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Abstract
The actual collection of tabular data for sharing involves con-
fidentiality and privacy constraints, leaving the potential risks
of machine learning for interventional data analysis unsafely
averted. Synthetic data has emerged recently as a privacy-
protecting solution to address this challenge. However, ex-
isting approaches regard discrete and continuous modal fea-
tures as separate entities, thus falling short in properly cap-
turing their inherent correlations. In this paper, we propose
a novel contrastive learning guided Gaussian Transformer
autoencoder, termed GTCoder, to synthesize photo-realistic
multimodal tabular data for scientific research. Our approach
introduces a transformer-based fusion module that seamlessly
integrates multimodal features, permitting for mining more
informative latent representations. The attention within the
fusion module directs the integrated output features to fo-
cus on critical components that facilitate the task of generat-
ing latent embeddings. Moreover, we formulate a contrastive
learning strategy to implicitly constrain the embeddings from
discrete features in the latent feature space by encouraging
the similar discrete feature distributions closer while push-
ing the dissimilar further away, in order to better enhance the
representation of the latent embedding. Experimental results
indicate that GTCoder is effective to generate photo-realistic
synthetic data, with interactive interpretation of latent embed-
ding, and performs favorably against some baselines on most
real-world and simulated datasets.

Introduction
Machine learning has demonstrated immense potential
across various industries, and the demand for more so-
phisticated, cutting-edge AI technology is growing in nu-
merous applications (Patel et al. 2023). Currently, machine
learning heavily relies on feature extraction algorithms to
extract valuable insights from large-scale datasets. How-
ever, the real-world datasets collected in most fields are of-
ten disappointing (Price and Cohen 2019), given that these
datasets frequently involve confidentiality and privacy con-
cerns. Data isolation and privacy pose significant challenges
for AI applications dealing with large-scale data. To solve
such challenges, federated learning has provided a well-
developed solution, but it is complicated to manage and still
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faces the risk of data leakage (Bietti et al. 2022). Meanwhile,
several approaches (Geng and Viswanath 2016; Wang and
Hegde 2019) add random noise to the original data for in-
formation exchange, causing the information from the orig-
inal data to be corrupted. Differential privacy protects per-
sonal privacy by adding randomness. Nevertheless, owing
to the ever-present irreconcilable conflict between data leak-
age risk and availability, such approaches still have a loss
of raw information, which results in poorly trained AI mod-
els (Cheng et al. 2022). The adoption of synthetic data for
machine learning has gained significant traction in recent
years (Cortés et al. 2022). Researchers have been explor-
ing a well-secured approach to generate synthetic data that
closely resembles real data, often referred to as “almost-but-
not-quite replica data” (Ganev, Oprisanu, and De Cristofaro
2022). This approach ensures that the synthetic data captures
essential characteristics and patterns present in the original
dataset while also preserving data privacy and confidential-
ity. As a result of these efforts, many synthesis data meth-
ods have emerged, such as Bayesian network-based (Zhang
et al. 2017; Baak et al. 2022), GAN-based (Xu et al. 2019;
Esmaeilpour et al. 2022; Xiao, Wu, and Lin 2021), and VAE-
based (Xu et al. 2019; Dilokthanakul et al. 2017).

However, tabular data commonly contains both discrete
and continuous modal features (Chen 2021), which is com-
plicated to model, thus it poses a great challenge in design-
ing the fusion scheme for model architecture. Existing ap-
proaches (Park et al. 2018; Xu et al. 2019; Esmaeilpour et al.
2022) regard discrete and continuous features as separate
entities, which have not taken the full capture of their cor-
relations. Recently, transformer based on the self-attention
mechanism has shown superiority (Kim et al. 2021) on com-
puter vision and natural language processing tasks. The mer-
its of self-attention mechanism bring a new perspective to
the development of feature fusion (Sun et al. 2021). Nev-
ertheless, up until the date of this work, the attempt of ex-
tending transformers to capture interactive shared informa-
tion representations of tabular data remains scarce. Besides,
since different discrete features are dependent on each other,
how the interaction of different discrete modalities should
take place is the key question to answer.

