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Abstract
Quantum neural networks (QNNs) have become a leading
paradigm for establishing near-term quantum applications in
recent years. The trainability issue of QNNs has garnered ex-
tensive attention, spurring demand for a comprehensive anal-
ysis of QNNs in order to identify viable solutions. In this
work, we propose a perspective that characterizes the train-
ability of QNNs based on their locality. We prove that the en-
tire variation range of the loss function via adjusting any local
quantum gate vanishes exponentially in the number of qubits
with a high probability for a broad class of QNNs. This re-
sult reveals extra harsh constraints independent of gradients
and unifies the restrictions on gradient-based and gradient-
free optimizations naturally. We showcase the validity of our
results with numerical simulations of representative models
and examples. Our findings, as a fundamental property of ran-
dom quantum circuits, deepen the understanding of the role
of locality in QNNs and serve as a guideline for assessing the
effectiveness of diverse training strategies for quantum neural
networks.

Introduction
Quantum computing is a rapidly growing technology that
exploits quantum mechanics to solve intricate problems that
classical computers cannot solve. With enormous efforts
having been made to develop noisy intermediate scale quan-
tum (NISQ) devices (Preskill 2018), current quantum de-
vices have demonstrated the ability to achieve near-term
quantum advantage for practical applications in key ar-
eas including many-body physics (Wecker, Hastings, and
Troyer 2015; Uvarov, Biamonte, and Yudin 2020), chem-
istry (McArdle et al. 2020), finance (Egger et al. 2020),
and machine learning (Biamonte et al. 2017). Specifically,
quantum machine learning (QML) represents an exciting,
emerging interdisciplinary field that seeks to enhance ma-
chine learning algorithms by harnessing the inherent paral-
lelism of quantum systems (LaRose and Coyle 2020; Cerezo
et al. 2022; You et al. 2023; Gebhart et al. 2023; Li et al.
2021; Huang et al. 2022; Yu et al. 2022). Quantum neu-
ral networks (QNNs) stand at the forefront of QML, cap-
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italizing on the unprecedented potential of quantum com-
puting to revolutionize data analysis and pattern recogni-
tion. Inspired by classical neural networks, QNNs employ
quantum gates and quantum states as fundamental build-
ing blocks within their computational framework. These net-
works can be trained using a diverse range of methods, in-
cluding gradient-based optimization techniques akin to clas-
sical neural network training (McClean et al. 2016; Cerezo
et al. 2021a; Bharti et al. 2022; Endo et al. 2021).

With the aim to show quantum advantage on certain tasks,
a critical issue is whether QNNs can be extended to solve
large-scale systems, i.e., scalability. Unfortunately, many
studies point out that training of QNNs requires exponen-
tial resources with the system size under certain condi-
tions (McClean et al. 2018; Arrasmith et al. 2020; Cerezo
and Coles 2021; Arrasmith et al. 2022; Wang et al. 2021;
Holmes et al. 2021; Bittel and Kliesch 2021; Ortiz Mar-
rero, Kieferová, and Wiebe 2021; Stilck Franca and Garcı́a-
Patrón 2021; Uvarov and Biamonte 2021; Campos, Nasral-
lah, and Biamonte 2021; De Palma et al. 2023). Besides the
practical limitations such as noises (Wang et al. 2021), even
ideal quantum devices will suffer from the so-called bar-
ren plateau phenomenon (McClean et al. 2018), which is
the quantum counterpart of vanishing gradient problem in
classical machine learning. It was shown that the gradient
of the cost function vanishes exponentially in the number of
qubits with a high probability for a random initialized QNN
with sufficient depth, analogous to the vanishing gradient
issue in classical neural networks. Consequently, exponen-
tially vanishing gradients demand exponential precision in
the cost function measurement on a quantum device (Knill,
Ortiz, and Somma 2007) to make progress in the gradient-
based optimization, and hence an exponential complexity in
the number of qubits.

Several attempts have been made to avoid barren plateaus,
such as higher order derivatives (Huembeli and Dauphin
2021), gradient-free optimizers including gate-by-gate op-
timization (Nakanishi, Fujii, and Todo 2019; Ostaszewski,
Grant, and Benedetti 2019), proper initialization (Grant et al.
2019; Zhang et al. 2022), pre-training including adaptive
methods (Verdon et al. 2019; Grimsley et al. 2019; Zhang
et al. 2021; Skolik et al. 2021; Grimsley et al. 2023), QNN
architectures (Pesah et al. 2021; Liu et al. 2022) and cost
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function choices (Cerezo et al. 2021b; Kieferova, Carlos,
and Wiebe 2021). More efforts are needed to study the gen-
eral effectiveness of these attempts (Arrasmith et al. 2020;
Cerezo and Coles 2021) and develop new strategies to im-
prove the trainability and scalability of QNNs. As a guide
for exploring effective training strategies, it is crucial to un-
cover the essential mechanisms behind the barren plateau
phenomenon.

