
Efficient Asynchronous Federated Learning with Prospective Momentum
Aggregation and Fine-Grained Correction

Yu Zang1, Zhe Xue1*, Shilong Ou1, Lingyang Chu2, Junping Du1, Yunfei Long1

1Beijing University of Posts and Telecommunications, Beijing, China
2McMaster University, Hamilton, Canada

zyzy@bupt.edu.cn, xuezhe@bupt.edu.cn, osl@bupt.edu.cn, chul9@mcmaster.ca, junpingd@bupt.edu.cn,
longyunfei@bupt.edu.cn

Abstract

Asynchronous federated learning (AFL) is a distributed ma-
chine learning technique that allows multiple devices to col-
laboratively train deep learning models without sharing local
data. However, AFL suffers from low efficiency due to poor
client model training quality and slow server model conver-
gence speed, which are a result of the heterogeneous nature
of both data and devices. To address these issues, we propose
Efficient Asynchronous Federated Learning with Prospec-
tive Momentum Aggregation and Fine-Grained Correction
(FedAC). Our framework consists of three key components.
The first component is client weight evaluation based on
temporal gradient, which evaluates the client weight based
on the similarity between the client and server update di-
rections. The second component is adaptive server update
with prospective weighted momentum, which uses an asyn-
chronous buffered update strategy and a prospective weighted
momentum with adaptive learning rate to update the global
model in server. The last component is client update with fine-
grained gradient correction, which introduces a fine-grained
gradient correction term to mitigate the client drift and correct
the client stochastic gradient. We conduct experiments on real
and synthetic datasets, and compare with existing federated
learning methods. Experimental results demonstrate effective
improvements in model training efficiency and AFL perfor-
mance by our framework.

Introduction
In today’s data-sensitive world, where privacy is paramount,
federated learning (FL) emerges as a promising paradigm.
It enables multiple devices to train deep learning models in
parallel without sharing local data (Li et al. 2020b; Kairouz
et al. 2021). This innovative approach not only safeguards
user privacy but also presents unprecedented opportunities
for achieving data-driven intelligence. In FL, each device
(also called a client) trains a local model on its own data and
periodically communicates with a central server to aggregate
the local models into a global model. The server then broad-
casts the updated global model to the clients for the next
round of training. This process is repeated until the global
model converges or meets some predefined criteria.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many existing FL methods use a synchronous communi-
cation scheme, which requires the participation of a certain
percentage of clients in each round of aggregation (McMa-
han et al. 2017; Zang et al. 2023; Long et al. 2023; Guan
et al. 2021; Li, Li, and Xue 2022). This may cause high
communication cost and low scalability, especially when the
number of clients is large or when the clients have different
computing power or network conditions. Furthermore, syn-
chronous federated learning (SFL) might not be well-suited
for application scenarios involving heterogeneous devices.
These scenarios often display dynamic attributes, including
variations in device availability and device capabilities (Li
et al. 2020a; Zhuo and Li 2021; Zhuang et al. 2020). Such
attributes can lead to imbalanced and inefficient communi-
cation between clients and the server, ultimately diminish-
ing the overall performance and robustness of FL models.
To overcome these limitations, AFL has been proposed as
an alternative communication scheme, which allows clients
to communicate with the server at their own pace without
waiting for others (Xie, Koyejo, and Gupta 2019). AFL can
enhance the flexibility and scalability of FL by adapting to
various client conditions and reducing communication bot-
tlenecks, making it better suited to meet the challenges of
practical application scenarios.

While AFL has shown promising results in enhancing the
flexibility and scalability of FL, it still faces some challenges
in achieving high efficiency and performance, particularly
in dealing with data heterogeneity and device heterogene-
ity (Xu et al. 2021). In order to improve the efficiency and
performance of AFL, various approaches have been pro-
posed (Zhang et al. 2021; Li and Wang 2022; He et al. 2022;
Koloskova, Stich, and Jaggi 2022; Jiang et al. 2022). These
predominantly target three key facets: mitigated client stal-
eness, accelerated server convergence speed, and improved
client training quality. First, mitigated client staleness aims
to assign proper weights to different clients based on their
contribution to the global model. This can help alleviate
the adverse impact of device heterogeneity on AFL and en-
hance the efficiency of updating the global model (Chen,
Sun, and Jin 2019; Shi et al. 2020; Zhou et al. 2021; Wang
et al. 2022b). Second, the goal of accelerated server con-
vergence speed is to employ suitable aggregation strategies,
which helps mitigate the impact of straggler devices. This
reduces communication rounds during model convergence,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16642

thereby enhancing the efficiency of AFL (Wu et al. 2020;
Nguyen et al. 2022a; So et al. 2021; Shi et al. 2020; Wang
et al. 2022a). Lastly, the objective of improved client training
quality is to mitigate the influence of client drift towards lo-
cal optima updates caused by data heterogeneity, which can
improve the overall performance of the global model. Exist-
ing methods have attempted to improve client training qual-
ity by adding aggregation constraints (Chai et al. 2020; Chen
et al. 2020), clustered FL (Sattler, Müller, and Samek 2020;
Lee et al. 2020), adjusting client training rounds (Wang et al.
2022b), and other approaches.

