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Abstract

Equipping a deep model the ability of few-shot learning
(FSL) is a core challenge for artificial intelligence. Gradient-
based meta-learning effectively addresses the challenge by
learning how to learn novel tasks. Its key idea is learning
a deep model in a bi-level optimization manner, where the
outer-loop process learns a shared gradient descent algorithm
(called meta-optimizer), while the inner-loop process lever-
ages it to optimize a task-specific base learner with few ex-
amples. Although these methods have shown superior per-
formance on FSL, the outer-loop process requires calculating
second-order derivatives along the inner-loop path, which im-
poses considerable memory burdens and the risk of vanishing
gradients. This degrades meta-learning performance. Inspired
by recent diffusion models, we find that the inner-loop gradi-
ent descent process can be viewed as a reverse process (i.e.,
denoising) of diffusion where the target of denoising is the
weight of base learner but origin data. Based on this fact, we
propose to model the gradient descent algorithm as a diffu-
sion model and then present a novel conditional diffusion-
based meta-learning, called MetaDiff, that effectively mod-
els the optimization process of base learner weights from
Gaussian initialization to target weights in a denoising man-
ner. Thanks to the training efficiency of diffusion models, our
MetaDiff does not need to differentiate through the inner-loop
path such that the memory burdens and the risk of vanishing
gradients can be effectively alleviated for improving FSL. Ex-
perimental results show that our MetaDiff outperforms state-
of-the-art gradient-based meta-learning family on FSL tasks.

1 Introduction
With a large number of labeled data, deep learning tech-
niques have shown superior performance and made break-
through on various tasks. However, collecting such much
data may be impractical or very difficult on some applica-
tions such as drug screening (Altae-Tran et al. 2017) and
cold-start recommendation (Vartak et al. 2017). Inspired by
the fast learning abaility of humans, i.e., humans can quickly
learn a new concept or task from only very few examples,
few-shot learning (FSL) has been proposed and has gained
wide attention. It aims to learn transferable knowledge from
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Figure 1: Connection between gradient descent algorithm
(GDA) and diffusion models. The gradient descent process
(a) of GDA is similar to denoising process (b) of diffusion
models. Based on this, we propose to model GDA as the de-
noising process of a diffusion model (c) and learn it in a dif-
fusion manner, which does not need to differentiate through
inner-loop path such that the issue of memory burdens and
vanishing gradients can be alleviated for improving FSL.

data-ubundant base classes and then assist novel class pre-
diction with few labeled examples (Wang et al. 2020).

To address this FSL problem, meta-learning (Rusu et al.
2018) has been proposed, which constructs a large number
of base tasks from these base classes and then leverages it
to learn task-agnostic meta knowledge for assisting novel
class learning. Among these methods, gradient-based meta-
learning methods are gaining increased attention, with its
potential on generalization. This type of methods aims to
learn a sample-efficient gradient descent algorithm (called
meta-optimizer) by directly modeling its initialization (Finn
et al. 2017), learning rate (Baik et al. 2020), or update
rule (Ravi and Larochelle 2017) as a shared meta param-
eter and then learning it in a bi-level (i.e., outer-loop and
inner-loop) optimization manner. Here, the outer-loop pro-
cess accounts for learning a task-agnostic meta parameter
for meta-optimizer, while the inner-loop process leverages
the meta-optimizer to learn a task-specific base learner with
few gradient updates. Although these methods have shown
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superior performance, the outer-loop process requires back-
propagation along inner-loop optimization path and calcu-
lating second-order derivatives for learning meta-optimizer
such that the significant memory overhead and risk of van-
ishing gradient is imposed during training (Rajeswaran et al.
2019). This degrades meta-learning performance (Nichol,
Achiam, and Schulman 2018). Some works attempt to ad-
dress this issue but from the perspective of gradient approx-
imate estimations (Rajeswaran et al. 2019; Nichol, Achiam,
and Schulman 2018), which would introduce an estimation
error into the gradient (i.e., meta-gradient) for outer-loop op-
timization, and hamper its generalization ability.

Inspired by recent diffusion models (Ho, Jain, and Abbeel
2020), we also focus on gradient-based meta-learning with
its good generalization but present a new diffusion perspec-
tive to model gradient descent algorithm. It does not need to
differentiate through inner-loop, such that the above issues
of memory burden and vanishing gradients can be allevi-
ated for improving meta-learning. Specifically, as shown in
Figures 1(a) and 1(b), we find that 1) the optimizaton pro-
cess of gradient descent algorithm (see Figure 1(a)) is very
similar to the denoising process of diffusion models from a
Gaussion noise to a target variable (see Figure 1(b)). The key
difference is that the denoising variable is model weight in
gradient descent algorithm but origin image data in diffusion
models; And 2) the latter is actually a generalized and learn-
able version of the former with weight momentum update
and uncertainty estimation (see Section 4.1). In other words,
the optimization process of gradient descent algorithm can
be described as: given a randomly initial weight, the target
weight is finally obtained by gradually removing its noise.