However, few rigorous scaling results are known for
generic QNNs besides phenomenological calculations, i.e.,
gradient analyses and their descendent (Arrasmith et al.
2020; Cerezo and Coles 2021; Arrasmith et al. 2022). In-
stead of just the limited information of vicinity from gra-
dient analyses, it would be quite helpful for designing effi-
cient algorithms if we could gain information on the entire
variation range of the cost function when adjusting a sin-
gle (Nakanishi, Fujii, and Todo 2019; Ostaszewski, Grant,
and Benedetti 2019) or several parameters. Combined with
the fact that parameters usually enter the circuit indepen-
dently through local quantum gates, all of which motivate
our work where we are chiefly concerned with the variation
range of the cost function via varying a local unitary within
a quantum circuit.

In this work, we present a rigorous scaling theorem on
the trainability of QNNs beyond gradients from the perspec-
tive of QNN locality. As summarized in Figure 1, we prove
that when varying a local unitary within a sufficiently ran-
dom circuit, the expectation and variance of the variation
range of the cost function vanish exponentially in the num-
ber of qubits. Then through simple derivations, we show that
this theorem implies exponentially vanishing gradients and
cost function differences, and hence unifies the restrictions
on gradient-based and gradient-free optimizations. Mean-
while, this theorem further delivers extra meaningful infor-
mation about the training landscapes and optimization pos-
sibilities of QNNs. In this sense, we obtain a fundamental
limitation on QNN training. Next, we illustrate the applica-
tions of our theorem on representative QNN models, where a
tighter bound for the fidelity-type cost function is provided
specifically even with shallow random circuits. At last, we
perform numerical simulations on these representative mod-
els, where the scaling exponents coincide with our analytical
results almost precisely.

Comparison with Previous Works. The advances of our
results compared to previous works (McClean et al. 2018;
Cerezo and Coles 2021; Arrasmith et al. 2020, 2022; Leone
et al. 2022; Thanasilp et al. 2023; Garcia et al. 2023; Larocca
et al. 2022) exist in two aspects. Firstly, the exponentially
vanishing quantity we claim is the entire variation range
of the cost function in the whole parameter subspace cor-
responding to the local unitary. This provides constraints
on multiple parameters at finite intervals simultaneously,
instead of an infinitesimal vicinity or two fixed-parameter
points. In particular, Ref. (Arrasmith et al. 2022) considers
the cost function difference between two points either both
randomly chosen or one random, and the other has a deter-
ministically chosen distance with it. Whereas we consider
the difference between the maximum and minimum within

Figure 1: Training limitations from QNN locality. The left
part depicts a PQC on n qubits composed of local unitaries.
The right part symbolically depicts the cost function on a
classical device vs. the local unitary highlighted in the left
part. This work proves that the cost function will fluctuate
in an exponentially small range in the number of qubits with
a high probability when we vary an arbitrary local unitary
within the QNN in certain cases.

the whole subspace w.r.t. a local unitary. The process of tak-
ing extreme values in our work is not involved there. Sec-
ondly, Our results have a broader scope as they are not de-
pendent on the parameterization of the local unitary, such as
e−iθΩ, used in previous studies. The only requirement for
our results is the circuit locality, which opens up new possi-
bilities for analyzing the trainability of QNNs.

Preliminaries
Quantum State. We first introduce basic concepts and no-
tations in quantum computing. A pure single-qubit quan-
tum state is a linear combination of two computational basis
states, represented as |ϕ⟩ = α|0⟩ + β|1⟩ in Dirac notation,
where α, β ∈ C, |α|2 + |β|2 = 1. Here, |0⟩ and |1⟩ de-
note the basis states [1, 0]T and [0, 1]T in the single-qubit
space C2, respectively. The n-qubit space C2n is formed
by the tensor product of n single-qubit spaces. Additionally,
the quantum state can be represented by a positive semidef-
inite matrix, also known as a density matrix. The density
matrix ρ of a pure state |ϕ⟩ consisting of n qubits is ex-
pressed as ρ = |ϕ⟩⟨ϕ|, where ⟨ϕ| = |ϕ⟩†. A general mixed
quantum state is represented by ρ =

∑
k ck|ϕk⟩⟨ϕk|, where

ck ∈ R,
∑

k ck = 1.