However, despite the advancements in AFL algorithms,
they still exhibit certain limitations. First, the mitigated
client staleness algorithm takes into account model stale-
ness solely from a temporal perspective by assigning higher
weights to clients with more frequent updates. However, fo-
cusing only on temporal does not capture the consistency be-
tween client and global pseudo-gradient directions (Kingma
and Ba 2014). This can result in sub-optimal updates and
slow convergence of the global model. Second, while ex-
isting methods (Nguyen et al. 2022b; Wu et al. 2020) aim-
ing to accelerate server convergence speed utilize buffer ag-
gregation strategies to compute the global pseudo-gradient,
they have not delved deeply into harnessing the advanced
optimization techniques like momentum algorithms, as ex-
tensively demonstrated in SFL (Reddi et al. 2021; Hsu, Qi,
and Brown 2019). This oversight may result in protracted
training durations and sub-optimal global models. Lastly, the
existing improved client training quality algorithms mainly
focus on coarse-grained adjustments over rounds or epochs
to mitigate client drift induced by data heterogeneity. How-
ever, these methods lack necessary fine-grained supervision
over client stochastic gradients at each training step. This
oversight can infuse biases and inaccuracies into client up-
dates, ultimately undermining the integrity and accuracy of
the global model.

To address the aforementioned issues, we propose ef-
ficient AFL with prospective momentum aggregation and
fine-grained correction, which includes three components:
1) Client weight evaluation based on temporal gradient:
We evaluate the client weight by measuring the consistency
between the pseudo-gradients of the client model and the
global model during the time interval in which the client
performs its local update. We use this as the weight for
each client during server-buffered aggregation; 2) Adaptive
server update with prospective weighted momentum: We ag-
gregate the local pseudo-gradients of all clients in buffer
to obtain the global prospective weighted momentum used
to update the global model with adaptive learning rate; 3)
Client update with fine-grained gradient correction: To ad-
dress client drift caused by heterogeneous data, we calcu-
late a fine-grained correction term using client weight and
client gradient information in buffer, and combine it with a
local correction term to correct the gradients of each step
during client update. Overall, our algorithm accelerates the
convergence of the global model while mitigating client drift
caused by heterogeneous data and device, improving both
the efficiency and performance of AFL. The main contribu-
tions of this work can be summarized as:

• We propose a client weight evaluation method based on
temporal gradient, which measures the client weight by
assessing the consistency between the local and global
pseudo-gradient directions, resulting in improving effi-
ciency and performance of AFL and alleviating the ad-
verse impact of device heterogeneity.

• We propose an adaptive server update with prospective
weighted momentum. By leveraging client weight and
buffer aggregation, we calculate a prospective weighted
momentum, facilitating adaptive server updates. This en-
hances the convergence speed of the global model and
AFL efficiency.

• We propose the notion of client updates incorporating
fine-grained gradient correction. By leveraging tempo-
ral client weight, our approach computes a fine-grained
gradient correction for client updates, rectifying local
stochastic gradients, countering data heterogeneity, and
improving both the performance and efficacy of AFL.

Related Work
Synchronous federated learning. In recent years, due to
the issue of data privacy, FL has gained increasing attention.
How to learn a global model quickly and effectively under
non-independent and identically distributed (non-IID) data,
and improve the efficiency of FL, is a question that everyone
is concerned about. Many works have attempted to improve
the efficiency of FL. Some (Acar et al. 2021; Li et al. 2020c;
Gao et al. 2022) have tried to design corrections for client
training from the perspective of mitigating bias to improve
the efficiency of FL, while others (Hsu, Qi, and Brown 2019;
Reddi et al. 2021) have introduced more effective aggrega-
tion strategies from the perspective of server aggregation to
improve the efficiency of FL.

Asynchronous federated learning. AFL is often more
suitable for real-world applications than SFL due to the
straggler effect caused by device heterogeneity (Li et al.
2020b; Xu et al. 2021; Kairouz et al. 2021). AFL mainly
faces the problem of outdated local models due to device
heterogeneity and low-quality local models due to data het-
erogeneity. Various methods (Wu et al. 2020; Nguyen et al.
2022a; So et al. 2021) have been proposed to alleviate device
heterogeneity by using different model weight aggregation
and client selection schemes, and some methods (Chai et al.
2020; Chen et al. 2020) have attempted to design constraint
terms or use clustered FL (Sattler, Müller, and Samek 2020;
Lee et al. 2020) to mitigate client bias in asynchronous sce-
narios.

Methodology
Preliminary
In this section, we introduce the basic settings of FL and the
buffered aggregation scheme that we use.

The objective function for FL is as follows:

min
x

F (x) =
∑

i∈N

|Di|
|D|

Fi(x), (1)

where N is the number of clients, x are the model param-
eters of client i, Fi(x) is client i’s local objective function,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16643

which describes how model parameters conforms to clients
i’s local dataset, Di is the number of data samples in client
i, and |D| =

∑
i∈N |Di| is the total number of data samples

across all clients.
A common algorithm for SFL is Federated Averaging

(FedAvg) (McMahan et al. 2017). In each communication
round, a subset of clients S are selected to participate in the
model training. On each client i, the client first downloads
the current global model parameters xt−1 from the server
in communication round t. Then, it trains the local model by
running K steps of stochastic gradient descent (SGD) on the
local dataset:

xt−1
i,k+1 = xt−1

i,k − ηlgi(x
t−1
i,k), (2)

where ηl is the client learning rate, k is current step, gi(xt−1
i,k)

is the local stochastic gradient.
In this paper, we adopt the asynchronous buffered aggre-

gation framework (FedBuff) (Nguyen et al. 2022b) as the
basis for our framework. In FedBuff, clients participate in
training and communication with the server asynchronously.
However, unlike other asynchronous methods, the server
does not immediately aggregate the model after receiving
updates from individual clients. Instead, the server waits for
a buffer to contain updates from a group of B clients before
performing the aggregation process, as described in Eq.(3):

xt = xt−1 + ηg(
γ × s(t− τ)

|B|
∑

i∈B
(xτ

i,K − xτ)), (3)

where B is clients set in the buffer that stores the client up-
dates, xτ represents the server model downloaded by the
client in round τ , ηg is global learning rate, (xτ

i,K − xτ)
is the client update pseudo-gradient (Reddi et al. 2021),
γ is a hyperparameter, K = E ∗ |Di|/batchsize. The
term γ × s(t − τ) represents a function mapping same
as (Xie, Koyejo, and Gupta 2019) related to the staleness
of the clients’ updates. In FedBuff, s(t − τ) is defined as
(1 + (t− τ))−0.5.