Based on this fact, we propose a novel meta-learning with
conditional diffusion, called MetaDiff. As shown in Fig-
ure 1(c), our idea is regarding the weight of base learner
as a denoising variable, and then modeling the gradient de-
scent algorithm as a diffusion model and learning it in a
diffusion manner. Its key challenge of achieveing the above
idea is how to predict the diffused noise of model weights at
each time step t with few labeled samples for a base learner.
To address this challenge, we take few labeled samples as
the condition of diffusion models and carefully design a
gradient-based task-conditional UNet for noise prediction.
Different from previous gradient-based meta-learning meth-
ods that learn the meta-optimizer in a bi-level optimization
manner, our MetaDiff learns it in a diffusion manner. Thanks
to its training efficiency and robustness, more superior meta-
learning performance can be achieved for improving FSL.

Our main contributions can be summarized as follows:

• We are the first to reveal the close connection between
gradient descent algorithm and diffusion models. From
workflow, we find that the optimization process of gradi-
ent descent algorithm is very similar to the denoising pro-
cess of diffusion models. After theoretical analysis, the
denoising process of diffusion models is actually a gen-
eralized and learnable gradient descent algorithm with
weight momentum updates and uncertainty estimation.

• Based on this fact, we propose a novel diffusion-based
meta-learning for FSL. In particular, a gradient-based

conditional UNet is designed as our meta-learner for
noise prediction. Thanks to diffusion training efficiency,
the issue of memory burden and vanishing gradients can
be effectively alleviated for improving meta-learning.
• We conduct comprehensive experiments on two public

data sets, which verify the effectivenss of our MetaDiff.

2 Related Work
2.1 Meta-Learning
Few-shot learning (FSL) is a challenging task, which aims
to recognize novel classes with few examples (Chen et al.
2021, 2019). To address this problem, meta-learning is pro-
posed, which aims to learn to quickly learn novel tasks with
few examples (Flennerhag et al. 2019; Zhu and Koniusz
2023). The core idea is learning task-agnostic meta knowl-
edge from a large number of similar tasks and then leverag-
ing it to assist the learning of novel tasks. From the type
of meta-knowledge, these existing meta-learning methods
can be roughly grouped into three groups. The metric-based
methods (Snell et al. 2017; Vinyals et al. 2016; Zhang et al.
2021a, 2022a,c,b, 2023a) regard the metric space or met-
ric strategy as meta knowledge and perform the novel class
prediction in a nearest-prototype manner. The model-based
methods (Hou et al. 2019; Zhmoginov, Sandler, and Vla-
dymyrov 2022; Li et al. 2019) regard a black-box model as
meta knowledge, which leverages it and few data to directly
predict model weights or test sample labels. The gradient-
based methods (Rusu et al. 2018; Lee et al. 2019; Ra-
jeswaran et al. 2019; Nichol, Achiam, and Schulman 2018;
Von Oswald et al. 2021; Raghu et al. 2020; Zhang et al.
2023b) regard the gradient-based optimization algorithm as
meta knowledge, which learn to model its hyperparameters
(i.e., learning rate (Baik et al. 2020), loss function (Baik
et al. 2021), initialization (Finn et al. 2017), preconditioner
(Kang et al. 2023), or updata rules (Deleu et al. 2022; Ravi
and Larochelle 2017)) such that the base learner can be
quickly learned with few gradient updates.

We focus on the gradient-based meta-learning due its
good generalization. However, different from existing meth-
ods, we presents a new diffusion perspective to model meta-
optimizer, which does not need to differentiate through
inner-loop path such that the issues of memory burdens and
vanishing gradients can be alleviated for improving FSL.

2.2 Diffusion Models
Diffusion model (Ho, Jain, and Abbeel 2020; Nichol and
Dhariwal 2021) is a popular type of deep generative mod-
els, which models and learns the generation process of tar-
get data from random Gaussion noises in a forward diffu-
sion and reverse denoising manner. With the superior prop-
erties of diffusion models, the diffusion models have been
widely exploited on various vision (Lugmayr et al. 2022)
and multi-modal tasks (Rombach et al. 2022; Kawar et al.
2023; Kumari et al. 2023) and achieved remarkable perfor-
mance improvement. However, there is very few works (i.e.,
(Roy et al. 2022) and (Hu et al. 2023)) to explore diffusion
models for FSL. Specifically, in (Roy et al. 2022), Roy et
al. introduce class names as priors and then leverage it and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16688



a text2image diffusion model to generate more images for
alleviating the data-scarcity issue of FSL. Instead of using
text2image diffusion models, Hu et al. (Hu et al. 2023) em-
ploy a image2image diffusion model and leverage it to gen-
erate more high-similarity pseudo-data for improving FSL.