In this paper, we propose a novel framework named
GTCoder for synthetic data generation, which plays the
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strengths of attention mechanism and contrastive learning
in latent layer feature generation, achieving better feature
embedding. Unlike the transformer (Gorishniy et al. 2021)
in classification tasks that learns discriminative information
potentially more attentive to subtle differences relevant to
categories, we tweak the transformer for the encoder to fuse
tabular features and generate latent embeddings, enabling
the model to capture the overall data structure as well as
its variability. Also, our approach can provide contributions
of each feature to the fused feature due to the advantage of
the self-attention mechanism. Besides, we combine the lexi-
cal information before fusion with the semantic information
after fusion, thereby avoiding the loss of raw information.
Variational autoencoder (Kingma and Welling 2013) learns
a uni-modal Gaussian prior, which is however inadequate
for modeling complicated distributions. Therefore, we opti-
mize GMVAE (Cao, Luo, and Klabjan 2021) as framework
to learn multi-modal priors from discrete features by us-
ing Gaussian mixture encoder, which can generate learnable
discrete feature embeddings. Inspired by the work in (Bai,
Kong, and Gomes 2022), we introduce contrastive learning
to constrain the latent embeddings from discrete features,
so that the representations of discrete features are enhanced.
GTCoder performs favorably against several baselines on
both real-world and simulated datasets, and provides inter-
active interpretation of latent embedding. Using various ab-
lation experiments, we validate the components of our ap-
proach. Our contributions are summarized:

• We propose GTCoder, the transformer-based and con-
trastive learning-enhanced architecture for tabular data
synthesis, thereby obtaining a better privacy protection
for scientific research.

• We propose to exploit transformer attention mechanism
for tabular feature semantic fusion. It fuses unimodal and
multimodal features to generate latent representations in
the encoder.

• We introduce a contrastive learning strategy to encour-
age the similar discrete feature distributions closer while
pushing the dissimilar further away, which has a dynamic
constraint on representativeness for latent embeddings.

Related Work
Tabular Data Synthesis
Synthetic data has demonstrated robust results in overcom-
ing data limitations for various tasks such as dataset balanc-
ing (Xiao, Wu, and Lin 2021), data analysis (Cortés et al.
2022; Zhang et al. 2019; Wang et al. 2019; Lou et al. 2022)
and privacy preservation (Faisal et al. 2022; Liu et al. 2022).
Nowadays, the main popular methods to synthesize tabular
data by using deep learning are based on GANs. A sample
balancing technique based on WGAN is proposed in (Xiao,
Wu, and Lin 2021) to oversample using a few classes of
samples from real biological data. CTGAN is proposed in
(Xu et al. 2019) for tabular data synthesis, which has been
shown to be better than Bayesian networks. In (Esmaeilpour
et al. 2022), a bi-discriminator GAN for synthesizing tabular
datasets containing continuous, binary, and discrete columns

is presented. Meanwhile, VAE has demonstrated superiority
in generative tasks. Previous research (Xu et al. 2019) pri-
marily concentrated on modeling within unimodal potential
spaces, overlooking the acquisition of more intricate repre-
sentations. Recent research (Cao, Luo, and Klabjan 2021)
has employed multimodal priors for extension and applied
them to open-set recognition. While we optimize GMVAE
(Cao, Luo, and Klabjan 2021) as our base framework, it can
learn more complex latent representations for synthetic data.