It is worth noting that the buffer aggregation method, al-
though similar to SFL in terms of aggregation, is fundamen-
tally different. In the asynchronous buffer aggregation algo-
rithm, clients do not need to wait for the server to broad-
cast the global model parameters or for specific clients to
complete their updates before performing global updates.
All clients update asynchronously in parallel, with the buffer
solely influencing the server’s update frequency, which is in-
dependent of the clients’ parallel updates.

Client Weight Evaluation Based on Temporal
Gradient
In traditional AFL (Xie, Koyejo, and Gupta 2019), client
weights depend on client time staleness, which is calcu-
lated as the time difference between client’s last commu-
nication at round τ and its return of the model at round t,
as shown in Eq. (2). The traditional client weight evalua-
tion takes into account model staleness solely from a tem-
poral perspective by assigning higher weights to clients with
more frequent updates. However, focusing only on temporal
does not capture the consistency between client and global

pseudo-gradient directions. This can result in sub-optimal
performance when updating the global model.

To overcome this, we propose using cosine similarity be-
tween the local and global pseudo-gradients within the time
span t− τ to determine client weights. The equation for cal-
culating the weight of the client is as follows:

rti =
(xt−1 − xτ)T (xτ

i,K − xτ)

||xt−1 − xτ || · ||xτ
i,K − xτ ||

, (4)

where the difference xt−1 − xτ represents global update
pseudo-gradient, xτ

i,K −xτ represents client update pseudo-
gradient trained in K steps. By calculating the cosine simi-
larity between these two pseudo-gradient, we can obtain a
measure of the pseudo-gradient contributed by client i at
time t.

After the number of client pseudo-gradients stored in the
buffer reaches the specified quantity B, we normalize the
weights of each client in the buffer, as shown below:

wt
i =

rti∑
j∈B rtj

, (5)

where wt
i represents the weight of client i in the buffer ag-

gregation at round t. By normalizing, we map the client
weights in the buffer to the range [0, 1], which facilitates
subsequent aggregation processing. With the client weight
based on temporal gradient wt

i in hand, we apply them to
server aggregation and client update correction, as described
in server and client update, respectively.

We evaluate the client weight using the temporal gradient
by measuring the similarity between the pseudo-gradients
of the client model and the global model during the time
interval in which the client performs its local update. Our
approach allows the client weight to capture both client stal-
eness and the quality of their pseudo-gradients, thereby en-
hancing the efficiency and performance of AFL.

Adaptive Server Update with Prospective Weighted
Momentum
Under the influence of data and device heterogeneity, client
pseudo-gradients tend to be biased and staleness. Using
these client pseudo-gradients to calculate momentum dur-
ing model aggregation can exacerbate global model oscil-
lations. Consequently, the incorporation of momentum for
server updates in AFL methods is infrequent. However, the
introduction of buffer aggregation provides relief by mitigat-
ing the disruptions caused by slower devices. Furthermore,
by utilizing client weight based on temporal gradient, we
can assign higher weights to clients with greater consistency
in their pseudo-gradients with the global updates. This ap-
proach helps mitigate the bias and staleness of the global
pseudo-gradients.

Upon buffer saturation, we compute global pseudo-
gradients by leveraging client pseudo-gradients stored in the
buffer, akin to the approach employed in FedBuff (Nguyen
et al. 2022b). However, we differentiate by incorporating
client weight based on temporal gradient. The procedure un-
folds as follows:

g(xτ
i) = xτ

i,K − xτ , (6)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16644

g(xt) =
∑

i∈B
wt

ig(x
τ
i). (7)

By combining our client weight with asynchronous buffer
aggregation, we can mitigate the impact of data and device
heterogeneity on global pseudo-gradients.

Subsequently, we calculate the global momentum in a
manner similar to FedAdam (Reddi et al. 2021) in SFL:

mt = β1m
t−1 + (1− β1)g(x

t−1). (8)

Next, we amalgamate Nesterov’s accelerated gradient
(NAG) (Nesterov 1983) and adaptive moment estimation
(Adam) (Kingma and Ba 2014) to confer the global mo-
mentum with a forward-looking perspective and couple with
adaptive global learning rate adjustment as Nadam (Dozat
2016), enhances the stability of server aggregation. The up-
date equations for the server model is shown below:

vt = β2v
t−1 + (1− β2)g

2(xt−1), (9)

m̂t = β1m
t + (1− β1)g(x

t−1), (10)

xt = xt−1 +
ηgm̂t

√
vt + ϵ

, (11)

where ϵ is a small constant to avoid division by zero, β1 and
β2 are hyperparameters.

Our method, adaptive server update with prospective
weighted momentum, combines client weight based on tem-
poral gradient with asynchronous buffer aggregation, apply-
ing momentum optimization to AFL. Additionally, during
global model updates, we employ the advanced Nadam al-
gorithm to expedite server aggregation, thereby enhancing
the efficiency of AFL.