Different from existing methods that regarding the diffu-
sion model as a component of data augmentation, we find
that the gradient descent process is similar to the denoising
process, thus we propose to model the gradient descent algo-
rithm as a diffusion model. We note that a concurrent work-
ing with our MetaDiff is ProtoDiff (Du et al. 2023). How-
ever, different from ProtoDiff that focuses on metric-based
meta-learning (i.e., rectifying prototype bias), we target at
gradient-based meta-learning, and first reveal the close con-
nections between gradient descent algorithm and diffusion
models. Then, a new diffusion-based meta-optimizer is pre-
sented for fast adaptation of base-learner.

3 Problem Definition and Preliminaries

3.1 Problem Definition

For a N -way K-shot FSL problem, it consists of two
datasets, i.e., a base class dataset Dbase and a novel class
dataset Dnovel. The base class dataset Dbase consists of
abundant labeled data from base class Cbase, which is used
for assisting the classifier learning of novel classes. The
novel class dataset Dnovel contains two sub datasets from
novel classes Cnovel, i.e., a training set (call support set S)
that consists ofN classes andK samples per class and a test
set (call query set Q) consisting of unlabeled samples.

Our goal is that leveraging the base class dataset Dbase to
learn a good meta-optimizer such that the classifier can be
quickly learned from few labeled data (i.e., the support set
S) to perform the novel class prediction for query set Q.

3.2 Preliminaries

Diffusion Models. Diffusion models aim to model a prob-
ability transformation from a prior Gaussian distribution
pprior ∈ N (0, I) to a target distribution ptarget. It consists
of two processes, i.e., a diffusion (also called forward) pro-
cess and a denoising (also called reverse) process.

1) The diffusion process aims to iteratively add a noise
from a Gaussian distribution to a target data x0 ∼ ptarget
to transform x0 into x1, x2, ..., xT . The final xT tends to be-
come a sample point from the prior distribution pprior ∈
N (0, I) when the number of iterations T tends to big
enough. The diffusion process aims to learn a noise predic-
tion model εθ(xt, t) for estimating the added noise at time
t− 1 from xt, which is then used to recovery the target data
in denoising process. The training object L is as follows:

L = Ex0∼ptarget,ε∼N (0,I),t[‖ε− εθ(xt, t)‖22], (1)

where ‖ · ‖22 denotes a mean squared error loss. It is worth
noting that the above training object defined in Eq. (1) can be
performed at any time step t without the iterations of adding

noise due to its good closed form at any time step t. That is,

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I),

αt = 1− βt, αt =
t∏

s=1

αt,
(2)

where βt ∈ (0, 1) is a variance hyperparameter.
2) The denoising process is reverse process of diffusion.

Based on the learned noise prediction model εθ(xt, t), given
a start noise xT ∼ pprior, we can iteratively remove its frac-
tion of noises at each time t and finally recovery the target
data x0 from the noisy data xT ∼ N (0, I). That is,

xt−1 =
1
√
αt

(xt−
βt√

(1− αt)
εθ(xt, t)) + σtz, z ∼ N (0, I).

(3)
where σt is a variance hyperparameter, which is theoreti-
cally set to σ2

t = βt in most existing diffusion works (Ho,
Jain, and Abbeel 2020; Nichol and Dhariwal 2021).
Gradient Descent Algorithm (GDA). GDA is a family
of optimization algorithm, which aims to optimize model
weights by following the opposite direction of gradient. For-
mally, let w denotes the weights of a base learner gw(·) and
L(w) be its differentiable loss function, and ∇L(w) be its
weight gradient, during performing gradient descent algo-
rithm. The overall optimization process of GDA can be sum-
maried as iteratively performing Eq. (4), that is,

wt+1 = wt − η(∇L(wt)), t = 0, 1, , , T − 1. (4)

where w0 is an initial weight, i.e., a Gaussian noise in origin
gradient descent algorithm; and η denotes a learning rate.
Due to the data scarcity issue in FSL, directly employing
the Eq. (4) to learn a base learner gw(·) would result in an
overfitting issue. To address this issue, gradient-based meta-
learning attempts to learn a GDA in a bi-level optimization
(i.e., outer-loop and inner-loop) manner by modeling its hy-
perparameters (e.g., initial weight w0 or learning rate η) as
meta-knowledge for improving FSL. However, some stud-
ies (Rajeswaran et al. 2019) show the outer-loop process re-
quires backpropagation along inner-loop optimization path
such that the risk of vanishing gradient is imposed, which
degrades meta-learning performance. In this paper, we pro-
pose a diffusion perspective to address this issue.