Transformer for Feature Fusion
The transformer was first proposed in (Vaswani et al. 2017)
for machine translation, and since then, it has been widely
applied to various tasks in the field of natural language pro-
cessing and extended for computer vision tasks (Qin et al.
2022; Xu et al. 2023). A popular direction explores adopt-
ing transformer to multimodal feature fusion. To extract rel-
evance with respect to cross-modal information, a multi-
modal fusion transformer has been proposed in (Shvetsova
et al. 2022), which can process input of any combination of
modalities and any length. The work (Zhang et al. 2022a)
fuses the multimodal information from the images, audio
and text based on transformer, and realize effective affec-
tive analysis from different views. In (Bandara and Patel
2022), a multi-scale fusion feature network is proposed by
using transformer at different scales of the backbone net-
work, which can capture cross-feature space dependencies.
Recently, the work (Bai, Kong, and Gomes 2022) has intro-
duced a simple adaptation of the transformer architecture for
tabular data, which outperformed other deep learning meth-
ods on most tasks and become a new powerful solution for
the field of tabular data classification. However, current tab-
ular transformers are not directly applicable to model data
generation. This motivates us to explore the performance of
the tabular transformer in autoencoders.

Contrastive Learning
Contrastive learning seeks to learn mutual information by
maximizing the similarity between two instances from one
class and minimizing the similarity from different classes.
Contrastive learning has demonstrated its effectiveness in
reinforced feature representation (Carlsson et al. 2021; Pan
et al. 2021; Lee and Shin 2022; Zhang et al. 2022b). Se-
mantically similar feature embeddings should have compa-
rable representations. For example, the work (Jian, Gao, and
Vosoughi 2022) contrasts examples from text and examples
from another modality simultaneously while learning sen-
tence embeddings. In (Yan et al. 2022), a contrastive learn-
ing method is exploited in the latent metric space to explore
the useful negative correlation hidden in noisy data, which
can improve the robustness of DNNs. Similarly, the work
(Wang et al. 2021) extends contrastive learning to the multi-
label classification task. It selects anchor samples from em-
beddings of labels and features, clustering related label em-
beddings together while pushing away from irrelevant em-
beddings. Different from (Wang et al. 2021), we would like
to build a contrastive pipeline for effective latent embedding
representations, while leveraging relevance of discrete fea-
tures from each other.
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Figure 1: The overall framework of GTCoder. GTCoder follows the main encoder-decoder architecture of GMVAE with a novel
Gaussian mixture encoder layer. The transformer-based encoder fuses all features, from which discrete feature embeddings are
extracted and contrasted with the embeddings output from the Gaussian mixture encoder.

Methods
The overall architecture of our proposed GTCoder is pre-
sented in Fig. 1. Continuous and discrete modalities are fed
into a tokenization layer, where the raw inputs are projected
to embeddings, followed by GTCoder. There are three com-
ponents. Transformer-based encoder is used to fuse contin-
uous and discrete features to produce latent embeddings.
Gaussian mixture encoder transforms discrete features to
learnable embeddings and maps them to a latent space,
aligning with the latent space produced by transformer-
based encoder. Furthermore, the latent feature embeddings
are decoded into reconstruction features by the decoder.

Contrastive learning is optimized to constrain discrete
feature embeddings, encouraging similar discrete feature
distributions closer while pushing dissimilar further away.
This can be seen as an extension of the contrastive mech-
anism proposed in (Bai, Kong, and Gomes 2022). We de-
scribe details about the proposed approach in the following.

Transformer-based Multimodal Fusion Encoder
Let D = {(x(i))}Ni=1 denotes a dataset, where x(i) =

(x
(i)
con, x

(i)
dis) represents continuous features x

(i)
con =

{(x(i)
con,j)}Jj=1 and discrete features x

(i)
dis = {(x(i)

dis,t)}Tt=1

of an object and N denotes the number of objects. Our final
goal is to learn an encoder fenc(x) and a decoder fdec(x)
to synthesize reconstructed features from D, and the output
of fdec(x) is expected to be close to the input D as much
as possible. To this end, we introduce a transformer-based
fusion architecture as the backbone of the encoder shown
in Fig. 2. The encoder transforms discrete and continuous
modal features into semantic embeddings respectively and a
sentence embedding containing fused information.