Quantum Gate. Quantum gates are mathematically de-
scribed as unitary operators. Common single-qubit gates
include the Pauli rotations {RP (θ) = e−i θ

2P |P ∈
{X,Y, Z}}, which are in the matrix exponential form of
Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Common two-qubit gates include controlled-X gate
CNOT = I⊕X (⊕ is the direct sum) and controlled-Z gate
CZ = I ⊕ Z, which can generate quantum entanglement
among qubits.

Quantum Measurement. Quantum measurement is a
quantum operation to obtain information from the quan-
tum system. For example, for a single-qubit state |ϕ⟩ =
α|0⟩+ β|1⟩, the outcome of a computational basis measure-
ment is either |0⟩ with probability |α|2 or |1⟩ with probabil-
ity |β|2. This measurement operation can be mathematically
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referred to as the average of the observable O = Z under
the state |ϕ⟩: ⟨ϕ|O|ϕ⟩ = tr[Z|ϕ⟩⟨ϕ|] = |α|2 − |β|2. Gen-
erally, quantum observables O are Hermitian matrices and
O(1/ε2) times of measurements could give an ε∥O∥∞-error
estimation to the value tr[Oρ], where ∥ · ∥∞ is the spectral
norm of the matrix.

Quantum Neural Network. While classical neural net-
works operate on classical bits and use classical logic gates,
quantum neural networks (QNNs) use quantum bits, or
qubits, and quantum gates to process and store information.
QNNs are often described as parameterized quantum circuits
(PQCs) that are composed of rotation gates with adjustable
rotating angles. In general, a QNN takes the mathematical
form U(θ) =

∏
µ Uµ(θµ)Wµ, where Uµ(θµ) = e−iθµΩµ

denotes a parameterized gate, such as a single-qubit rota-
tion gate with Ωµ representing a Hermitian operator, and
Wµ corresponds to fixed gates like the CNOT gate and
SWAP gate. Commonly used templates of QNNs include the
hardware efficient ansatz, the alternating-layered ansatz, and
the tensor-network-based ansatz (Cerezo et al. 2021b; Ran
2020). Note that QNNs with intermediate classical controls
such as QCNNs (Cong, Choi, and Lukin 2019) can also be
included in this general form theoretically.

Limitations of Local Unitary Optimization in
QNNs

We start by introducing a general setting of a QNN model
used throughout our analysis. A hybrid quantum-classical
framework in QML usually uses a classical optimizer to
train a QNN, denoted by U, with an input state ρ by min-
imizing a task-dependent cost function C, which is typically
chosen as the expectation value of some Hermitian operator
H:

CH,ρ(U) = tr(HUρU†). (1)
Note that other cost function forms can be regarded as com-
positions of observable expectations and some other classi-
cal post-processing functions. Here we focus on Eq. 1 for
simplicity. Divide the whole qubit system into two parts
A,B with m qubits and n − m qubits, respectively. Here
m is a fixed constant not scaling with n so that we call A
a local subsystem. The QNN U is often composed of local
unitaries on real devices, such as the single-qubit rotation
gates and the CNOT gate. We focus on a local unitary UA

within U acting on subsystem A. As shown in Figure 2, we
denote the sub-circuit of U before UA as V1 and that behind
UA as V2, such that U = V2(UA ⊗ IB)V1 where IB is the
identity operator on B. V1, V2 and UA are independent of
each other. We also remark that this circuit setting is suffi-
ciently general to cover common representative QNN mod-
els, e.g., the variational quantum eigensolver, the quantum
autoencoder, and the quantum state learning.

To characterize the training landscape beyond the limited
information of the vicinity from gradient analyses, we intro-
duce a central quantity throughout this work, i.e., the varia-
tion range of the cost function via varying a local unitary.

Definition 1 For a generic cost function CH,ρ(U) with a
QNN U in Eq. 1, we define its variation range with given

Figure 2: Partition of the QNN in our analysis. The QNN is
decomposed as U = V2(UA ⊗ IB)V1 with an input state ρ
and an observable H . A tunable local unitary UA is imple-
mented by some local quantum gates with the left and right
parts assembled as V1 and V2.

V1, V2 as

∆H,ρ(V1, V2) := max
UA

CH,ρ(U)−min
UA

CH,ρ(U), (2)

where the maximum and minimum with respect to UA are
taken over the unitary group U(2m) of degree 2m.