4 Methodology
4.1 Connection: Diffusion Models vs GDA
As introduced in Section 3.2, we can describe the process of
denoising and gradient descent process as follows: 1) given
a noise data xT , the denoising process iteratively performs
Eq. (3) to obtain a latent sequence xT−1, xT−2, ..., x0. As a
result, a target data x0 can be recoveried from a Gaussian
noise xT ; and 2) given a randomly initial wight w0, the gra-
dient descent process of GDA iteratively performs Eq. (4) to
a latent sequence w1, w2, ..., wT . As a result, an optimizal
weight wT can be obtained from a random weight w0. We
can see that the denoising process of diffusion models and
gradient descent process of GDA are very similar in work-
flow. This inspires us to think about what is the close connec-
tion between the two methods in theory. Let’s take a closer
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Figure 2: (a) The overall framework of our MetaDiff-based FSL method. (b) Illustration of our MetaDiff meta-optimizer εθ(·).

look on Eqs. (3) and (4), Eq. (3) first can be simplifed as:

xt−1 =
1
√
αt︸︷︷︸

Term1

xt−
βt

√
αt
√
(1− αt)︸ ︷︷ ︸

Term2

εθ(xt, t) + σt︸︷︷︸
Term3

z,

z ∼N (0, I).
(5)

Let γ denotes the Term 1, η be the Term 2, ξ be the Term 3
of Eq. (5), respectively. The Eq. (5) can be simplifed as:

xt−1 = γxt − ηεθ(xt, t) + ξz, z ∼ N (0, I). (6)

Due to γ > 1 (αt < 1), we can transform Eq. (6) as follows:

xt−1 = xt − ηεθ(xt, t)︸ ︷︷ ︸
Term1

+ (γ − 1)xt︸ ︷︷ ︸
Term2

+ ξz︸︷︷︸
Term3

,

z ∼ N (0, I).

(7)

where Term1 is denoising term, Term2 denotes a momen-
tum update term with hyperparameter γ − 1 (also called ex-
ponentially weighted moving average), and Term3 is a un-
certain term. Comparing Eqs. (4) and (7), we can see that the
gradient decent process defined in Eq. (4) is equivalent to the
Term1 of Eq. (7), which means that Eq. (4) is a special case
of denoising process described in Eq. (7) when the γ is set to
one (i.e., γ = 1), the η is regarded as a hyperparameter, and
the ξ is set to zero. In particular, it is worth noting that the
predicted variable of noise prediction model εθ(xt, t) is ac-
tually the gradient (i.e., ∇L(w)) of model weights. In other
words, the denosing process defined in Eq.(7) can be viewed
as a generalized and learnable gradient descent algorithm
defined in Eq.(4), i.e., a learnable gradent descent algorithm
with weight momentum updates and uncertainty estimation
where γ controls the weight of momentum updates, η is a
learning rate, and ξ is the degree of uncertainty.

Why set parameters (γ, η, and ξ) by following Eq. 5?
Instead of using manual setting or model learning man-
ner like existing meta-optimizers to set hyperparameters γ,
η, and ξ, respectively, the diffusion models unify the pa-
rameter settings by theoretical deduction, i.e., γ = 1√

αt
,

η = βt√
αt

√
(1−αt)

, and ξ = σt where αt = 1− βt, σ2
t = βt,

and βt is experimentally set in linear decreasing manner

from a small value (e.g., 10−4) to a large value (e.g., 0.02).
The goal of such setting is to ensure that denoising and diffu-
sion processes have approximately the same functional form
and the efficiency and robustness of diffusion training (i.e.,
the training objective defined in Eq. (1) can be performed at
any time step t without the iterations from t = 0 to t).