We first define a modality-specific tokenization layer that
takes as input the raw features and returns a sequence of

embeddings to be fed to the transformer. Suppose we have
the i-th input data x(i) that contains both continuous and
discrete modalities, with the embedding computed as:

T
(i)
con,j = gcon,j(x

(i)
con,j) ∈ RC , (1)

T
(i)
dis,j = gdis,j(x

(i)
dis,j) ∈ RC , (2)

where C denotes the number of tokens, gcon and gdis de-
note the tokenization of continuous and discrete modal fea-
tures respectively. We apply a linear mapper with reversible
mapping of each feature to a C-dimensional vector. This is
equivalent to word embedding, which has been widely used
in natural language processing (Jiang et al. 2022).

To ensure that output tokens can learn different modal in-
formation, [CLS] token is used in the multimodal encoder
to extract features for both continuous and discrete tokens.
The sequence of input tokens to the transformer follows the
below formulation:

T
(i)
in =

[
[CLS](i), T (i)

con, T
(i)
dis

]
∈ R(K+1)×C , (3)

where K is the total number of continuous and discrete fea-
tures of an object.

For simplicity, we tweak the PreNorm variant (Zhai and
Meng 2021), which has been used in tabular data classifi-
cation (Gorishniy et al. 2021). Specifically, the multi-head-
attention module is performed with matrix multiplication of
queries, keys, and values in a multi-head manner, which can
capture non-local correlation from different modalities:

ci = Attention(QWQ
i ,KWK

i , V WV
i ), (4)

Multi(Q,K, V ) = Concat(c1, c2, · · · , ch)W o, (5)

where Q, K, V are query, key and value matrices respec-
tively. WQ

i ∈ Rd× d
h , WK

i ∈ Rd× d
h , WV

i ∈ Rd× d
h denote
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Figure 2: Illustration of the presented transformer-based fu-
sion encoder module.

the transformation matrices of the i-th head and d is the fea-
ture dimension of query, key and value. Attention is the self-
attention computation function, thus ci is the output of the
i-th head. h is the number of heads and W o denotes the out-
put transformation matrix. This provides each feature token
with strong and direct awareness supervision, making each
feature token be able to capture feature-specific information.

The accumulation of embeddings computed by transform-
ers from different layers can learn diverse semantic informa-
tion (Li et al. 2020). Similarly, we can compute the latent
embeddings by summing the [CLS] containing the semantic
representation of all features with X containing lexical in-
formation, which maximally learns the correlation between
multimodal features:

µ = Linearµ([CLS]output +Mean(xcon, xdis)), (6)

σ = Linearσ([CLS]output +Mean(xcon, xdis)), (7)
where [CLS]output is the [CLS] token of output layer for
transformer and Linear is a fully connected layer.

Contrastive Learning with Learnable Prior
As suggested in (Bai, Kong, and Gomes 2022), using cate-
gory features to form a Gaussian mixture prior promotes a
latent representation meaningful to reconstruct the samples.
Consequently, we directly feed discrete features represented
as one-hot vectors x(i)

dis,j ∈ {0, 1}L to the Gaussian mixture
encoder and form several individual latent Gaussian distri-
butions. We activate the positive Gaussian (x

(i)
dis,jk = 1) and

form a Gaussian mixture subspace. The probability density
function in the subspace is:

pψ(z|x(i)
dis) =

1∑
j

∑
k x

(i)
dis,jk

M∑
j=1

L∑
k=1

1{x(i)
dis,jk = 1}

N (z|µjk, diag(σ2
jk))

, (8)

where 1 is the indicator function and µjk, σjk are output
from the Gaussian mixture encoder. In addition, we also
use the weights w

(i)
dis,j ∈ RL×d from the first fully con-

nected layer as the embeddings for discrete features. Since
the embeddings are dynamically updated while training, the
learned prior knowledge is also dynamically updated.

The KL-divergence loss function is developed to align
the prior with the posterior, which can be written as:

LKL ≈ log qϕ(z
(i)
0 |x(i)

con)− log pψ(z
(i)
0 |x(i)

dis), (9)

where z
(i)
0 denotes the latent representation computed by µ

and σ of the i-th sample and transformer-based encoder is
parameterized by ϕ. Decoder is used to further transform
the latent representations to synthesis samples. This process
is formulated as:

(x(i)|z(i)0 ) ∼ B(µ(z(i)0 ;ϕ)). (10)

To properly learn semantics for feature embeddings, latent
representations require implicitly having mutual information
existed between feature embeddings. For example, “minor”
commonly appears together with “unmarried”, while “adult”
commonly appears together with “married”.