Client Update with Fine-Grained Gradient
Correction
In FL, data heterogeneity often causes client model training
to optimize towards local optima rather than global optima,
a phenomenon known as client drift. In the context of AFL,
the issue of client drift is worsened by the temporal lag of
the global model. This lag leads to a lower quality of the
global model when suboptimally trained client models are
aggregated. However, the existing improved client training
quality algorithms mainly focus on coarse-grained adjust-
ments over rounds or epochs to mitigate client drift induced
by data heterogeneity.

To address this issue, we propose a client update with fine-
grained gradient correction algorithm that uses a temporal
gradient correction term to correct the local stochastic gra-
dient. The client update rules are as follows:

xτ
i,k = xτ

i,k−1 − ηl(gi(x
τ
i,k−1) + hτ

i), (12)

hτ
i = cτ − ci, (13)

where gi(xτ
i,k−1) is the stochastic gradient, hτ

i is the tempo-
ral gradient correction term, cτ is the global correction term
at round τ , ci is the local correction term of client i, k is the
current step number of client updates.

Similar to SCAFFOLD (Karimireddy et al. 2020), the up-
date process for ci and ct is as follows:

ĉi =
1

Kηl
(xτ

i − xτ
i,K)− (cτ − ci), (14)

Algorithm 1: The whole training procedure of FedAC.

1: Input: Randomly initialize model parameters x0 = x0
i ;

Initialize ci, c0, m0, v0 as 0; Hyperparameters ηg , ηl,
β1, β2, B, ϵ.

2: Output: the final global model xT .
3: Server model aggregation:
4: repeat
5: if server receives local result from client i then
6: Server stores (g(xτ

i),∆ci) from client i;
7: b = b+ 1;
8: if b == |B| then
9: Server computes wt

i as in Eq.(4) and Eq.(5);
10: Server updates xt as in Eq.(7) - Eq.(11);
11: Server computes ct as in Eq.(17);
12: Server distributes (xt, ct) to clients in buffer;
13: t = t+ 1, b = 0;
14: end if
15: end if
16: until convergence
17: Client model update:
18: for each client i ∈ S in parallel do
19: if client receives (xt, ct) from server then
20: Initialize xτ

i,0 = xt, cτ = ct, hτ
i = cτ − ci;

21: for k = 1, . . . ,K do
22: Client updates xτ

i,k as in Eq.(12);
23: end for
24: Client computes ci as in Eq.(14) - Eq.(16);
25: Client computes g(xτ

i) as in Eq.(6);
26: Client uploads local result(∆ci, g(x

τ
i)) to server;

27: end if
28: end for
29: Return xT .

∆ci = ĉi − ci, (15)
ci = ĉi, (16)

ct = ct−1 +
∑

i∈B
wt

i∆ci. (17)

The ci in hτ
i is reset for the client i’s next update round and

∆ci is sent back to the server and stored in the buffer.
Usefulness of hτ

i . To mitigate client drift, the client up-
dates are as follows, without considering the communication
cost:

xτ
i,k = xτ

i,k−1 −
ηl
N

N∑
j=1

gj(x
τ
i,k−1). (18)

Eq.(18) computes unbiased gradients for the client i. How-
ever, it requires communication between client i and all the
other clients for each update. To address this, we propose an
alternative client update scheme as shown below:

ci ≈ gi(x
τ
i,k−1), (19)

cτ ≈
∑

i∈B
wt

i∆ci. (20)

With this approach, the client updates closely approximate
the unbiased estimation in the ideal scenario:

gi(x
τ
i,k−1)− ci + cτ ≈ 1

N

N∑
j=1

gj(x
τ
i,k−1). (21)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16645

In Eq.(19), the local correction term ci can approximate the
local average gradient towards the local optimal. In Eq.(17),
∆ci from different clients is multiplied by their weight wi to
weaken the impact of model staleness on the average gradi-
ents, and the local correction term ci is initialized as 0 when
the client first starts local update. Therefore, cτ in Eq.(20)
can reflect the average gradient of all clients on the global
model xτ .

During client model training, we use the local correc-
tion term ci to weaken the update of the stochastic gradient
gi(x

τ
i,k−1) towards local optima and use the global correc-

tion term cτ to give clients a global view for updating the
model towards the global optimal. Therefore, hτ

i can miti-
gate the client drift towards local optima and correct client
stochastic gradient towards global optima.

Our algorithm for client update with fine-grained gradi-
ent correction in AFL can perform fine-grained gradient ad-
justments at each training step on the client, which allows
clients to have a global view during model updates, miti-
gates the impact of client drift caused by data heterogeneity,
and improves the client model quality. The overall training
algorithm of FedAC is shown in Algorithm 1.

Experiments
Experimental Settings
Datasets. We utilize three representative FL datasets,
namely CIFAR-10 (Krizhevsky 2009), EMNIST-L (Cohen
et al. 2017) and Shakespeare (Shakespeare 2002), to evalu-
ate the performance of our method. The division of training
and test sets is carried out in the same manner as previous
studies (McMahan et al. 2017). In the IID setting, the train-
ing samples are randomly assigned and equally distributed
among clients. In the Non-IID setting, label ratios are deter-
mined by the Dirichlet distribution (Yurochkin et al. 2019),
where the parameter α controls the degree of data hetero-
geneity. For the Shakespeare dataset, we utilize the same ap-
proach and employ LEAF for data partitioning (McMahan
et al. 2017; Acar et al. 2021; Wang et al. 2022b).