The quantity ∆H,ρ(V1, V2) intuitively reflects the maxi-
mal possible influence that the local unitary UA can have
on the cost function. We establish an upper bound on
∆H,ρ(V1, V2) in the sense of probability by Theorem 1,
which thus delivers a limitation on optimizing an arbitrary
local unitary. To be specific, we prove that if either V1, V2,
or both match the Haar distribution up to the second mo-
ment, i.e., are sampled from unitary 2-designs (Dankert et al.
2009), the expectation of ∆H,ρ(V1, V2) vanishes exponen-
tially in the number of qubits. See Appendix A for prelimi-
naries on unitary designs.

Theorem 1 Suppose V1,V2 are ensembles from which
V1, V2 are sampled, respectively. If either V1 or V2, or both
form unitary 2-designs, then for arbitrary H and ρ, the fol-
lowing inequality holds

EV1,V2 [∆H,ρ(V1, V2)] ≤
w(H)

2n/2−3m−2
, (3)

where EV1,V2
denotes the expectation over V1,V2 indepen-

dently. w(H) = λmax(H) − λmin(H) denotes the spectral
width of H , where λmax(H) is the maximum eigenvalue of
H and λmin(H) is the minimum.

Theorem 1 demonstrates that the maximal influence of a
local unitary within a random QNN on the cost function di-
minishes exponentially in the number of qubits, with a high
probability. This inherent locality of QNN poses an expo-
nential hardness of optimization in QNN training and we
would like to make several remarks to better reveal the un-
derlying implications of the theorem below. The main proof
idea of Theorem 1 is to calculate the expectation value over
V1,V2 separately. To tackle the maximization over UA, the
main technique is to employ Hölder’s inequality to extract
UA out and bound the remaining part with specific calcu-
lations of 2-design element-wise integrals. For the detailed
proof, we defer to Appendix B.
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Remark 1 Firstly, due to the non-negativity and bounded-
ness of the variation range, i.e., ∆H,ρ ∈ [0, w(H)], the vari-
ance of ∆H,ρ can be bounded by its expectation timesw(H).
Thus from Theorem 1 we know that the variance also van-
ishes exponentially:

VarV1,V2 [∆H,ρ(V1, V2)] ≤
w2(H)

2n/2−3m−2
. (4)

Note that w(H) ∈ O(poly(n)) holds for common VQAs.
Moreover, Theorem 1 together with Markov’s inequality
provides an exponentially small upper bound of the prob-
ability that ∆H,ρ(V1, V2) deviates from zero, i.e.,

Pr[∆H,ρ(V1, V2) ≥ ϵ] ≤ 1

ϵ
· w(H)

2n/2−3m−2
, ∀ϵ > 0. (5)

That is to say, the probability that ∆H,ρ is non-zero to some
fixed precision is exponentially small.

Remark 2 Secondly, we can even establish an exponen-
tially small bound using Theorem 1 for the case where UA

is a global unitary satisfying the parameter-shift rule (Guer-
reschi and Smelyanskiy 2017; Mitarai et al. 2018; Schuld
et al. 2018; Crooks 2019; Mari, Bromley, and Killoran
2021). Suppose UA = e−iθΩ with the Hermitian genera-
tor Ω satisfying Ω2 = I and tr Ω = 0. Then we have
e−iθΩ = I cos θ − iΩsin θ and hence the expectation value
w.r.t. a single parameter must be some triangle function, the
derivative of which can be exactly expressed as finite dif-
ference, satisfying the parameter-shift rule. The conditions
Ω2 = I and tr Ω = 0 imply that half of the eigenvalues of Ω
is 1, and the other half −1. Thus Ω has the same eigen spec-
trum with the local operator Z ⊗ I ⊗ · · · ⊗ I . there exists
a unitary W such that We−iθΩW † becomes a local unitary
acting on a single qubit non-trivially. W and W † could be
absorbed into the rest of the circuit withW †V1 or V2W still
forming 2-designs. Therefore, the proof for global unitaries
satisfying the parameter-shift rule can be reduced back to the
case of local unitaries. However, for the global unitary that
does not satisfy the parameter-shift rule, such as the con-
trolled Pauli rotation gates, this argument does not generally
hold.

Remark 3 Thirdly, it’s important to underscore that our the-
orem involves a scaling relationship of the gate locality m
with respect to the qubit count n. Our key emphasis lies
in the situation of the local gate where m does not scale
with n so that our theorem can give a non-trivial exponen-
tial upper bound. This is indeed a situation frequently en-
countered in practice like in variational quantum eigensolver
and quantum state learning, considering the fact that com-
mon elementary quantum gates available on digital quantum
computers (e.g., Pauli rotation gates and CNOT gates) are
inherently local. This aligns with the hardware constraints
and technological advancements shaping current quantum
devices. For global unitaries within an ansatz, e.g., QAOA,
which is beyond the scope of our theorem, we usually real-
ize it by correlating parameters among many local parame-
terized gates. This inspires us that one possible strategy to

escape from the vanishing variation range of the cost func-
tion is correlating parameters in multiple local gates.