Following the specificity of multimodal projection head
from the output of the transformer-based fusion encoder, we
extract the latent embeddings for the discrete features to be
used as the anchor samples. All discrete feature embeddings
are obtained from the Gaussian mixture encoder. We regard
positive and negative discrete feature embeddings as positive
and negative samples, respectively. More specifically, we de-
fine P

(i)
dis,j ≡ {x(i)

dis,jk = 1}Lk=1, where j ∈ {1, · · · ,M}.
For a batch of samples B, we apply contrastive loss to cap-
ture mutual information:

LCL =
1

|B| ×M

∑
x(i)∈B

∑
j∈{1,··· ,M}

1

|P (i)
dis,j |

∑
p∈P (i)

dis,j

− log
sim(wfd , w

l
p)∑

t∈{1,··· ,L} sim(wfd , w
l
t)
,

(11)

where sim(u, v) = exp(u·vτ ) is a similarity function that
computes the similarity between two feature vectors, and τ
denotes a temperature hyperparameter to adjust the softness
of the objectives in distinguishing the positive samples from
the negative samples. The latent representations for discrete
features and the discrete feature embeddings from the Gaus-
sian mixture encoder are denoted as wfd and wlt, respectively.

Training Scheme
We use reconstruction loss to make the synthetic data look
similar to real samples. Let z be a data from a batch of sam-
ples B , which has C continuous features. Assume that a
token for t can be acquired, denoted by T . Similarly, a re-
constructed synthetic data X is defined. The reconstruction
loss takes the following form:

LRE =
1

|B|
∑
T∈B

cross entropy(Tα, Xα)

+
∑
j∈C

(T 0
j − t(X0

j ))
2

2× std2
+ log(θ)

, (12)

where cross entropy(T,X) is a cross entropy function. For
T 0
j and X0

j , they denote the label encoded column for the
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Datasets Pregnancy Adult Abalone Ionosphere Agaricus-lepiota Sonar News

Metrics ma-F1 we-F1 ma-F1 we-F1 ma-F1 we-F1 ma-F1 we-F1 ma-F1 we-F1 ma-F1 we-F1 r2

Identity 0.66 0.85 0.76 0.83 0.52 0.52 0.86 0.88 1.00 1.00 0.77 0.77 -0.019

CTGAN 0.57 0.71 0.69 0.79 0.52 0.52 0.48 0.53 0.85 0.85 0.60 0.62 -0.035

Bi-discriminator GAN 0.65 0.78 0.69 0.78 0.47 0.47 0.45 0.48 0.88 0.88 0.44 0.47 -0.487

WGAN 0.53 0.79 0.66 0.76 0.43 0.44 0.38 0.38 0.87 0.87 0.44 0.47 -0.437

TVAE 0.57 0.71 0.69 0.79 0.49 0.49 0.48 0.50 0.88 0.88 0.47 0.51 -0.025

LVAE 0.48 0.78 0.66 0.76 0.49 0.49 0.51 0.55 0.92 0.92 0.59 0.61 -0.023

GMVAE 0.55 0.79 0.67 0.77 0.45 0.44 0.41 0.49 0.92 0.92 0.57 0.61 -0.027

GTCoder 0.66 0.83 0.70 0.80 0.52 0.48 0.60 0.62 0.95 0.95 0.61 0.61 -0.020

Table 1: Comparative results on real-world datasets. We compare our method with CTGAN (Xu et al. 2019), Bi-discriminator
GAN (Esmaeilpour et al. 2022), WGAN (Xiao, Wu, and Lin 2021), TVAE (Xu et al. 2019), LVAE (Sønderby et al. 2016), and
GMVAE (Dilokthanakul et al. 2017).