Networks. To thoroughly evaluate the effectiveness of
our method, we follow FedAvg (McMahan et al. 2017)
and conduct experiments on three network architectures.
For the EMNIST-L dataset, we employ a fully-connected
network. Specifically, we use a two-layer multi-layer per-
ceptron (MLP) with ReLU activation, which has a total of
92,337 parameters. For the CIFAR-10 dataset, we utilize
the same convolutional neural network (CNN), which com-
prises two 5x5 convolutional layers (with 32 channels for
the first layer and 64 for the second, each followed by a
2x2 max pooling), two fully connected layers with ReLU
activation, and a final Softmax output layer, with a total of
797,963 parameters. For the Shakespeare dataset, we adopt a
stacked character-level LSTM language model, as described
in (McMahan et al. 2017).

Baselines. To validate the effectiveness of our method, we
compare it against five baseline FL methods, including Fe-
dAvg (McMahan et al. 2017), FedAdam (Reddi et al. 2021),
FedProx (Li et al. 2020c), FedAsync (Xie, Koyejo, and
Gupta 2019), and FedBuff (Nguyen et al. 2022b). FedAvg

and FedAdam are classic SFL methods, with FedAdam us-
ing momentum to accelerate aggregation. FedProx incor-
porates a proximal term to constrain the client updates.
FedAsync is a well-known AFL framework. FedBuff uses
a buffer on the server to aggregate the client update pseudo-
gradients. Owing to the differences between SFL and AFL,
when comparing these two approaches, we consider “met-
rics vs the number of client trips” and follow the experimen-
tal method as in (Nguyen et al. 2022b). A client trip entails a
client receiving the latest model from the server, performing
K steps of training on the local dataset, and then uploading
the model update back to the server.

Parameter Settings. To ensure a fair comparison among
all methods, the SGD optimizer is used as the client opti-
mizer for all methods. All methods adopt the learning rates
ηl = 0.1 and ηg = 1. We use the hyperparameters for
FedAdam as specified in (Reddi et al. 2021), since FedAdam
shows poor training performance under the general hyper-
parameters mentioned above. The batch size for the exper-
iments is set to 50 and the weight decay is set to 0.002 in
local training. For some of the federated settings, the default
parameters used are: N = 100 for the number of clients,
α = 0.1 for the Dirichlet parameter, E = 5 for the number
of client training epochs. The proportion is set to 0.2 for the
active clients in SFL. For all experiments, we set the param-
eters as β1 = 0.6, β2 = 0.9, |B| = 20 and ϵ = 10−8 in
FedAC.

Experimental Results Analysis
Performance and convergence speed comparison. The
convergence curves of FedAC, displayed in Fig. 1, indicate
that FedAC surpasses both synchronous and asynchronous
baseline methods in terms of convergence speed and ac-
curacy. As clearly shown in Fig. 1a and Fig. 1c, FedAC
demonstrates a significant advantage in early convergence
speed. By utilizing client weight based on temporal gradi-
ent and client pseudo-gradients for calculating prospective
momentum, we can predict the next position of the global
model at each update. This prediction allows for more ef-
fective updates, significantly reducing the number of client
trips required for model convergence and enhancing model
efficiency. The effectiveness of this approach is demon-
strated in Fig. 2, where the baselines need several times more
client trips to achieve the specified accuracy compared to
our method. Moreover, our proposed client update algorithm
corrects stochastic gradients during client updates, guiding
clients towards the global optima rather than local optima.
This approach greatly alleviates client drift caused by data
heterogeneity and enhances local model quality. The use of
client weight based on temporal gradient during client up-
dates and server aggregation mitigates the impact of client
staleness due to device heterogeneity in AFL. This leads to
the learning of higher quality prospective weighted momen-
tum for global model updates and global correction terms for
client correction, thereby improving both the convergence
speed and accuracy of the model. Additionally, the synergy
between the higher quality global model and unbiased local
models enhances the calculation of client weight, creating a
mutually reinforcing process. This synergy is a key reason

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16646

0 2000 4000 6000 8000 10000
Client…Trips

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac
cu
ra
cy

FedAsync
FedBuff
FedProx
FedAvg
FedAdam
FedAC

(a) CIFAR-10

0 2000 4000 6000 8000 10000
Client…Trips

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu
ra
cy

FedAsync
FedBuff
FedProx
FedAvg
FedAdam
FedAC

(b) EMNIST-L

0 1000 2000 3000 4000 5000
Client…Trips

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu
ra
cy

FedAsync
FedBuff
FedProx
FedAvg
FedAdam
FedAC

(c) Shakespeare

Figure 1: Accuracy curves of FedAC and other baselines on different datasets.

FedAsyncFedBuff FedProx FedAvg FedAdam FedAC
Method

0

2000

4000

6000

8000

10000

C
lie
nt
…T
rip
s

10000
3.6x

6450
2.3x

4180
1.5x

4240
1.5x

5400
1.9x

2800
1.0x

Target…accuracy:…0.7

(a) CIFAR-10

FedAsyncFedBuff FedProx FedAvg FedAdam FedAC
Method

0

500

1000

1500

2000

C
lie
nt
…T
rip
s

1440
3.0x

980
2.0x

560
1.2x 500

1.0x

1140
2.4x

480
1.0x

Target…accuracy:…0.8

(b) EMNIST-L

FedAsyncFedBuff FedProx FedAvg FedAdam FedAC
Method

0

2000

4000

6000

C
lie
nt
…T
rip
s

6290
5.8x

3720
3.4x

2320
2.1x

2180
2.0x

5260
4.9x

1080
1.0x

Target…accuracy:…0.4

(c) Shakespeare

Figure 2: Number of client trips required to reach the target accuracy for FedAC and other baselines on different datasets.