Remark 4 Moreover, it is worth noticing that the compact
bound in Eq. 3 only involves the spectral width w(H) and
does not depend on any detail of the Hermitian operator H .
But if some specific structures about H are known, e.g., the
Pauli decomposition of H , a tighter bound could be derived
in Appendix B which depends on the coupling complexity
of H . In addition, if the cost function reduces to the form
of the fidelity between pure states, we could have a tighter
bound with scaling O(2−n) in Proposition 2. Theorem 1 can
be generalized to arbitrary dimensions besides qubit systems
of dimension 2n, e.g., qutrit and qudit systems. The detailed
proof is provided in Appendix B.

In fact, Theorem 1 has a natural physical interpretation:
the effect of a local operation on a physical observable will
vanish exponentially after a chaotic evolution. Remarkably,
the concept of local operations yielding minor global influ-
ences is a physically intuitive yet mathematically intricate
notion. For instance, even a single-qubit unitary is enough to
rotate an arbitrary n-qubit pure state to a new state with zero
fidelity with the original one, showcasing local operations
do make a great global influence. Hence, Theorem 1 may be
invaluable as a rigorous formulation of the aforementioned
argument within the domain of QNN training, elucidating
the locality of QNNs.

Unifying the Limitations on Training QNNs
Here we briefly demonstrate how Theorem 1 unifies the re-
strictions on gradient-based (McClean et al. 2018; Cerezo
and Coles 2021) and gradient-free optimizations (Arrasmith
et al. 2020, 2022) in a more natural manner, and indicates the
extra restrictions besides them on QNN training. In the fol-
lowing, we focus on a PQC applicable for Theorem 1 with
M trainable parameters {θµ}Mµ=1 and denote the variation
range of the cost function via varying θµ as ∆µ.

Consider the gradient-based optimization first. On the
one hand, in the case where the parameter-shift rule is
valid (Guerreschi and Smelyanskiy 2017; Mitarai et al.
2018; Schuld et al. 2018; Crooks 2019; Mari, Brom-
ley, and Killoran 2021), Theorem 1 can strictly deduce
vanishing gradients. Suppose {θµ}Mµ=1 are applicable for
the parameter-shift rule (e.g., hardware-efficient ansatzes).
Namely, θµ enters the unitary e−iθµΩµ within the circuit
where Ωµ is a Hermitian generator satisfying Ω2

µ = I . From
Theorem 1 we know that the expectation of ∆µ vanishes
exponentially. Therefore, the derivative ∂µC := ∂C

∂θµ
with

respect to θµ satisfies

E[|∂µC|] = E
[∣∣∣C (

θ +
π

4
eµ

)
− C

(
θ − π

4
eµ

)∣∣∣]
≤ E[∆µ] ∈ O(2−n/2),

(6)

where eµ is the unit vector in the parameter space corre-
sponding to θµ. From Markov’s inequality as in Eq. 5, we
know that the probability that the derivative ∂µC deviates
from zero by a small constant is exponentially small.
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Figure 3: Sketch of our results implying vanishing gradi-
ents. The left panel sketches the whole training landscape
with one of the parameters θµ as the x-axis, all of the other
parameters {θν}ν ̸=µ as the y-axis symbolically and the cost
function value C as the z-axis. The right panel depicts a typ-
ical sample of the z-x cross-section from the landscape on
the left with variation range ∆µ. Up to the linear approxi-
mation error, ∆µ serves as an upper bound for the absolute
derivative |∂µC| times the vicinity size 2ε.

On the other hand, even in the absence of the parameter-
shift rule, vanishing gradients could still be obtained approx-
imately by the following arguments. Consider the vicinity
of a random initialized parameter point where the linear ap-
proximation error is negligible, denoted as an ε-ball Bε of
radius ε (here ε plays the same role as the learning rate). As
shown in Figure 3, the linearity in Bε together with Theo-
rem 1 leads to

E [|∂µC|] ≤ E
[
∆µ

2ε

]
∈ O(2−n/2 1

ε
), (7)

up to the linear approximation error, where 1/ε is not an
essential factor since it reflects the frequencies of the land-
scape fluctuation rather than magnitudes, similar to the role
of the factor tr(V 2) in the expression of Var[∂µC] (Mc-
Clean et al. 2018).