Figure 3: Results on real-world datasets (higher is better).

j-th continuous feature of real data and reconstructed data,
respectively. The columns other than the label encoded col-
umn are denoted as Tα and Xα. We have θ as a random
parameter output with the decoder, and t(X) is a tanh acti-
vation function. The synthetic data can be generated by in-
verse decoding of the reconstructed token.

The overall per-sample objective for training the entire
GTCoder model end-to-end is:

L = λ1LKL + λ2LCL + λ3LRE , (13)

where λi balances the three losses.

Interpretability for GTCoder
In attention mechanism, output xioutput of tokeni is com-
puted by weighting the value vector vj of all tokens. The
weight αij of vj can be got from the attention matrix.
Thus, with the weight αij , the contribution of tokeni to

tokenj can be measured. We choose the row correspond-
ing to [CLS] from the attention matrix and regard it as the
degree of contribution of all tokens to the fused representa-
tion. By applying the attention mechanism on latent repre-
sentation generation, which features play important roles in
representation learning can be directly observed to guide the
synthesis of more effective data.

Experiments
Experimental Setup
Datasets. We use six commonly available tabular datasets
from UCI (Dua and Graff 2017) with various numbers of
discrete (contained labels) and continuous features, includ-
ing Adult, News, Abalone, Ionosphere, Agaricus-lepiota and
Sonar. Adult contains 9 discrete and 6 continuous features.
News contains 46 continuous and 14 discrete features, which
makes the dataset more complex. We selected Abalone,
which has a smaller and simpler number of features, con-
taining only 2 discrete and 7 continuous features. Ionosphere
has a small sample size but features with a certain com-
plexity, which includes 32 continuous and 3 discrete fea-
tures, therefore it better reflects the performance of the mod-
els for extracting features. A characteristic of Sonar is that
it contains only 60 continuous features and 1 label, which
can make the data synthesis particularly challenging. Con-
versely, Agaricus-lepiota contains only 23 discrete features,
thus it better shows the ability of an algorithm to learn rele-
vance combinations of discrete features.

Combining medical data with machine learning fully ex-
ploits the value of medical data. However, both publishing
data and training data in machine learning may reveal the
privacy of patients, thus more effective privacy protection
methods are urgently needed to ensure the security of re-
leased medical data (Su et al. 2021). To demonstrate the ef-
fectiveness of our approach in privacy protection, we also
conduct experiments on a medical clinical dataset (Preg-
nancy). The Pregnancy dataset includes various physical in-
dicators of the patients and a label for whether they had a
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Datasets Grid Gridr Ring
Metrics Lsyn Ltest Lsyn Ltest Lsyn Ltest

CTGAN -1.68 -2.88 -1.75 -2.88 -1.61 -2.89
Bi-discriminator GAN -1.56 -2.88 -1.56 -2.89 -1.65 -2.95

GAN-based
methods

WGAN -1.43 -2.89 -1.25 -2.95 -1.19 -3.17

TVAE -1.07 -4.36 -0.99 -3.90 -0.79 -4.99
LVAE -0.71 -4.59 -1.11 -9.03 -0.96 -9.41

GMVAE -2.13 -3.27 -1.15 -4.63 -1.84 -2.96
VAE-based

methods
GTCoder -0.68 -3.11 -0.67 -3.25 -1.51 -2.89

Table 2: Comparison results on the grid, gridr, and ring. Lsyn represents the likelihood fitness on simulations for the synthetic
dataset of each method. Re-fitting simulations with synthetic data, and then the likelihood fitness on the test sets to obtain Ltest.

Figure 4: Interpretation of feature-feature interactions.
Green and red colors indicate the least and most significant
contributions, respectively.

miscarriage, which would not be publicly available because
it involves the privacy of the patients.

Moreover, we construct three Gaussian mixture simula-
tions to represent known joint distributions. Three simulated
datasets were generated by sampling from them separately,
called grid, gridr, and ring.

Comparison Methods. As for synthetic data quality, we
compare GTCoder with state-of-the-art deep learning meth-
ods, including three GAN-based methods (CTGAN, Bi-
discriminator GAN, WGAN) and three VAE-based methods
(TVAE, LVAE, GMVAE).