Client Amount Accuracy (%) client trips (multiplier)
FedAC FedAvg FedAdam FedProx FedAsync FedBuff

50 0.65 900 (1×) 1240 (1.38×) 1540 (1.71×) 1260 (1.40×) 2012 (2.24×) 1470 (1.63×)
0.6 650 (1×) 800 (1.23×) 1300 (2.00×) 800 (1.23×) 1187 (1.83×) 790 (1.21×)

100 0.65 1720 (1×) 2240 (1.30×) 2260 (1.31×) 2120 (1.23×) 5000+ (2.90×) 3050 (1.77×)
0.6 1320 (1×) 1500 (1.14×) 1840 (1.39×) 1380 (1.05×) 4210 (3.19×) 2150 (1.63×)

200 0.55 1280 (1×) 1660 (1.30×) 2600 (2.03×) 1740 (1.36×) 5000+ (3.90×) 3100 (2.42×)
0.5 900 (1×) 1120 (1.24×) 1600 (1.78×) 1060 (1.18×) 5000+ (5.56×) 2250 (2.50×)

500 0.5 1800 (1×) 2200 (1.22×) 4620 (2.57×) 2320 (1.29×) 5000+ (2.78×) 5000+ (2.78×)
0.35 800 (1×) 1060 (1.33×) 1640 (2.05×) 1040 (1.3×) 5000+ (6.25×) 2860 (3.58×)

Table 1: Number of client trips to reach target accuracy for FedAC and other baselines in federated settings with different
numbers of clients on CIFAR-10. The values in parentheses represent the multiples of client trips compared to our method
when reaching the target accuracy.

why FedAC significantly outperforms baselines in terms of
convergence speed and accuracy.

Scalability analysis. Table 1 describes the client trips re-
quired to achieve the target accuracy for FedAC and base-
lines. Notably, regardless of the number of clients involved,
baseline methods consistently demand significantly more
client trips to achieve the target accuracy in contrast to
FedAC. In practical FL scenarios, a vast number of clients
often participate. By examining the performance of global
model training under varying client counts, we can aptly as-
sess the scalability and real-world applicability of the FL
framework. In AFL, a high number of clients exacerbates
the staleness of local models, and training on clients with
small and Non-IID datasets also exacerbates client drift,
which makes the global model updates easily affected by

local models and reduces the learning quality of the global
model. This can be seen from the results of FedAsync in
Table 1. Compared with SFL methods, our method FedAC
emerges as a more adaptable and efficient choice for real-
world FL environments, outclassing SFL-based strategies
such as FedAvg, FedAdam, and FedProx. This superior per-
formance indicates that FedAC effectively handles the chal-
lenges posed by data heterogeneity and model staleness.
Moreover, it maintains its scalability irrespective of the num-
ber of clients participating in FL.
Robustness on data heterogeneity. Table 2 shows the ac-
curacy of FedAC and baselines under different levels of data
heterogeneity when the number of client trips is 3000. It can
be observed that FedAC achieves the highest accuracy. Com-
pared to baselines, FedAC achieves the smallest difference

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16647

Method α
α=0.1 α=1 α=10 IID

FedAvg 66.8 76.1 76.9 77.8
FedADAM 62.9 73.8 78.8 79.1

FedProx 65.7 75.7 76.6 77.6
FedAsync 53.3 65.5 69.4 70.5
FedBuff 63.1 73.2 75.8 76.2
FedAC 70.6 79.6 80.1 80.3

Table 2: Accuracy at 3000 client trips for all the methods
with different levels of data heterogeneity α.

0 1000 2000 3000 4000 5000
Client…Trips

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

FedAC
Basic-WTG-APWM
Basic-WTG
Basic

Figure 3: Ablation study results on CIFAR-10.

in accuracy between the non-IID setting such as α = 0.1
and the IID setting. This demonstrates that our client up-
date with fine-grained gradient correction algorithm effec-
tively alleviates the client drift caused by data heterogeneity
through the use of global and local correction terms. Com-
paring the performance of different methods in the IID set-
ting in Table 2, we can draw the following conclusions: in
contrast to SFL algorithms, which do not suffer from client
drift when the client data distributions are consistent, FedAC
achieves higher accuracy values at the specified number of
communication rounds, demonstrating its ability to address
the problem of local model staleness and the effectiveness of
the client weights evaluation. In summary, FedAC demon-
strates robustness to different levels of data heterogeneity
and can improve the efficiency of AFL.
Ablation Study. We conduct an ablation study to demon-
strate the effectiveness of each module in our method and
design several degraded methods for comparison. The “Ba-
sic” model in Fig. 3 is FedBuff, which serves as the foun-
dation for our method. Basic-WTG represents the basic
framework combined with “Client Weight Evaluation Based
on Temporal Gradient”. Basic-WTG-APWM represents the
combination of “Adaptive Server Update with Prospective
Weighted Momentu” on the basis of Basic-WTG. FedAC
represents our complete FL framework. The accuracy curves
of each module of FedAC are shown in Fig. 3. By com-
paring the results of the ablation experiments, we observe
that adding the “Client Weight Evaluation Based on Tempo-
ral Gradient” module (Basic-WTG) to the Basic model can
better evaluate client staleness, thus improving model train-

5 10 15 20 25 30 35 40 45 50
Buffer…size…|B|

1000

2000

3000

4000

5000

C
lie
nt
…T
rip
s

acc:0.7
acc:0.65
acc:0.6

Figure 4: Impact of buffer size |B| on client trips to reach
target accuracy on CIFAR-10.

