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Abstract
The combination of electronic health records (EHR) and
medical images is crucial for clinicians in making diagnoses
and forecasting prognoses. Strategically fusing these two data
modalities has great potential to improve the accuracy of ma-
chine learning models in clinical prediction tasks. However,
the asynchronous and complementary nature of EHR and
medical images presents unique challenges. Missing modali-
ties due to clinical and administrative factors are inevitable in
practice, and the significance of each data modality varies de-
pending on the patient and the prediction target, resulting in
inconsistent predictions and suboptimal model performance.
To address these challenges, we propose DrFuse to achieve
effective clinical multi-modal fusion. It tackles the missing
modality issue by disentangling the features shared across
modalities and those unique within each modality. Further-
more, we address the modal inconsistency issue via a disease-
wise attention layer that produces the patient- and disease-
wise weighting for each modality to make the final prediction.
We validate the proposed method using real-world large-scale
datasets, MIMIC-IV and MIMIC-CXR. Experimental results
show that the proposed method significantly outperforms the
state-of-the-art models.

Introduction
Clinicians rely on data from various sources, including elec-
tronic health records (EHR) and medical imaging, to make
diagnoses and forecast prognoses (Aljondi and Alghamdi
2020). For instance, when diagnosing pneumonia, EHR data
like blood tests provides information about the patient’s in-
fection status and immune response, while medical images
like Chest X-ray (CXR) can reveal the extent of inflamma-
tion in the lungs (Hoare and Lim 2006). Integrating these
data modalities could shed light on a more comprehensive
and accurate understanding of the patient’s health condition,
potentially leading to a better clinical outcome (Huang et al.
2020a). With the increasing availability of digital clinical
data, research efforts have recently been made to employ
multi-modal machine learning approaches to improve the
performance of clinical prediction tasks, including disease
prediction (Hayat, Geras, and Shamout 2022) and mortality
prediction (Lin et al. 2021).

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The multi-modal data fusion, i.e., the process of combin-
ing different data modalities, plays a central role in the ef-
fective utilization of multi-modal clinical data. Despite the
recent effort, their applications to real-world data are still
hindered due to the complex and complementary nature of
multi-modal clinical data. Specifically, there are fundamen-
tally challenging issues that need to be addressed:
Challenge 1: Missing modality in a highly heterogeneous
setting. Many existing work on clinical multi-modal learn-
ing assumes that both EHR and medical images are avail-
able for all training and testing samples, which is not practi-
cal in real-world clinical settings. For instance, the MIMIC-
IV (Johnson et al. 2023), a real-world ICU dataset, has less
than 20% of patients with X-ray images. Many in-hospital
patients requiring X-ray scans cannot undergo the procedure
due to clinical or administrative reasons, resulting in a sig-
nificant number of patients with missing modalities (Huang
et al. 2020a). Similar problems exist in other domains like
tumor segmentation on multi-modal MRI images (Zhao,
Yang, and Sun 2022), where generative machine learning
models are commonly used to synthesize the missing modal-
ity (Sharma and Hamarneh 2019). However, accurately gen-
erating missing medical images using EHR data is infeasible
because EHR contains information about a patient’s clinical
conditions, medical history, and treatments, but they do not
provide a detailed enough picture of the patient’s anatomy
to generate a missing modality of medical imaging, such as
a chest X-ray. Late fusion is a common approach to tack-
ling missing modalities in the fusion of EHR and medi-
cal imaging, where separate prediction models are learned
for different modalities and the fusion happens only in the
decision level (Huang et al. 2020a). This approach fails to
fully utilize the interactions between modalities, leading to
undesirable suboptimal performance. Therefore, effectively
capturing the complex interactions between highly heteroge-
neous modalities while handling missing modalities remains
an open challenge.
Challenge 2: Modal inconsistency and patient-specific
modal significance. Even with fully observed data modal-
ities, inconsistencies can arise when different modalities,
such as EHR and CXR, provide inconsistent or even contra-
dictory information regarding the prediction targets. For ex-
ample, in mortality prediction, patients with meningitis may
be identified as having a high risk of mortality based on EHR
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data due to the severity of their symptoms, while their CXR
may not show any signs of complications (Brouwer, Tunkel,
and van de Beek 2010). Conversely, for patients with pneu-
mothorax, CXR may predict a high risk of mortality while
EHR may not indicate so due to the non-specific nature of
the symptoms (Zarogoulidis et al. 2014). The patient vari-
ation makes it even more challenging as the significance
of different data modalities depends on the patient’s med-
ical condition. For example, diabetic patients without spe-
cific symptoms or conditions are usually not recommended
to take X-rays, while those who develop complications like
foot or dental problems need X-rays to assist in diagnosing
and treatment planning (Ahmad 2016). Without appropri-
ately accounting for such inconsistency and patient-specific
significance between modalities, the accuracy of model pre-
diction could be greatly compromised, leading to suboptimal
clinical outcomes. How to effectively handle modal incon-
sistency and patient-dependent modal significance in multi-
modal learning remains an unresolved research problem.