Implementation Details. To fairly compare each method,
we train all methods using the same size epoch and batch.
All real datasets are separated into testing sets called Ttest
(20%) and training sets called Ttrain (80%). As discrete fea-
ture encoder and decoder, we simply followed (Bai, Kong,

Datasets CL Prior TFT ma-F1 we-F1 AVG.∆

Ionosphere

- - - 0.479 0.497 -
- ✓ - 0.410 0.497 -3.45%
- - ✓ 0.483 0.572 3.95%
- ✓ ✓ 0.562 0.621 10.35%
✓ ✓ ✓ 0.603 0.623 12.5%

Agaricus-lepiota

- - - 0.882 0.883 -
- ✓ - 0.920 0.920 3.75%
- - ✓ 0.896 0.897 1.40%
- ✓ ✓ 0.936 0.936 5.35%
✓ ✓ ✓ 0.953 0.953 14.2%

Pregnancy

- - - 0.573 0.710 -
- ✓ - 0.547 0.793 2.85%
- - ✓ 0.596 0.796 5.45%
- ✓ ✓ 0.643 0.817 8.85%
✓ ✓ ✓ 0.657 0.830 10.2%

Table 3: Ablation study for each component of our model.

and Gomes 2022) which composed by fully connected net-
works. Through conducting empirical analysis, we set λ1 =
1, λ2 = 0.5, and λ3 = 0.1. The temperature parameter τ for
contrastive learning in GTCoder is set to 0.95.

Evaluation metrics. For the real datasets, we evaluate
each method by comparing the performance of machine
learning, which are trained on the synthetic datasets. More
specifically, we use Ttrain to train a generative model and
generate a synthetic dataset with the same size as Ttrain.
Then, we train classifiers or regression models using the syn-
thetic dataset, and evaluate them using Ttest. In the classifi-
cation tasks, we select well-performing decision tree, ran-
dom forest and adaboost and compute the mean macro-F1
(ma-F1) and mean weighted-F1 (we-F1) scores of them as
evaluation metrics. And for the regression tasks, we select
the r2 of Ridge, Linear and GradientBoosting Regression
for evaluation. For the simulated datasets, we utilize the syn-
thetic dataset to compute likelihood fitness (Lsyn) on the
simulation. Next, we retrain a simulation using the synthetic
dataset and use Ttest to compute likelihood fitness (Ltest)
on the simulation.
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(a) Macro-F1 scores. (b) Weighted-F1 scores.

Figure 5: Performance evaluated for all methods.

Figure 6: Distribution of synthetic features on the Agaricus-
lepiota and Abalone sets. (a) Real data (b) TVAE (c) Ours.

Experimental Results
Evaluation on real-world datasets. In Table 1 and Fig. 3,
we evaluate each tabular data synthesis method on all real-
world datasets. It is shown that GTCoder outperforms other
methods on most datasets. To further compare the perfor-
mance of each method, we also assess the synthetic data dis-
tribution in Fig. 6. Our method excels in generating synthetic
data that maintains a high level of consistency with the dis-
tribution of real data, ensuring reliable and meaningful anal-
ysis. CTGAN is still a fine benchmark method, yet GMVAE
and LVAE have already surpassed GAN-based methods on
several datasets. Significantly, GTCoder achieves particu-
larly competitive performance on Agaricus-lepiota, while
slightly underperforming CTGAN on Abalon and Sonar,
which further demonstrates that our approach is more effec-
tive for processing datasets with numerous discrete features.

Evaluation on simulated datasets. Further, we report

the performance of each generation method on the simulated
dataset sampled from the simulation in Table 2. Obviously,
GTCoder shows comparatively superior performance, how-
ever minority performance is slightly underperformed by
CTGAN. The simple feature composition of the simulated
dataset and lack of discrete features are possible factors,
which present no strengths for our method. Despite these
limitations, our method demonstrates considerable potential
and effectiveness in various data synthesis tasks, paving the
way for further advancements and refinement in the field of
synthetic data generation.