ing quality and convergence speed. Furthermore, adding the
“Adaptive Server Update with Prospective Weighted Mo-
mentum” module (Basic-WTG-APWM) can accelerate the
global model update, but the accuracy is slightly lower than
that of FedAC due to the lack of client offset correction. Ul-
timately, when all modules are activated, FedAC attains the
quickest convergence and the pinnacle of accuracy.
Analysis of buffer size. Fig. 4 presents the impact of the
buffer size |B| on the efficiency of AFL by analyzing the
number of client trips required to reach the target accuracy.
Notably, when the buffer size |B| is calibrated to either 10
or 20, FedAC surpasses other buffer size configurations in
minimizing the client trips required to attain the three target
accuracies. More specifically, targeting an accuracy of 0.7,
the configuration with |B| = 20 necessitates fewer client
trips than any other buffer size. In light of these findings,
to achieve better efficacy and performance from FedAC, we
choose a buffer size of |B| = 20 throughout the experiment.

Conclusion
In this paper, we propose efficient asynchronous federated
learning with prospective momentum aggregation and fine-
grained correction to address the efficiency and performance
issues in AFL caused by data heterogeneity and device het-
erogeneity. We use client weight evaluation based on tem-
poral gradient to calculate prospective weighted momen-
tum for adaptive server update to improve the convergence
speed and AFL efficiency, and fine-grained gradient correc-
tion during client update to mitigate client drift and enhance
the AFL performance. Extensive experiments on both real
and synthetic datasets demonstrate that FedAC significantly
improves the efficiency and performance of asynchronous
federated learning.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (62272058, 62192784, U22B2038,
62172056), the 8th Young Elite Scientists Sponsorship Pro-
gram by CAST (2022QNRC001), and in part by the NSERC
Discovery Grant program.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16648

References
Acar, D. A. E.; Zhao, Y.; Matas, R.; Mattina, M.; What-
mough, P.; and Saligrama, V. 2021. Federated Learning
Based on Dynamic Regularization. In International Con-
ference on Learning Representations.
Chai, Z.; Chen, Y.; Zhao, L.; Cheng, Y.; and Rangwala, H.
2020. Fedat: A communication-efficient federated learning
method with asynchronous tiers under non-iid data. ArX-
ivorg.
Chen, Y.; Ning, Y.; Slawski, M.; and Rangwala, H. 2020.
Asynchronous online federated learning for edge devices
with non-iid data. In 2020 IEEE International Conference
on Big Data (Big Data), 15–24. IEEE.
Chen, Y.; Sun, X.; and Jin, Y. 2019. Communication-
efficient federated deep learning with layerwise asyn-
chronous model update and temporally weighted aggrega-
tion. IEEE transactions on neural networks and learning
systems, 31(10): 4229–4238.
Cohen, G.; Afshar, S.; Tapson, J.; and Van Schaik, A. 2017.
EMNIST: Extending MNIST to handwritten letters. In 2017
international joint conference on neural networks (IJCNN),
2921–2926. IEEE.
Dozat, T. 2016. Incorporating Nesterov Momentum into
Adam. In Proceedings of the 4th International Conference
on Learning Representations, 1–4.
Gao, L.; Fu, H.; Li, L.; Chen, Y.; Xu, M.; and Xu, C.-
Z. 2022. Feddc: Federated learning with non-iid data via
local drift decoupling and correction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10112–10121.
Guan, Z.; Li, Y.; Xue, Z.; Liu, Y.; Gao, H.; and Shao, Y.
2021. Federated Graph Neural Network for Cross-graph
Node Classification. In 2021 IEEE 7th International Confer-
ence on Cloud Computing and Intelligent Systems (CCIS),
418–422.
He, J.; Wang, T.; Min, Y.; and Gu, Q. 2022. A Sim-
ple and Provably Efficient Algorithm for Asynchronous
Federated Contextual Linear Bandits. arXiv preprint
arXiv:2207.03106.
Hsu, T.-M. H.; Qi, H.; and Brown, M. 2019. Measuring the
effects of non-identical data distribution for federated visual
classification. arXiv preprint arXiv:1909.06335.
Jiang, Z.; Wang, W.; Li, B.; and Li, B. 2022. Pisces: Ef-
ficient federated learning via guided asynchronous training.
In Proceedings of the 13th Symposium on Cloud Computing,
370–385.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2): 1–210.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.;
and Suresh, A. T. 2020. Scaffold: Stochastic controlled av-
eraging for federated learning. In International Conference
on Machine Learning, 5132–5143. PMLR.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Koloskova, A.; Stich, S. U.; and Jaggi, M. 2022. Sharper
convergence guarantees for asynchronous sgd for distributed
and federated learning. Advances in Neural Information
Processing Systems, 35: 17202–17215.

Krizhevsky, A. 2009. Learning Multiple Layers of Features
from Tiny Images. 32–33.

Lee, J.-w.; Oh, J.; Shin, Y.; Lee, J.-G.; and Yoon, S.-
Y. 2020. Accurate and fast federated learning via
iid and communication-aware grouping. arXiv preprint
arXiv:2012.04857.

Li, C.; and Wang, H. 2022. Asynchronous upper confidence
bound algorithms for federated linear bandits. In Interna-
tional Conference on Artificial Intelligence and Statistics,
6529–6553. PMLR.

Li, Q.; Zhu, W.; Wu, C.; Pan, X.; Yang, F.; Zhou, Y.; and
Zhang, Y. 2020a. InvisibleFL: federated learning over non-
informative intermediate updates against multimedia pri-
vacy leakages. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, 753–762.

Li, T.; Sahu, A. K.; Talwalkar, A.; and Smith, V. 2020b.
Federated Learning: Challenges, Methods, and Future Di-
rections. IEEE Signal Processing Magazine, 37(3): 50–60.

Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020c. Federated optimization in heteroge-
neous networks. Proceedings of Machine learning and sys-
tems, 2: 429–450.

Li, Y.; Li, W.; and Xue, Z. 2022. Federated Learning
with Stochastic Quantization. Int. J. Intell. Syst., 37(12):
11600–11621.

Long, Y.; Xue, Z.; Chu, L.; Zhang, T.; Wu, J.; Zang, Y.;
and Du, J. 2023. FedCD: A Classifier Debiased Federated
Learning Framework for Non-IID Data. In Proceedings of
the 31st ACM International Conference on Multimedia, MM
’23, 8994–9002. New York, NY, USA: Association for Com-
puting Machinery. ISBN 9798400701085.

McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelli-
gence and statistics, 1273–1282. PMLR.

Nesterov, Y. E. 1983. A method for solving the convex pro-
gramming problem with convergence rate O (1/kˆ 2). In
Dokl. akad. nauk Sssr, volume 269, 543–547.

Nguyen, J.; Malik, K.; Zhan, H.; Yousefpour, A.; Rabbat,
M.; Malek, M.; and Huba, D. 2022a. Federated learning
with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, 3581–
3607. PMLR.

Nguyen, J.; Malik, K.; Zhan, H.; Yousefpour, A.; Rabbat,
M.; Malek, M.; and Huba, D. 2022b. Federated learning
with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, 3581–
3607. PMLR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16649

Reddi, S. J.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.;
Konečný, J.; Kumar, S.; and McMahan, H. B. 2021. Adap-
tive Federated Optimization. In International Conference on
Learning Representations.
Sattler, F.; Müller, K.-R.; and Samek, W. 2020. Clustered
federated learning: Model-agnostic distributed multitask op-
timization under privacy constraints. IEEE transactions on
neural networks and learning systems, 32(8): 3710–3722.
Shakespeare, W. 2002. The Complete Pelican Shakespeare.
Penguin.
Shi, G.; Li, L.; Wang, J.; Chen, W.; Ye, K.; and Xu, C. 2020.
HySync: Hybrid federated learning with effective synchro-
nization. In 2020 IEEE 22nd International Conference on
High Performance Computing and Communications; IEEE
18th International Conference on Smart City; IEEE 6th In-
ternational Conference on Data Science and Systems (HPC-
C/SmartCity/DSS), 628–633. IEEE.
So, J.; Ali, R. E.; Güler, B.; and Avestimehr, A. S. 2021. Se-
cure aggregation for buffered asynchronous federated learn-
ing. arXiv preprint arXiv:2110.02177.
Wang, H.; Li, R.; Li, C.; Zhou, P.; Li, Y.; Xu, W.; and Guo,
S. 2022a. Gradient Scheduling With Global Momentum
for Asynchronous Federated Learning in Edge Environment.
IEEE Internet of Things Journal, 9(19): 18817–18828.
Wang, Q.; Yang, Q.; He, S.; Shui, Z.; and Chen, J. 2022b.
AsyncFedED: Asynchronous Federated Learning with Eu-
clidean Distance based Adaptive Weight Aggregation. arXiv
preprint arXiv:2205.13797.
Wu, W.; He, L.; Lin, W.; Mao, R.; Maple, C.; and Jarvis,
S. 2020. SAFA: A semi-asynchronous protocol for fast fed-
erated learning with low overhead. IEEE Transactions on
Computers, 70(5): 655–668.
Xie, C.; Koyejo, S.; and Gupta, I. 2019. Asynchronous fed-
erated optimization. arXiv preprint arXiv:1903.03934.
Xu, C.; Qu, Y.; Xiang, Y.; and Gao, L. 2021. Asyn-
chronous federated learning on heterogeneous devices: A
survey. arXiv preprint arXiv:2109.04269.
Yurochkin, M.; Agarwal, M.; Ghosh, S.; Greenewald, K.;
Hoang, N.; and Khazaeni, Y. 2019. Bayesian nonparamet-
ric federated learning of neural networks. In International
Conference on Machine Learning, 7252–7261. PMLR.
Zang, Y.; Xue, Z.; Ou, S.; Long, Y.; Zhou, H.; and Du, J.
2023. FedPcf: An Integrated Federated Learning Frame-
work with Multi-Level Prospective Correction Factor. In
Proceedings of the 2023 ACM International Conference
on Multimedia Retrieval, ICMR ’23, 490–498. New York,
NY, USA: Association for Computing Machinery. ISBN
9798400701788.
Zhang, Q.; Gu, B.; Deng, C.; and Huang, H. 2021. Secure
bilevel asynchronous vertical federated learning with back-
ward updating. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, 10896–10904.
Zhou, C.; Tian, H.; Zhang, H.; Zhang, J.; Dong, M.; and
Jia, J. 2021. TEA-fed: time-efficient asynchronous federated
learning for edge computing. In Proceedings of the 18th
ACM International Conference on Computing Frontiers, 30–
37.

Zhuang, W.; Wen, Y.; Zhang, X.; Gan, X.; Yin, D.; Zhou,
D.; Zhang, S.; and Yi, S. 2020. Performance optimization of
federated person re-identification via benchmark analysis. In
Proceedings of the 28th ACM International Conference on
Multimedia, 955–963.
Zhuo, Y.; and Li, B. 2021. Fedns: Improving federated learn-
ing for collaborative image classification on mobile clients.
In 2021 IEEE International Conference on Multimedia and
Expo (ICME), 1–6. IEEE.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16650

