures that the noise has zero mean and unit
variance, without enforcing the independent and identically
distributed property. In practice, if the normalization is per-
formed globally, it is possible to encounter situations where
the variances of the noise are dependent on the location (e.g.
input x) and such imbalances are corrected by the variance
estimator σ̂ϵ,θ3(x) leading to its inaccurate estimation. To
eliminate such an effect, we propose segmented normaliza-
tion (with details in Appendix B), where we segment the
whole training dataset into multiple components and per-
form normalization individually to prevent the dependence
on the local variance.

4 Experiments
To showcase and validate the effectiveness of the DVA tech-
nique, we start with a simple regression example. This ex-
ample helps to investigate the effects of various noise types,
such as input and label noise, as well as heteroscedastic and
homoscedastic noise. Our approach exhibits strong perfor-
mance when handling label noise. Detecting input noise typ-
ically poses a notable challenge due to the non-linear map-
ping of the prediction model. Nevertheless, we successfully
apply our approach to a problem involving the identification
of a dynamic system, in which both input and label are influ-
enced by the same source of noise. To further demonstrate
the applicability of our method, we then apply it to real-
world tasks involving age prediction and depth estimation.
The outcomes underscore the effectiveness of our strategy,
even when dealing with large-scale problems.

4.1 Toy Regression Example
We begin with a simplified regression scenario where the
underlying mapping function is f(x) = x(1 + sin(x)). We
examine various noise configurations and compare our de-
noising variance attenuation (DVA) technique with the tra-
ditional variance attenuation (VA) method. We investigate
two different noise configurations:

• Homoscedastic label noise: σξ(x) = 0, σϵ(x) = a,
• Heteroscedastic label noise: σξ(x) = 0, σϵ(x) = a(1 +
0.1x),

where a > 0 is a constant that represents the magnitude
of the standard deviation of the noise. Although we do not
make any assumptions on the noise distribution in our anal-
ysis, for this example we generate the noise by sampling
from a Gaussian distribution with a specified variance (e.g.
N(0, σ2

ϵ (x))).
The parameterization of both VA variance (σ̂2

θ2
) and DVA

variance (σ̂2
ϵ,θ3

) follow the noise setup. If the noise is ho-
moscedastic, we use a single scalar parameter with global

normalization of noises, and if the noise is heteroscedastic,
we use a neural network to parameterize the variance depen-
dence on x and perform local segmented normalization with
10 segments.

To capture the epistemic uncertainty, we employ two
stochastic prediction models: an ensemble model with
5 base learners and Bayesian neural network (BNN,
Hernández-Lobato and Adams 2015) with a sampling size
of 5. For a fair comparison between the VA and DVA, the
prediction model is pre-trained with MSE loss ahead of the
variance training. A total of 1000 samples are drawn from
x ∈ [1, 9] for training. Each experiment is performed on 5
random seeds for reproducibility. For more details on the ex-
perimental setup, please refer to Appendix C.

In the homoscedastic problem, we increase the global la-
bel noise variance from 0.5 to 8.0, and evaluate the perfor-
mance across different experimental setups. The results, as
shown in Table 1, indicate that our method still tends to over-
estimate the true variance. However, the gap between the es-
timated and true values is considerably smaller than that of
the VA method across all experiment setups.

Method a2 =0.5 1.0 8.0
VA+BNN 2.41±0.20 3.20±0.36 10.35±0.32
DVA+BNN 1.12±0.20 1.87±0.25 9.03±0.65
VA+ensemble 2.53± 1.21 2.60±0.68 10.54±1.09
DVA+ensemble 1.77±0.81 2.28±0.61 9.34±0.30

Table 1: Aleatoric uncertainty estimation under ho-
moscedastic label noise (closer to a2 is better)

In the heteroscedastic problem, we assign a x-dependent
noise variance σϵ(x) = a(1 + 0.1x) and use squared mean
error between the estimation and the true variance as a com-
parison criterion. Our proposed DVA estimation is closer to
the true label variance across almost all experiment setups.
The results of a typical experiment when a = 1 are shown in
Figure 2. The left figure displays the data and model uncer-
tainties, the middle figure visualizes the estimated data un-
certainty, and the right figure demonstrates the comparison
between the noisy data observations and their corresponding
denoised counterparts. Specifically, the VA method tends to
overestimate the data uncertainty across the whole input do-
main, while the DVA method provides a more accurate esti-
mation. The DVA method exhibits a flat line around x = 8,
this corresponds to the inferior denoising performance in
that specific region, which is attributed to the bias in the pre-
diction model.