For the gradient-free optimization based on the cost func-
tion difference between any two fixed parameter points θ′

and θ, Theorem 1 leads to

E [|C(θ′)− C(θ)|] ≤ E

[
M∑
µ=1

∣∣∣C (
θ(µ)

)
− C

(
θ(µ−1)

)∣∣∣]

≤
M∑
µ=1

E [|∆µ|] ∈ O(M2−n/2),

where θ(µ) = θ +
∑µ

ν=1 (θ
′
ν − θν) eν for µ = 1, ...,M

and θ(µ) = θ for µ = 0. Thus, as long as the number of
parameters satisfiesM ∈ O(poly(n)), the cost function dif-
ference between any two points vanishes exponentially with
a high probability, demanding an exponential precision to
make progress in the gradient-free optimization.

Furthermore, Theorem 1 goes beyond vanishing gradients
and vanishing differences between two fixed points. The ex-
ponentially vanishing quantity claimed by Theorem 1 is the
variation range of the cost function in the whole parameter
subspace corresponding to a local unitary, e.g., the subspace
of the 3 Euler angles in a single-qubit rotation gate from

Figure 4: Circuit setting of the quantum autoencoder. ρQR is
the given state to be compressed and σQ is the compressed
state through the encoder U. The quantum autoencoder aims
to train U such that ρQR can be reconstructed from σQ with
high fidelity through the decoder U† combined with an an-
cilla zero state |0⟩⟨0|R. σR denotes the state of the discarded
part after compression.

SU(2), or the subspace of the 15 parameters in a two-qubit
rotation gate from SU(4), etc. This gives constraints on mul-
tiple parameters at finite intervals simultaneously, instead of
a vicinity or two fixed parameter points.

Application on Representative QNN Models
To better illustrate the meaning of our findings in prac-
tice, we investigate the applications of Theorem 1 on three
representative QNN models, including the variational quan-
tum eigensolver (VQE), quantum autoencoder, and quantum
state learning. The corresponding numerical simulation re-
sults are summarized in Figure 5.

Application on VQE. The variational quantum eigen-
solver is the most famous implementation of a hybrid
quantum-classical algorithm with the goal of preparing the
ground state of a given Hamiltonian Ĥ of a physical sys-
tem (Peruzzo et al. 2014). The cost function is the energy
expectation with respect to an ansatz state U|0⟩, i.e.,

CVQE(U) = ⟨0|U†ĤU|0⟩. (8)

For most physical models with local interactions, the spec-
tral width is proportional to the system size, i.e., w(Ĥ) ∈
O(n). For common repeated-layer-type ansatzes, e.g., the
hardware-efficient ansatzes (Kandala et al. 2017), linear
depth O(n) is enough to make a randomly initialized cir-
cuit to be a sample from an approximate 2-design ensem-
ble (McClean et al. 2018; Harrow, Hassidim, and Lloyd
2009; Brandão, Harrow, and Horodecki 2016). Hence from
Theorem 1 we know that ∆VQE(V1, V2) vanishes exponen-
tially with a high probability for random circuits forming
2-designs. We conduct numerical simulations for the vari-
ation range of the VQE cost function ∆VQE using the 1-
dimensional spin-1/2 antiferromagnetic Heisenberg model:

Ĥ =
n∑

i=1

(XiXi+1 + YiYi+1 + ZiZi+1) , (9)

with periodic boundary condition, as shown in Figure 5(a).
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Application on Quantum Autoencoder. The quantum
autoencoder (QAE) is an approach for quantum data com-
pression (Romero, Olson, and Aspuru-Guzik 2017; Cao and
Wang 2021). As shown in Figure 4, a QNN U is trained
as an encoder to compress a given state ρQR on a bipartite
system QR into a reduced state σQ = trR(UρQRU

†) on
subsystem Q, such that ρQR can be reproduced from σQ by
the decoder isometry ⟨0|RU† with a high fidelity. Accord-
ing to the monotonicity of the fidelity under partial trace,
an easy-to-measure cost function could be reduced from the
fidelity between ρQR and the reconstructed state as

CQAE(U) := 1− tr
(
(|0⟩⟨0|R ⊗ IQ)UρQRU

†) , (10)

where the second term is exactly the fidelity between the
state of the discarded part σR = trQ(UρQRU

†) and the
zero state |0⟩R on subsystem R. The spectral width for
the QAE cost function in Eq. 10 is w(HQAE) = 1 with
HQAE = IQR − |0⟩⟨0|R ⊗ IQ. Thus again from Theorem 1
we know that ∆QAE(V1, V2) vanishes exponentially in the
number of qubits, specifically with the scaling O(2−n/2) as
shown in Figure 5(b).