Interpretability. Fig. 4 shows an explanation for the in-
teractions of each feature on Agaricus-lepiota. It shows that
gill-color, poisonous and habitat have contributed most to
the fused features, which explains that several of them are
more contributing to synthetic data generation. Poisonous is
the label for mushroom species classification, and informa-
tion of external morphological features can be provided by
gill-color. As well, habitat is also an extremely significant
feature, as the environment a mushroom grows in can have
an influence on its growth condition and adaptability to the
external environment. Such features have significant contri-
butions to discriminate whether mushrooms are poisonous
or not, thus they have higher weights to fused latent features.
The attention weights from transformer can help us to under-
stand the essence of datasets clearly, which can provide us
with more precise and reliable synthesis results.

Ablation Studies
We conduct ablation studies to evaluate the effectiveness
of the three modules for our approach. The ablation stud-
ies demonstrate that our GTCoder consistently outperforms
other models by a large margin, with an average improve-
ment in assessment metrics of more than 10%. Although the
existence of learnable prior is present, our method performs
slightly lower in the absence of contrastive learning, indicat-
ing that learnable prior and contrastive learning are remark-
ably crucial components for GTCoder, which also shows the
integration model has superiority.

Conclusion
In this paper, we propose a new approach named GTCoder
for multimodal tabular data synthesis, which realizes data
privacy protection in scientific research. Our approach con-
tains a multimodal fusion encoder and a learnable prior dis-
crete feature encoder, which can fuse features efficiently and
learn rich knowledge. Moreover, we introduce a contrastive
learning strategy to constrain latent embedding representa-
tions for discrete features. Extensive experiments on most
real-world and simulated datasets demonstrate superior per-
formance for the proposed approach.

Acknowledgments
This paper was supported by National Key Research and
Development Program of China (2021YFF1201100), Na-
tional Natural Science Foundation of China under Grants
(62172016 and 61932001) and Beijing Nova Program.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16809



References
Baak, M.; Brugman, S.; Fridman Rojas, I.; Dalmeida, L.;
E.Q. Urlus, R.; and Oger, J.-B. 2022. Synthsonic: Fast, Prob-
abilistic modeling and Synthesis of Tabular Data. In Pro-
ceedings of The 25th International Conference on Artificial
Intelligence and Statistics, 4747–4763. PMLR.
Bai, J.; Kong, S.; and Gomes, C. P. 2022. Gaussian Mix-
ture Variational Autoencoder with Contrastive Learning for
Multi-Label Classification. In Proceedings of the 39th In-
ternational Conference on Machine Learning, 1383–1398.
PMLR.
Bandara, W. G. C.; and Patel, V. M. 2022. HyperTrans-
former: A Textural and Spectral Feature Fusion Transformer
for Pansharpening. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 1757–1767.
Bietti, A.; Wei, C.-Y.; Dudik, M.; Langford, J.; and Wu, S.
2022. Personalization Improves Privacy-Accuracy Trade-
offs in Federated Learning. In Proceedings of the 39th In-
ternational Conference on Machine Learning, 1945–1962.
PMLR.
Cao, A.; Luo, Y.; and Klabjan, D. 2021. Open-Set Recogni-
tion with Gaussian Mixture Variational Autoencoders. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
35(8): 6877–6884.
Carlsson, F.; Gyllensten, A. C.; Gogoulou, E.; Hellqvist,
E. Y.; and Sahlgren, M. 2021. Semantic Re-tuning with Con-
trastive Tension. In International Conference on Learning
Representations.
Chen, Y. 2021. Research on deep probability generation
model based on variational inference. Publishing House of
Electronics Industry.
Cheng, A.; Wang, J.; Zhang, X. S.; Chen, Q.; Wang, P.; and
Cheng, J. 2022. DPNAS: Neural Architecture Search for
Deep Learning with Differential Privacy. Proceedings of
the AAAI Conference on Artificial Intelligence, 36(6): 6358–
6366.
Cortés, A.; Rodrı́guez, C.; Vélez, G.; Barandiarán, J.; and
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