To address the above challenges, we propose a novel
method: Learning Disentangled Representation for Clinical
Multi-Modal Fusion (DrFuse). We hypothesize that EHR
and medical images share a common information compo-
nent. To leverage this shared information, our core idea is
to disentangle the shared information from the modality-
distinct information of EHR and medical images. By doing
so, we learn a shared representation that captures the com-
mon information across both modalities, which enables us to
make more accurate predictions even when one modality is
unavailable, as the shared information can be inferred from
the available modality. To further utilize distinct information
from each modality and allow the patient-dependent modal
significance to be captured, we propose a disease-aware at-
tention fusion module that is regulated by a novel attention
weight ranking loss.

To summarize, our main contributions are three-fold:
• We propose DrFuse to fully utilize information shared

across modalities with disentangled representation learn-
ing. It tackles the missing modality issue as the shared
information is still preserved with the available modality
robustly under an end-to-end learning paradigm.

• DrFuse captures the patient-specific significance of
EHR and medical images for each prediction target and
therefore tackles the modal inconsistency problem. To
the best of our knowledge, this is the first work address-
ing the modal inconsistency issue for highly heteroge-
neous clinical multi-modal data.

• Our experimental results show that DrFuse signifi-
cantly outperforms state-of-the-art models on the phe-
notype classification task in the real-world large-scale
MIMIC-IV dataset.

Related Work
Multi-modal learning for healthcare. It has been shown
that fusing multiple modalities has great potential to en-
hance machine learning models for clinical tasks such as
prognosis prediction (Kline et al. 2022), phenotyping classi-
fication (Hayat, Geras, and Shamout 2022) and medical im-

age segmentation (Huang et al. 2020b). Various data modal-
ities, including electronic health records (EHR), clinical
notes, Electrocardiogram (ECG), omics, chest X-rays, Mag-
netic Resonance Imaging (MRI), and computed tomography
(CT), have been studied in the context of multi-modal learn-
ing (Venugopalan et al. 2021; Mohsen et al. 2022). For ex-
ample, (Pölsterl, Wolf, and Wachinger 2021) combined 3D
image and tabular information for diagnosis. Both (Huang
et al. 2020b) and (Zhi et al. 2022) fused CT images and EHR
for Pulmonary Embolism(PE) diagnosis.
Missing modality. Although the available modalities are
abundant, in practice, some modalities are inevitably miss-
ing (Huang et al. 2020a). Late fusion is a common solution
to handle the missing modality (Yoo et al. 2019). It aggre-
gates the predictions from each modality with a weighted
sum or major voting. As each modality is modeled inde-
pendently, the interaction across modalities cannot be fully
captured and utilized (Huang et al. 2020a). Some recent re-
search adopted generative methods to impute or reconstruct
the missing modality on an instance or embedding level for
compensation. (Ma et al. 2021) reconstructs the features of
missing modality by a Bayesian meta-learning framework.
(Hayat, Geras, and Shamout 2022) utilized an LSTM layer
to generate a representative vector for general cases. (Zhang
et al. 2022) proposed to impute in the latent space with auxil-
iary information. These methods either require prior knowl-
edge or assume different modalities to be similar. It has also
been speculated that results relying on generating missing
representation may not be robust (Li et al. 2023). Another
method is to disentangle the shared and complementary in-
formation across modalities and use the shared information
for reconstruction or downstream tasks (Chen et al. 2019;
Shen and Gao 2019; Wang et al. 2023). Nevertheless, most
of these works focus on modalities with much shared infor-
mation in common, for example, using four modalities of
MRI for brain tumor segmentation. How to handle missing
modality in a highly heterogeneous setting, like the fusion
of EHR and medical image, remains an open challenge.
Modal inconsistency. The issue of model inconsistency has
been recognized in different domains. For example, recent
works utilize the inconsistency between image and text to
detect fake news (Xiong et al. 2023; Sun et al. 2023). The
modal inconsistency issue has also been investigated in sen-
timent analysis using text and images. However, it has not
yet been discussed and addressed in the context of clinical
multi-modal learning.