Application on Quantum State Learning. The fidelity
between pure states is a special case of the cost function
in Eq. 1 with a low-rank observable. Many QML applica-
tions make use of fidelity as their cost functions (Lee, Lee,
and Bang 2018; Shirakawa, Ueda, and Yunoki 2021; Bravo-
Prieto et al. 2023). Here we uniformly call them quantum
state learning (QSL) tasks. Denote the input state as |ψ⟩ and
the target state as |ϕ⟩. The QSL cost function can be written
as

CQSL(U) = 1− |⟨ϕ|U|ψ⟩|2 . (11)

Theorem 1 can be applied here with HQSL = I − |ϕ⟩⟨ϕ| and
w(HQSL) = 1. Here a tighter bound for ∆QSL is provided in
Proposition 2, which generally holds for the Bures fidelity.
The proof of Proposition 2 is detailed in Appendix C.

Proposition 2 If either V1 or V2, or both form unitary 1-
designs, then for the variation range of the fidelity-type cost
function ∆QSL, the following inequality holds

EV1,V2
[∆QSL(V1, V2)] ≤

1

2n−2m
. (12)

Compared with Theorem 1, the bound O(2−n) becomes
tighter and the demanded randomness becomes weaker in
this special case. Notably, even a random circuit of constant
depth is enough to form a 1-design, which is much shallower
than 2-designs. Like in Eq. 4 and Eq. 5, the variance and the
probability that ∆QSL deviates from zero also vanish expo-
nentially, but only require random circuits forming unitary
1-designs. Moreover, still with 1-designs, Proposition 2 im-
plies exponentially vanishing cost gradients and cost differ-
ences in the same way as Theorem 1, which may be consid-
ered as the underlying mechanism behind the severe barren
plateaus for global cost functions even with shallow quan-
tum circuits (Cerezo et al. 2021b).

Numerical Simulations of Experiments
Previously, we have theoretically shown that with a high
probability, the maximal influence of a local unitary within
a random QNN on the cost function will vanish exponen-
tially in the number of qubits. We further demonstrate the
validity of our results with numerical simulations of experi-
ments on the three representative QNN models. All of these
experimental results show the exponentially vanishing vari-
ation range in the number of qubits, which is consistent with
Theorem 1 and Proposition 2.

Circuit Setting. Consider subsystem A only containing a
single qubit, namely m = 1, and parameterize the local uni-
tary UA ∈ U(2) with 3 Euler angles up to a global phase,
i.e., UA(ϕ, θ, α) = Rz(ϕ)Ry(θ)Rz(α), where Ry and Rz

are single-qubit rotation gates with generators being Y and
Z Pauli matrices. To construct random circuits forming 2-
designs as V1 or V2 used in the VQE and QAE examples, we
employ the following hardware-efficient ansatz as in (Mc-
Clean et al. 2018) for comparison.

Ry(
π
4 ) RP1,1

(θ1,1) • · · ·

Ry(
π
4 ) RP1,2(θ1,2) • • · · ·

Ry(
π
4 ) RP1,3

(θ1,3) • • · · ·
· · · · · · · · · · · ·

Ry(
π
4 ) RP1,n

(θ1,n) • · · ·
×10n

(13)

A single layer ofRy(π/4) = exp(−iY π/8) gates are laid at
the very beginning of the circuit to make the three rotation
axes have equal status, then followed by 10 × n repeated
layers. Each layer consists of n single-qubit rotation gates
RP (θ) on each qubit together with n − 1 controlled phase
gates between nearest neighboring qubits aligned as a 1-
dimensional array, where the rotation axes P ∈ {x, y, z} is
chosen with uniform probability and θ ∈ [0, 2π) is also cho-
sen uniformly. A such random circuit with O(n) repeated
layers could be considered as an approximate 2-design (here
we employ 10 × n) (McClean et al. 2018; Harrow, Has-
sidim, and Lloyd 2009; Brandão, Harrow, and Horodecki
2016). Experimental results with different numbers of lay-
ers are also presented in Appendix D to show how the ex-
pectation of the cost variation range ∆H,ρ vanishes with
the circuit depth. To construct random circuits forming 1-
designs used in the QSL example, we just replace the re-
peated layers above with a single layer of SU(2) elements
Rz(ϕ)Ry(θ)Rz(α) on each qubit with ϕ, θ, α ∈ [0, 2π) are
chosen with uniform probability.