4.2 Meta-Learning with Conditional Diffusion
Inspired by the above analysis, we find that the diffusion
model is a generalized and learnable form of GDA and
its hyperparameter setting have rigorous theoretical deriva-
tion, which enables its inspiring advantage (i.e., generation
robustness and training efficiency). Based on this, we at-
tempt to leverage a diffusion model to model GDA and then
present a new meta-optimizer, i.e., MetaDiff, for fast adapta-
tion of base-learner. It does not need to differentiate through
inner-loop path, such that the memory burden and risk of
vanishing gradients can be alleviated for improving FSL.
Overall Framework. The overall framework of our MetaD-
iff on FSL is presented in Figure 2(a), which consists of an
embedding network fϕ(·) with parameters ϕ, a base learner
gw(·) with parameters w, and a MetaDiff meta-optimizer
εθ(·) with meta parameters θ. Here, the embedding network
fϕ(·) aims to encode each support/query image as a d-dim
feature vector. Inspired by prior meta-learning works (Deleu
et al. 2022; Lee et al. 2019), we assume that the embed-
ding network fϕ(·) is shared across tasks, which can be ob-
tained by using a simple pretraining manner on entire base
class classification task (Chen et al. 2021, 2019). The base
learner gw(·) is a simple linear or prototype classifer (the
prototype classifer is used in this paper due it good perfor-
mance), which is a task-specific and needs to be adapted
starting at some Gaussian initialization wT . The MetaDiff
εθ(·) is a meta-optimizer, which takes the features and la-
bels of all support samples (ui, yi) ∈ S as inputs and then
learns a target weights w0 for base learner gw(·) from initial
weights wT in a denoising manner (see Figure 2(b)).

Specifically, given a N -way K-shot FSL task, we first
leverage the embedding network fϕ(·) to encode the fea-
ture fϕ(ui) for each support/query image ui ∈ S∪Q. Then,
we randomly initialize a weight wT ∼ N(0, I) for the base
learner gw(·), and design a task-conditional UNet (i.e., the
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noise prediction model εθ(·)) that regards the features and
labels of all support sample (ui, yi) ∈ S as task condition,
to estimate the noise to be removed at time t. After that, we
take the weight wT as the denoising variable and iteratively
perform the denoising process from t = T to t = 1, that is,

wt−1 =
1
√
αt

(wt−
βt√

(1− αt)
εθ(wt,S, t)). (8)

Note that we remove the uncertainty term (i.e., σtz) for de-
terministic estimation during inference. After iteratively per-
form T step, the target weight w0 can be obtained as the op-
timal weight w for base learner gw(·). Finally, we perform
class prediction of each query image ui ∈ Q by using the
learned optimal base learner gw(·). That is,

ŷ = gw(fϕ(ui)), w = w0, ui ∈ Q. (9)

Here, we only introduce the inference workflow of our
MetaDiff-based FSL framework, which is summaried in Al-
gorithm 2. Next, we will introduce the design details of our
key component, i.e., the task-conditional UNet εθ(·).
Task-Conditional UNet (TCUNet). The task-conditional
UNet (TCUNet) εθ(·) is the key component in our MetaD-
iff meta-optimizer, which takes the features and labels of all
support samples (ui, yi) ∈ S , time step t, and the weight wt
of base learner as inputs. It aims to estimate the noise to be
remove for the weight wt of base learner at each time step
t. We attempt to use a general conditional UNet like (Rom-
bach et al. 2022) for implementing TCUNet εθ(·). However,
we find that such general conditional UNet does not work in
our MetaDiff, which inspires us to think deeply the rationale
of the noise prediction model εθ(·) in our MetaDiff meta-
optimizer. As analyzed in Section 4.1, we can see that the
goal of noise prediction model εθ(·) is actually equivalent to
predict gradient in meta-optimizer (see Eqs. (4) and (7)).

Based on this find, as shown in Figure 3, we design a
task-conditional UNet from the perspective of gradient es-
timation as the noise prediction model εθ(·). The key idea is
predicting noise from the view of gradient estimation instead
of a general black-box manner like (Rombach et al. 2022).
Specifically, given a base learner weight wt at time t and all
features and labels of support samples (ui, yi) ∈ S , we first

Algorithm 1: Training
1: repeat
2: Sampling a task τ = (S,Dτbase) from datasets Dbase
3: Estimatingw0 by training gw(·) on auxiliary datasetsDτbase
4: Sampling time t ∼ Uniform({1, . . . , T})
5: Sampling ε ∼ N (0, I)
6: Take gradient descent on∇θ‖ε− εθ(wt,S, t)‖22, i.e., Eq. 12
7: until converged

Algorithm 2: Inference

1: Given a N -way K-shot task τ = (S,Q) from novel classes
2: Sampling a random weight wT ∼ N (0, I)
3: for t = T, . . . , 1 do
4: Performing Eq. 8 wt−1 = 1√

αt
(wt − βt√

(1−αt)
εθ(wt,S, t))

5: end for
6: Performing class prediction of query samples by Eq. 9

leverage the base learner gwt(·) with model weights wt to
compute the loss Lwt(S) of of all support samples. That is,