DrFuse: The Proposed Method
Notations
In this work, we focus on making clinical predictions us-
ing two modalities: electronic health records (EHR), which
are recorded in the form of time series, and chest X-ray
images (CXR). We denote the EHR data of the nth pa-
tient by XEHR

(n) ∈ RTn×J , where Tn and J are the length
of the time series and the number of features, respectively.
We denote the CXR data by XCXR

(n) and the prediction la-
bels by yn. The data of patients who have both modali-
ties is denoted by Dpaired = {(XEHR

(n) ,X
CXR
(n) ,yn)}Nn=1. In
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(a) The architecture overview of DrFuse. (b) The disease-aware attention fusion module.

Figure 1: The overview of the proposed model, DrFuse. It consists of two major components. Subfigure (a): A shared rep-
resentation and a distinct representation are learned from EHR and CXR, where the shared ones are aligned by minimizing
the Jensen–Shannon divergence (JSD). A novel logit pooling is proposed to fuse the shared representations. Subfigure (b):
The disease-aware attention fusion module captures the patient-specific modal significance for different prediction targets by
minimizing a ranking loss.

practice, EHRs are routinely recorded in the clinical pro-
cess but CXR may not always be available. The data of pa-
tients who have only EHR data are denoted by Dpartial =

{(XEHR
n′ ,XCXR

n′ = ∅,yn′)}N ′

n′=1. To take full advantage of
the available data, we use the joint of them as the full dataset,
i.e., D = Dpaired ∪ Dpartial. To ease the notation, we omit the
index of patient n when doing so does not cause confusion.

Overview
An overview of the proposed method is depicted in Fig. 1. It
consists of two main components. The disentangled repre-
sentation learning takes the EHR and CXR data as input and
generates three representations, the EHR distinct representa-
tion hEHR

distinct, the CXR distinct representation hCXR
distinct. A novel

logit pooling is proposed to generate the cross-modal shared
representation hshared while achieving effective distribution
alignment between the two shared representations. To ad-
dress the modal inconsistency issue, we propose a disease-
aware attention-based fusion that adaptively fuses the repre-
sentations extracted in a patient- and disease-specific man-
ner, where the modal significance for each prediction target
can be respected. Finally, the channel-wise prediction com-
ponent makes predictions using the fused representation.

Disentangled Representation Learning
Modal-specific encoders. EHR and CXR are two highly
heterogeneous modalities, requiring separate models to en-
code the raw input data. For each modality, we employ two

encoders with the same architecture to extract the shared and
distinct representations with dimensions of d.

For EHR data, we use Transformer models (Vaswani et al.
2017) as the encoder, given by:

fEHR(X) = Transformer ([ϕ(x1) + δ1, . . . , ϕ(xT ) + δT ]) ,

where ϕ(xt) projects the raw EHR time series into an em-
bedding space at time step t and δt is the positional encod-
ing. To reduce the number of parameters to be learned, we
share the first layer in the two Transformer encoders which
are expected to extract low-level features. To extract repre-
sentations from CXR, we use ResNet50 (He et al. 2016) as
the encoders for CXR data.

Shared representation alignment and logit pooling. The
purpose of learning disentangled representation is to extract
common information that is shared across modalities so that
this shared information can still be fully utilized even when
one modality is missing. To this end, we need to align the
distributions of the shared representations generated from
EHR and CXR data. We interpret the shared representations
hCXR

distinct and hEHR
distinct as logits of two probability distributions

of a latent multivariate binary random variable, and mini-
mize the Jensen–Shannon divergence (JSD) between the in-
duced distributions P = σ(hEHR

distinct) and Q = σ(hCXR
distinct),

where σ(·) denotes the standard logistic function, mapping
the real-value logits h to a probability value.