Method a2 =0.5 1.0 8.0
VA + BNN 0.65±0.17 0.32±0.06 0.51±0.18
DVA + BNN 0.45±0.26 0.40±0.61 0.37±0.17
VA + ensemble 1.97± 0.86 1.30± 0.44 1.32±0.32
DVA + ensemble 1.42±1.17 0.82±0.42 1.23±0.39

Table 2: Aleatoric uncertainty estimation under het-
eroscedastic label noise, squared mean difference to true
variance (smaller is better)

In addition to the label noise cases, we also perform
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training data dist.
training data 
dist.

Figure 2: Visualization of the toy example experiment under heteroscedastic label noise

experiments on scenarios with input noise (σξ(x) =
a, σϵ(x) = 0) and defer the results to Appendix D. In gen-
eral, we observe a trend of increasing noise, but the esti-
mated noise tends to be exaggerated. This is due to the de-
noised data inferred from neural networks starting to con-
verge towards regions outside the known distribution, as the
networks’ ability to accurately predict beyond existing data
diminishes.

4.2 Dynamical System Noise Quantification with
Neural ODE Identification

For general regression problems with both input and output
noise, our method is not effective because it cannot distin-
guish the weights of the noise sources 5. However, for dy-
namical systems which take initial conditions as inputs and
trajectory observations as labels, the inputs and labels are
subject to the same sources of inherent uncertainty. As a
result, we can effectively model this uncertainty using the
same set of parameters. We conducted experiments with
a synthetic dynamical system (ẋ = x(1 + sin(x))) and
sampled 100 trajectories with 51 points/trajectory and ho-
moscedastic Gaussian noise as training data. We learn the
dynamical system by employing neural ODE (Chen et al.
2018) with Bayesian parameters and estimate the uncer-
tainty by direct MSE loss and DVA method. Table 3 shows
the DVA estimation is much closer than the MSE estimation.

Method a2 =0.5 1.0 8.0
MSE+BNN 1.87±0.56 2.69±0.87 11.63±4.82
DVA+BNN 1.06±0.04 1.66±0.10 10.55±0.45

Table 3: Dynamical system aleatoric uncertainty estimation
under homoscedastic label noise (closer to a2 is better)

4.3 Depth Estimation
We demonstrate the applicability of our DVA method to a
depth estimation task. The NYU Depth v2 dataset (Silber-
man et al. 2012) contains 27k RGB-depth image pairs. These
images represent indoor scenes such as kitchens, and the
pixel labels share the same dimensions as the input. We uti-
lize the VPD (Visual Perception with a pre-trained Diffusion

5Consider an identity mapping problem where y = x with
σ2
ξ = σ2

ϵ = 2. If we apply our denoising method on both input and
labels, we may end up with any arbitrary combination of (σ̂2

ξ , σ̂
2
ϵ )

that satisfies σ̂2
ξ + σ̂2

ϵ = 4).

model, (Zhao et al. 2023)) model trained on the dataset as a
prediction model. We add different levels of homoscedastic
synthetic Gaussian noise to the label pixels and apply our
DVA method to detect the noise level. The proposed DVA
method better estimates the aleatoric uncertainty.

input true label noisy label predictionDVA label

Figure 3: Sample examples under a2 = 0.25

Method (a2) =0.01 0.25 1.0
VA+VPD 0.11± 1e-3 0.34 ± 1e-3 1.09± 1e-3
DVA+VPD 0.02 ± 1e-3 0.28 ± 1e-3 1.06 ± 6e-3

Table 4: Aleatoric uncertainty estimation under ho-
moscedastic input noise in depth estimation

4.4 Age Prediction
We further extend our DVA method to real-world data by
performing an age prediction task by utilizing the APPA-
REAL database (Agustsson et al. 2017) (Figure 4 shows
two samples) consisting of 7591 images. Each image in the
database has been assigned an apparent age label based on
an average of 38 individual votes per image. We employ a
ResNext-50 (32×4d) pretrained on ImageNet, replace the
last layer and fine-tune it on the APPA-REAL database with
averaged apparent age as labels.

To estimate uncertainty, we append an additional linear
layer to the second last layer of the network, which maps
its outputs (with a dimension of 2048) to a logarithmic un-
certainty measure. We then fine-tune only this linear layer.
In Figure 4, we present the VA and DVA estimates of the
uncertainty associated with the averaged apparent age, as
well as the standard deviation of the voters’ responses for
the entire training dataset. Viewing the voters as prediction
models that receive images without necessarily reflecting
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Apparent age: 5.0±1.1 73.2±5.9 age

Figure 4: Left: samples, Right: apparent age std. (from vot-
ers) vs estimated data uncertainty

the true underlying age, their forecasted variability encom-
passes two components: aleatoric uncertainty (discrepancy
between the image-based age and the image itself) and epis-
temic uncertainty (disparity between image-based age and
the individual predicted age by the voter). It is worth noting
that the epistemic gap between individual voting and group-
averaged voting has already been eliminated due to the av-
eraging of labels. Consequently, the aleatoric uncertainty of
the averaged labels should be lower than the standard devi-
ation of the voting results indicated by the blue dots in the
figure. Our proposed DVA method better approximates this
lower bound, particularly for children (whose ages are gen-
erally easier to determine accurately than that of adults).