Lwt
(S) = 1

|S|
∑

(ui,yi)∈S

loss fun(gwt
(fφ(ui)), yi). (10)

where | · | is the number of support samples and loss fun(·)
is a loss function. Instead of cross-entropy loss, we employ
a simple L2 loss to implement the loss fun(·), that is,

Lwt
(S) = 1

|S|
∑

(ui,yi)∈S

‖wt,yi − fφ(ui)‖22, (11)

where wt,yi ∈ wt is the class prototype of label yi. The in-
tuition of such design is moving the class prototype towards
the center of all labeled sample for each class yi, which is
more matching for the rationale of prototype classifier. Then,
the gradient∇Lwt(S) regarding weights wt can be obtained
as the initial noise estimation for the base learner gwt(·) at
time t. To obtain more accuracy noise estimation, we take
the initial noise estimation ∇Lwt

(S) as inputs and then de-
sign a conditional UNet fusing time embedding t to predict
the noise to be remove at time t for base learner gw(·).

As shown in Figure 3, the UNet consists of two encoder
blocks (EB), a bottle block (BB) and two decoder blocks
(DB). At each encoder step, we halve the number of input
features and then remain unchanged at bottle step, but the
number of features is doubled at each decoder step. The de-
tails of each encoder, bottle, decoder block are all similar,
which contains a feature transform layer, a time embedding
layer, and a ReLU activation layer. Note that we remove the
ReLU activation layer in the final decoder block for esti-
mating gradients. At each block, its output is obtained by
first feeding the output of previous block and time step t
into the feature transform and time embedding layers, re-
spectively, and then fusing them in an element-by-element
product manner, finally followed by a softplus activation.
Meta-Learning Objective. Different from previous gradi-
ent based meta-learning methods that learn a meta-optimizer
in a bi-level optimization manner, as shown in Figure 2(b),
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Method Adaptation Type Backbone miniImagenet tieredImagenet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

iMAML(Rajeswaran et al. 2019) All Conv4 49.30± 1.88% 59.77± 0.73% 38.54± 1.37% 60.24± 0.76%
ALFA (Baik et al. 2020) All Conv4 50.58± 0.51% 69.12± 0.47% 53.16± 0.49% 70.54± 0.46%
MeTAL (Baik et al. 2021) All Conv4 52.63± 0.37% 70.52± 0.29% 54.34± 0.31% 70.40± 0.21%
GAP (Kang et al. 2023) All Conv4 54.86± 0.85% 71.55± 0.61% 57.60± 0.93% 74.90± 0.68%
ANIL (Raghu et al. 2020) only CH Conv4 46.30± 0.40% 61.00± 0.60% 49.35± 0.26% 65.82± 0.12%
COMLN (Deleu et al. 2022) only CH Conv4 53.01± 0.62% 70.54± 0.54% 54.30± 0.69% 71.35± 0.57%
MetaQDA (Zhang et al. 2021b) only CH Conv4 56.41± 0.80% 72.64± 0.62% 58.11± 0.48% 74.28± 0.73%
MetaDiff (ours) only CH Conv4 55.06 ± 0.81% 73.18 ± 0.64% 57.77 ± 0.90% 75.46 ± 0.69%
ALFA (Baik et al. 2020) All ResNet12 59.74± 0.49% 77.96± 0.41% 64.62± 0.49% 82.48± 0.38%
ANIL(Raghu et al. 2020) only CH ResNet12 49.65± 0.65% 59.51± 0.56% 54.77± 0.76% 69.28± 0.67%
COMLN (Deleu et al. 2022) only CH ResNet12 59.26 ± 0.65% 77.26 ± 0.49% 62.93 ± 0.71% 81.13 ± 0.53%
ClassifierBaseline (Chen et al. 2021) only CH ResNet12 61.22 ± 0.84% 78.72 ± 0.60% 69.71 ± 0.88% 83.87 ± 0.64%
MetaQDA (Zhang et al. 2021b) only CH ResNet18 65.12 ± 0.66% 80.98 ± 0.75% 69.97 ± 0.52% 85.51 ± 0.58%
MetaDiff (ours) only CH ResNet12 64.99 ± 0.77% 81.21 ± 0.56% 72.33 ± 0.92% 86.31 ± 0.62%

Table 1: Experiment results on ImageNet derivatives. The best results are highlighted in bold. “CH” denotes classification head.

we employ a diffusion process to train our MetaDiff. How-
ever, unlike existing diffusion models (Ho, Jain, and Abbeel
2020) where the target data x0 is known (i.e., origin images),
the target variable of our MetaDiff is model weight (i.e., w0)
of base learner gw(·) which is unknown. Thus, a key chal-
lenge of training our MetaDiff is how to obtain a large num-
ber of target weight w0 for base learner gw(·).