The JSD, also known as total divergence to the average,
measures the average information that each sample reveals
about the source of the distribution from which it is sampled.
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Recent work has shown that JSD is more stable, consistent,
and insensitive across a diverse range of inputs (Hendrycks
et al. 2020). This is particularly important as hEHR

distinct and
hCXR

distinct are generated from encoders with very different ar-
chitectures from heterogeneous input, resulting in a highly
diverse range of values. Formally, the loss function of shared
representation alignment is given by

LJSD =
1

2
(KL(P ||M) + KL(Q||M)) , (1)

where M = (P + Q)/2 denotes the mixture of P and Q,
and KL denotes the Kullback–Leibler divergence. The log-
its corresponding to M then can be computed by σ−1(M),
where σ−1(·) denotes the logit function, the inverse of the
standard logistic function. We define the process of obtain-
ing the logits of the mixture of the induced distributions from
hEHR

distinct and hCXR
distinct as logit pooling, given by:

Definition 1 (Logit Pooling). The logit pooling of h1 and
h2 is given by:

LogitPool(h1, h2) =σ−1

(
σ(h1) + σ(h2)

2

)
= log

2eh1+h2 + eh1 + eh2

2 + eh1 + eh2
.

(2)

Since the shared representations are aligned, when both
modalities are present, we can obtain the final shared repre-
sentation via logit pooling. On the other hand, when CXR is
missing, we can directly use the shared representation ex-
tracted from EHR data as the final shared representation.
That is,

hshared =

{
LogitPool(hEHR

shared,h
CXR
shared) if XCXR ̸= ∅,

hEHR
shared otherwise.

(3)

Representation disentanglement via orthogonality. The
information shared across modalities and that is distinct
within each modality are not naturally separated. To en-
able the modal-distinct ones to capture information that is
not shared by the other modality, we impose orthogonal-
ity constraints to disentangle the modal-distinct information
and reduce the redundancy in the shared and the modal-
distinct representations (Jia et al. 2020). The orthogonality
constraint can be enforced by minimizing the absolute value
of the cosine similarities between the distinct representation
and the shared representation for each modality. Formally,
we have:

LEHR
orth =ℓorth(h

EHR
shared,h

EHR
distinct)

LEHR
orth =ℓorth(h

CXR
shared,h

CXR
distinct),

(4)

where ℓorth(h1,h2) = |⟨h1,h2⟩|
||h1||2·||h2||2 , and ⟨h1 · h2⟩ denotes

the inner product between vectors h1 and h2.

Disease-aware Masked Attention Fusion
Inspired by the fact that clinicians rely on different diagnos-
tic tools on varying scales according to the patient’s health
condition and the particular disease, we propose to learn
the significance of each modal regarding predicting differ-
ent diseases for different patients. To this end, we develop

a disease-aware masked attention fusion module that could
respect the importance of each modality for different predic-
tion targets.

First, we compute the query vector by taking the average
of the available representations followed by a linear projec-
tion, given by:

q =

{
(hEHR

distinct + hshared + hCXR
distinct)W

Q/3 if XCXR ̸= ∅,
(hEHR

distinct + hshared)W
Q/2 otherwise.

(5)

The query vector can be regarded as a summary of the med-
ical status of the patient. To allow different modal signifi-
cance to be captured, we compute a set of “target vectors”,
each corresponding to a particular prediction target:

Kc = HWK
c , (6)

where c denotes the index of the prediction target and H is
obtained by stacking the representations row-wisely:

H =
[
(hEHR

distinct)
⊤, (hshared)

⊤, (hCXR
distinct)

⊤] ∈ R3×d.

We follow the scaled-product attention (Vaswani et al. 2017)
to generate the attention weightings of the three representa-
tions for each prediction target:

αc = softmax

(
qKc +m√

d

)
, c = 1, . . . , |C|, (7)

where |C| is the number of prediction classes and m ∈
{1,−∞}3 is a masking vector. It takes the value of ones ex-
cept the third entry,m3, which equals negative infinity when
CXR is missing, one otherwise. The final representation for
the cth prediction target is given by:

h̃c = α⊤
c HWV , (8)

where WQ, WK
c , and WV are projection matrices.

Attention ranking loss. To further enforce the modal sig-
nificance to be explicitly captured, we propose an atten-
tion ranking loss. First, we train auxiliary classifiers using
hEHR

distinct, hshared, and hCXR
distinct as input jointly with the model

learning, producing three predictions:

ŷ1 = g1(h
EHR
distinct), ŷ2 = g2(hshared), and ŷ3 = g3(h

CXR
distinct),

where g’s are parameterized by two-layer feedforward net-
works. We use cross-entropy as the auxiliary loss function:

Laux =
3∑

i=1

|C|∑
c=1

ℓci

with ℓci = yc log(ŷci) + (1− yc) log(1− ŷci).