5 Discussion
5.1 Significance of Aleatoric Uncertainty

Quantification
Through quantifying aleatoric uncertainty, researchers attain
a deeper awareness of the data’s inherent fluctuations within
a system or the observation process. This knowledge sub-
sequently empowers researchers to construct more resilient
models capable of accommodating and flexibly responding
to conditions with built-in uncertainty. This becomes par-
ticularly pronounced in the realm of forecasting models,
such as dynamical systems, which heavily rely on observa-
tional measurements as input. The ability to precisely quan-
tify measurement uncertainty equips researchers with the
means to not only evaluate the data trustworthiness but also
to effectively incorporate the appropriate level of variability
into their forecasts. In essence, aleatoric uncertainty analy-
sis serves as an essential part when dealing with uncertainty-
laden systems, fostering both the accuracy and reliability of
scientific and engineering procedures.

5.2 Intuitive Explanation of DVA Mechanism
Our DVA method is built upon the principle of the sam-
ple variance estimation (DeGroot and Schervish 2012) de-
scribing that for a large number of i.i.d. random variables
from a distribution with finite variance, the sample vari-
ance converges to the true variance of the distribution as
the sample size increases. For instance, in the scenario of
the zero mean noise case (σ2

ϵ ) with the sampled dataset
D̃ = {(xi, yi+ϵi)}Mi=1, the mean and variance of normalized
noise {ϵi/σϵ}Mi=1 should converge to 0 and 1 when M →∞.
This illustrates the concept that the larger the dataset be-
comes, the closer the normalized noise’s average and vari-
ance align with these specific values.

Keeping that in mind, we parameterize the normalized
noises ({ϵ̂i}) and the variance (σ̂ϵ(·)) separately, where the
former can be globally normalized to capture the random
realization, and the latter accounts for the noise magnitude.
After training, the learned variance function can be used for
characterizing the noise dependence on x. By introducing
the denoised label (ỹi − ϵ̂iσ̂ϵ(xi)) into the DVA loss func-
tion in Equation (4), we aim to find a set of inferred noise
that maximizes the likelihood of the denoised data match-
ing the prediction. However, since the loss function involves
the prediction model, the accuracy of the noise recovery de-
pends on the prediction model’s precision. As discussed in
Section 3, our approach yields a biased estimator but brings
us “one step closer” to the true aleatoric uncertainty com-
pared to the state-of-the-art VA method.

One might argue that the separate parameterization of the
normalized noises and variance is over-parameterized, as we
can directly model the unnormalized noise. Such approach
is trivial because the denoised label will easily converge
to the prediction assuming full flexibility of the variance.
The neural network parameterization inherently regulates
the smoothness of the variance function (Wang, Prakriya,
and Jha 2022) and limited a finite number of limited lin-
ear regions (Takai, Sannai, and Cordonnier 2021), prevent-
ing trivial solutions and encouraging the learned variance to
represent the true uncertainties.

5.3 Limitations
Despite the benefits, our approach has certain limitations.
First, we introduce additional variables, requiring more
memory and computational cost6. Second, DVA assumes the
zero mean of the sampled noise with the law of large num-
bers which requires a large sample size. When addressing
heteroscedastic noise, we employ a segmented normaliza-
tion technique to minimize the impact of data-dependent
variance on the estimated normalized noise. Alternatively,
the noise parameterization should be matched to the intrin-
sic heteroscedasticity of the system. In addition, this paper
primarily concentrates on regression tasks, and the adapta-
tion to classification tasks is beyond the scope of this work.

6 Conclusion
In this study, we point out that the variance attenuation
method widely used in deep learning, overestimates the
aleatoric uncertainty. We propose a novel approach for es-
timating aleatoric uncertainty from data by considering the
inferred noise and variance separately. Although our method
still represents a biased estimation, our theoretical analysis
demonstrates that it offers an improvement over the prior
method in capturing the true aleatoric uncertainty, and we
validate the improvement by quantitative experiments. In
conclusion, our work presents a valuable contribution to the
field of uncertainty estimation for deep neural networks and
has the potential to serve as a standard procedure in aleatoric
uncertainty quantification for machine learning tasks.

6The computation time increases slightly (34.9s/epoch for
DVA vs 34.7s/epoch for VA for training the age prediction task)
as most of the back-propagation operations are shared.
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