Implementation Details. To compute maxUA
C and

minUA
C in the definition of ∆H,ρ(V1, V2) with respect to

UA, we employ the Adam optimizer to update UA iteratively
until convergence for each of the 100 samples of V1, V2. We
consider the converged value as a good estimation with a
tolerable error at least for circuits with a small number of
qubits (≤ 10) and a modest depth (≤ 10 × n). We repeat
this procedure for different numbers of qubits and different
statistics of V1 and V2, i.e., V1 or V2 being a 2-design (1-
design) while the other being identity.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16746



Figure 5: Exponentially vanishing variation range of the cost function via varying a local unitary. The data points represent the
sample averages of the cost variation range ∆H,ρ via varying a single-qubit unitary over the spectral width w(H) as a function
of the number of qubits on semi-log plots. Panel (a) and (b) correspond to the VQE with the 1-dimensional Heisenberg model
and the quantum autoencoder with one qubit discarded, respectively, where the error bars represent the standard deviations
over samples. Panel (c) corresponds to the quantum state learning with the cost function being the fidelity with the zero state.
Different legends stand for V1, V2 or both being approximate 2-designs in (a), (b) and 1-designs in (c). The dashed lines depict
our theoretical upper bounds for the three tasks where the scaling exponents show a good coincidence with the experimental
results.

Numerical Results. We summarize the simulation results
of the three examples in Figure 5. The slopes of the lines
imply the rates of exponential decay. The data points repre-
sent the sample averages of the cost variation range ∆H,ρ via
varyingUA overw(H), and the error bars represent the stan-
dard deviations over samples. We specially rescale the error
bar in the QSL example as a quarter of the standard devia-
tion for better presentation on semi-log plots. One can see
that in all the cases, the expectations of ∆H,ρ(V1, V2) van-
ish exponentially in the number of qubits. The data lines are
almost parallel to the dashed lines depicting the theoretical
upper bounds. That is to say, the scaling behaviors almost
coincide with the predictions from Theorem 1 and Propo-
sition 2. These results suggest that while optimizing a lo-
cal unitary within a random QNN, the cost function exhibits
fluctuations within an exponentially small range relative to
the number of qubits. It is this phenomenon that elucidates
the vanishing gradient issue and contributes to the exponen-
tial difficulty of training as the QNN scales up. A detailed
derivation can be found in Appendix B for the tighter task-
dependent upper bounds used in Figure 5(a) and (b).

Conclusion
We have shown that the maximal possible influence of a lo-
cal unitary within a QNN on the cost function vanishes ex-
ponentially in the number of qubits with a high probabil-
ity. This finding unveils the exponential hardness associated
with training QNNs as they scale up. The randomness re-
quired is just a 2-design for the generic cost function and a
1-design for the fidelity-type cost function, in spite that the
integrand ∆H,ρ(V1, V2) is not necessarily a polynomial of
degree at most 2 or 1 in the entries of V1 and V2. We re-
mark that a 2-design circuit can be achieved approximately
by only O(n) depth (McClean et al. 2018; Harrow, Has-
sidim, and Lloyd 2009; Brandão, Harrow, and Horodecki

2016) for common repeated-layer-type ansatzes, e.g., the
hardware-efficient ansatzes (Kandala et al. 2017), and a 1-
design circuit can be achieved more easily by only O(1)
depth.

From the perspective of quantum information theory, our
results can be regarded as a basic property of random quan-
tum circuits. That is, a local unitary within a random circuit
of polynomial depth has an exponentially small impact on
the expectation of physical observables, which is expected
to have potential applications in other areas involving ran-
dom quantum circuits.

For the training of QNN, our results unify the restrictions
on gradient-based and gradient-free optimizations in a natu-
ral way and hence can be regarded as the underlying mech-
anism behind the barren plateau phenomenon. Therefore, a
fundamental limitation is unraveled in training QNNs, which
can serve as a guide for designing better training strategies
to improve the scalability of QNNs. A direct consequence is
that the gate-by-gate optimization strategy (Nakanishi, Fu-
jii, and Todo 2019; Ostaszewski, Grant, and Benedetti 2019)
is ineffective no matter what optimizers are utilized. Repa-
rameterization within local unitaries is also unhelpful. For
future research, it will be of great interest to explore po-
tential solutions via proper initialization (Grant et al. 2019),
pre-training including adaptive methods (Verdon et al. 2019;
Grimsley et al. 2019; Zhang et al. 2021; Skolik et al. 2021;
Grimsley et al. 2023), circuit architectures (Pesah et al.
2021; Liu et al. 2022) and cost function choices (Cerezo
et al. 2021b; Kieferova, Carlos, and Wiebe 2021).
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