(9)

The auxiliary loss function reflects the capability of each
representation to predict the target. Thus, we enforce the at-
tention weights to have a ranking consistent with the order
of three loss values. We use the following margin ranking
loss:

Lattn =
1

2|C|

|C|∑
c=1

3∑
i=1

∑
j ̸=i

max
(
0,1[ℓci < ℓcj ](αcj − αci) + ϵ

)
,

(10)
where 1[·] is the indicator function. It equals one if the con-
dition holds, zero otherwise. Eq. (10) imposes penalty when
the prediction yci is better than ycj but the attention weight-
ing αci is not greater than αcj with a margin of ϵ.
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Figure 2: Data flow in the disentangled representation learn-
ing module when the CXR modality is missing. The shared
representation extracted from EHR will be directly used as
hshared. Inactive components and loss terms are grayed out.

Learning Algorithms
After obtaining the final representations h̃c, the final pre-
diction for the cth class can be obtained using a feedforward
layer: ŷc = ψc(h̃c). The loss function for the final prediction
can be given by cross entropy as:

Lpred =

|C|∑
c=1

yc log(ŷc) + (1− yc) log(1− ŷc). (11)

The overall loss function to minimize is then given by
adding the distribution alignment loss in Eq. (1), the disen-
tanglement loss in Eq. (4), the auxiliary loss in Eq. (9), the
attention ranking loss in Eq. (10), and the final prediction
loss in Eq. (11):

L = Lpred+λ1LJSD+λ2(LEHR
orth +LCXR

orth )+λ3(Lattn+Laux). (12)

Training with missing modality. When CXR is not avail-
able, we extract the disentangled representation from EHR
data only and use the EHR shared representation as hshared
directly, as in Eq. (3), and loss terms in Eq. (12) involving
CXR representations are removed. Therefore, the objective
function to be optimized over the entire training set with par-
tially missing CXR data is given by:

min
1

|D|

 ∑
i∈Dpaired

Li +
∑

i∈Dpartial

(
Lpred + λ2LEHR

orth

) ,

(13)
where i is the index of patients.

Experiments
Experiment Settings
Datasets and preprocessing. We use the large-scale real-
world EHR datasets, MIMIC-IV (Johnson et al. 2023) and
MIMIC-CXR (Johnson et al. 2019) to empirically evalu-
ate the predictive performance of DrFuse. MIMIC-IV con-
tains de-identified data of adult patients admitted to either
intensive care units or the emergency department of Beth Is-
rael Deaconess Medical Center (BIDMC) between 2008 and
2019. MIMIC-CXR is a publicly available dataset of chest

Missing
Modality Training Validating Testing

full dataset ✓ 42,628 4,802 11,914
matched subset × 7,637 857 2,136

Table 1: Number of samples in the two datasets constructed.

radiographs collected from BIDMC, where a subset of pa-
tients can be matched with those in MIMIC-IV.

We follow similar procedures to preprocess the data as
those in (Hayat, Geras, and Shamout 2022). We extract
17 clinical variables that are routinely monitored in ICU,
including five categorical variables and twelve continuous
ones. We use disease prediction as the prediction task, where
the 25 disease phenotype labels are generated based on di-
agnosis codes following (Harutyunyan et al. 2019). To bet-
ter align with the clinical need for early prediction, we make
predictions of the disease phenotypes using data within the
first 48 hours of the ICU admission. Accordingly, we re-
trieve the last Anterior-Posterior (PA) projection chest X-
ray in the same observation window. In total, we extracted
59, 344 ICU stays with EHR records, of which 10, 630 are
associated with CXR.

To test DrFuse in different modality missing settings,
we construct two datasets using the extracted data: a full
dataset containing all patients regardless of having CXR or
not, and a matched subset only containing patients having
both EHR and CXR. We randomly split the dataset with a
ratio of 7:1:2 for training, validation, and testing. It is worth
noting that patients in the validation and test subsets of the
matched subset are also split into validation and test subsets,
respectively. This allowed us to train the model using one
dataset and test it with the other. Table 1 shows the number
of patients having each data modality.

Evaluation metrics. Due to the highly imbalanced nature
of the disease labels (see Table 3 for prevalence), we evalu-
ate the performance of DrFuse and baseline models using
Area Under the Precision-Recall Curve (PRAUC).