To this end, we follow episodic training strategy (Vinyals
et al. 2016) and construct a large number of N -way K-
shot tasks from base class dataset Dbase. Then, given a con-
structed N -way K-shot tasks τ , based on its origin label k′
of each class k = 0, 1, .., N − 1 in the base classes Cbase,
we extract all samples that belongs to the origin label k′ of
each class k = 0, 1, .., N − 1 from the base class dataset
Dbase, as the auxiliary dataset Dτbase. The labeled data is
very sufficient in the auxiliary dataset Dτbase because it con-
tains all labeled data belonging to class k′ in Dbase, thus we
can leverage it to learn a base learner gw(·) such that the tar-
get weight w0 can be obtained for each task τ . Finally, we
leverage the target weight w0 of all constructed tasks to train
our MetaDiff meta-optimizer in a diffusion manner. That is,

min
θ

E(S,w0)∼T,ε∼N (0,I),t∼[1,T ]‖ε− εθ(wt,S, t)‖22. (12)

During training, our MetaDiff does not require backprop-
agation along the inner-loop optimization path and calcu-
lating second-order derivatives for learning meta-optimizer
such that the memory overhead and the risk of vanishing gra-
dient can be effectively alleviated for improving FSL. The
complete diffusion procedure is summaried in Algorithm 1.

5 Experiments
5.1 Datasets and Settings
MiniImagenet. It is a subset from ImageNet, which con-
tains 100 classes and 600 images per class. Following (Lee
et al. 2019), we split it into three sets, i.e., 64, 16, and 20
classes for training, validation, and test, respectively.
TieredImagenet. It is also a ImageNet subset but larger,
which has 608 classes and 1200 images per class. Follow-
ing (Lee et al. 2019), it is splited into 20, 6, and 8 high-level
classes for training, validation, and test, respectively.

Method 5-way 1-shot 5-way 5-shot
(i) Baseline (+GDA) 60.53 ± 0.86% 72.43± 0.66%
(ii) + Momentum GDA 62.03 ± 0.82% 78.28 ± 0.56%
(iii) + ANIL 60.77 ± 0.82% 77.34 ± 0.64%
(iv) + MetaLSTM 63.56 ± 0.81% 79.90 ± 0.59%
(v) + ALFA 63.92 ± 0.82% 80.01 ± 0.61%
(vi) + Our MetaDiff 64.99 ± 0.77% 81.21± 0.56%

Table 2: Analysis of our MetaDiff on miniImagenet.

Method 5-way 1-shot 5-way 5-shot
(i) TCUNet 64.99 ± 0.77% 81.21 ± 0.56%
(ii) Replacing L2 loss 62.92 ± 0.79% 80.92 ± 0.56%
(iii) w/o UNet 62.72 ± 0.84% 80.72 ± 0.55%

Table 3: Analysis of our TCUNet on miniImagenet.

5.2 Implementation Details
Network Details. We use Conv4 and ResNet12 as the em-
bedding network fφ(·), which are same to (Kang et al. 2023;
Deleu et al. 2022). In our task-conditional UNet, for en-
coder blocks, we use a linear layer with 512/256-dim inputs
and 256/128-dim outputs to implement its feature transform
layer, and a linear layer with 32-dim inputs and 256/128-dim
outputs as its time embedding layer. For bottle blocks, we
use a linear layer with 128-dim inputs and outputs to imple-
ment its feature transform layer, and a linear layer with 32-
dim inputs and 128-dim outputs as its time embedding layer.
For decoder blocks, we use a linear layer with 128/256-
dim inputs and 256/512-dim outputs to implement its fea-
ture transform layer, and a linear layer with 32-dim inputs
and 256/512-dim outputs as its time embedding layer.
Training Details. During training, we train our MetaDiff
meta-optimizer 30 epochs (10000 iterations per epoch) us-
ing Adam with a learning rate of 0.0001 and a weight decay
of 0.0005. Following the standard setting of diffusion mod-
els in (Ho, Jain, and Abbeel 2020), we set the number of
denoising iterations to 1000 (i.e., T = 1000 is used).

5.3 Experimental Results
Our MetaDiff falls into the type of gradient-based meta-
learning, thus we mainly select various state-of-the-art
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Method 5-way 1-shot 5-way 5-shot

(i) Prototype (ALFA) 63.92 ± 0.82% 80.01 ± 0.61%
Prototype (MetaDiff) 64.99 ± 0.77% 81.21 ± 0.56%

(ii) Linear (ALFA) 62.09 ± 0.84% 78.13 ± 0.59%
Linear (MetaDiff) 62.72 ± 0.89% 80.19 ± 0.57%

Table 4: Classifier analysis of MetaDiff on miniImagenet.
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Figure 4: GPU memory on 1-shot tasks of miniImagenet.

gradient-based meta learning methods as our baselines. We
evaluate our MetaDiff and these baselines on Imagenet
derivatives. The experimental results are shown in Table 1.
Among them, iMAML(Rajeswaran et al. 2019), MAML
(Finn et al. 2017), ALFA (Baik et al. 2020), ANIL (Raghu
et al. 2020), COMLN (Deleu et al. 2022), GAP (Kang et al.
2023), and ClassifierBaseline (Chen et al. 2021), are our key
competitors, which also focus on learning GDA.

Table 1 shows the results of various gradient-based meta-
learning methods on miniImagenet and tieredImagenet.
From these results, we find that (i) our MetaDiff achieves
superior or comparable performance on all tasks, which ex-
ceeds most state-of-the-art gradient-based meta-learning by
around 1% ∼ 3%. This verifies the effectiveness of our
MetaDiff; and (ii) Our MetaDiff achieves consistent im-
provement on Conv4 and ResNet12 backbones for all tasks,
which is reasonable because our MetaDiff mainly focuses
on the adaptation of classification head. This also verifies
the universality of our MetaDiff on various backbones.

5.4 Ablation Study
Is our MetaDiff effective? In Table 2, we analyze the ef-
fectiveness of our MetaDiff. Specifically, (i) we implement
the adaptation of base learner (i.e., the prototype classfier)
by using a standard GDA (i.e., Eq. (4)) on the support set S;
(ii) we replace the standard GDA (i.e., Eq. (4)) by a GDA
with gradient momentum updates on (i); (iii) replacing by
the ANIL (Raghu et al. 2020) on (i); (iv) replacing by the
MetaLSTM (Ravi and Larochelle 2017) on (i); (v) replacing
by the ALFA (Baik et al. 2020) on (i); and (vi) replacing by
our MetaDiff. From the experimental results of (i) ∼ (vii),
we observe that: 1) the performance of (ii)∼ (vi) exceeds (i)
around 1% ∼ 5%, which means that it is helpful to learn a
meta-optimizer to optimize task-specific base-learner; 2) the
performance of (vii) exceeds (ii) ∼ (vi) around 1% ∼ 4%,
which shows the superiority of our MetaDiff.
Are our task-conditional UNet effective? In Table 3, (i)
we evaluate TCUNet on miniImagenet; (ii) we replace the
L2 loss defined in Eq. (11) by using cross-entropy loss; (iii)
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Figure 5: Convergence Analysis on miniImagenet.

we remove the UNet on (i). From results, we can see that the
performance of our TCUNet descreases by around 1%∼ 3%
when removing UNet or replacing L2 loss by cross-entropy
loss. This implies that leveraging the idea of gradient-based
UNet and L2 loss to estimate noise is useful for our TCUNet.
Can our MetaDiff be applied to other classifiers? To ver-
ify the universality of our MetaDiff on other classifiers, in
Table 4, we evaluate our MetaDiff and ALFA on prototype
classifiers and linear classifiers. We find that our MetaDiff
all achieves superior performacne on these two classifier and
prototype classifier performs better. This result implies that
our MetaDiff is very universal for different classifiers.

5.5 Statistical Analysis
How much our MetaDiff take GPU memory? In Figure 4,
we select MetaLSTM (Ravi and Larochelle 2017) and ALFA
(Baik et al. 2020) as baselines and report the GPU memory
during training by varing the number of inner-loop number.
From Figure 4, we can see that 1) the cost of GPU memory
keep increase linearly as the number of inner-loop step in-
crease; however 2) our MetaDiff keep constant. This is rea-
sonable because our MetaDiff is trained in a diffusion man-
ner, which is irrelevant to inner-loop optimization.
Can our MetaDiff converge? We randomly select 600 5-
way 1-shot tasks from the test set of miniImageNet, and then
report their test accuracy and loss of entire denoising pro-
cess. The results are shown in Figure 5. From the result, we
can observe that our MetaDiff can converge to a stable result
within a finite number of steps, around 450 steps.

6 Conclusion
In this paper, we present a novel meta-learning with con-
ditional diffusion for few-shot learning, called MetaDiff. In
particular, we find that the diffusion model actually is a gen-
eralized version of gradient descent, a learnable gradient de-
scent algorithm with weight momentum updates and uncer-
tainty estimation, and then design a task-conditional UNet
from the perspective of gradient estimation to predict the de-
noising nosie for target weights. Experimental results on two
public data sets verify the effectiveness of our MetaDiff.
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