Experiment implementation. The experiment environ-
ment is a machine equipped with dual Intel Xeon Silver 4114
CPUs and four Nvidia V100 GPU cards. The model is im-
plemented using Pytorch 2.0.1. We use grid search to tune
the hyperparameters using the validation set and report that
over the test set. The search spaces of the hyperparameters
are: λ1 ∈ {0, 0.1,1}, λ2 ∈ {0, 0.1,1}, λ3 ∈ {0,0.5, 1},
lr ∈ {0.0001, 0.001}, where the value in bold indicates
the optimal choice. When training with the matched subset,
we randomly remove the CXR of 30% samples within each
mini-batch as an additional data augmentation.

Baseline models. We compare against the following base-
lines. MMTM (Joze et al. 2020) is a module that can lever-
age the information between modalities with flexible plug-
in architectures. Since the model assumes full modality,
we compensate for the missing modality CXR with all ze-
ros during training and testing. DAFT (Pölsterl, Wolf, and
Wachinger 2021) is a module that can be plugged into CNN
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Trained with the matched subset Trained with the full dataset
Model testing on matched subset testing on full dataset testing on matched subset testing on full dataset

Transformer 0.408 (0.368, 0.455) 0.374 (0.355, 0.395) 0.435 (0.393, 0.481) 0.418 (0.398, 0.440)
MMTM 0.416 (0.378, 0.462) 0.359 (0.342, 0.379) 0.422 (0.383, 0.469) 0.407 (0.387, 0.428)
DAFT 0.417 (0.376, 0.462) 0.348 (0.331, 0.368) 0.430 (0.389, 0.477) 0.409 (0.389, 0.431)
MedFuse 0.427 (0.387, 0.473) 0.329 (0.312, 0.347) 0.434 (0.394, 0.481) 0.405 (0.385, 0.427)
MedFuse-II 0.418 (0.378, 0.463) 0.329 (0.314, 0.348) 0.427 (0.387, 0.473) 0.412 (0.391, 0.433)
DrFuse 0.450 (0.426, 0.498) 0.384 (0.371, 0.402) 0.470 (0.420, 0.512) 0.419 (0.391, 0.434)

Table 2: Overall performance measured by the macro average of PRAUC over all 25 disease phenotype labels for different
combinations of training and test subsets. Numbers in bold indicate the best performance in each column. DrFuse consistently
outperforms all baselines in all settings with a significant margin.

Figure 3: t-SNE visualization of distinct and shared features
for the test set in the matched subset. DrFuse could well
align the distributions of the EHR and CXR shared represen-
tations, as well as disentangle the distinct representations.

models to exchange information between tabular data and
image modality. Similarly, we replace the input of CXR
with matrices of all zeros during training and testing. Med-
Fuse (Hayat, Geras, and Shamout 2022) uses an LSTM-
based fusion to combine features from the image encoder
and EHR encoder. Missing modality is handled by learning
a global representation for the missing CXR. MedFuse-II
is a variant of MedFuse with its CXR encoders and EHR
encoders replaced by ResNet50 and Transformer, respec-
tively, to ensure a fair comparison with DrFuse. Trans-
former (Vaswani et al. 2017) is the EHR encoder used by
DrFuse, which is a uni-modal method that takes only EHR
as input.

Overall Performance of Disease Prediction
The performance in terms of disease phenotype prediction
is summarized in Table 2. We report the macro average
of PRAUC over all 25 disease phenotype labels together
with the corresponding 95% confidence interval obtained
through 1000 iterations using the bootstrap method. The re-
sults show that DrFuse consistently outperforms all base-
lines compared with a large margin. When trained and tested
both with the matched subset, i.e., no missing modality

is involved, DrFuse achieves 5.4% relative improvement
against MedFuse, demonstrating that the proposed DrFuse
could achieve effective modality fusion. When trained with
the full dataset and tested with the matched subset, DrFuse
achieves 8% relative improvement against MedFuse, sug-
gesting that DrFuse could fully utilize the training samples
with missing modalities. When tested on the full dataset,
all methods, including the uni-modal Transformer, obtain
worse results compared with the test scores obtained on the
matched subset. This suggests that a severe domain shift
could exist between the two subsets. This might be because
patients who could not undergo X-ray scans may have more
complex health conditions and thus are much harder to pre-
dict. Having said so, DrFuse still obtains the best perfor-
mance in the presence of such potential severe domain shift
in the full dataset benefited from the representation disen-
tanglement.

Disease-Wise Prediction Performance
To gain more insights into the prediction performance,
we show the disease-wise PRAUC scores obtained by the
uni-modal methods, MedFuse, and DrFuse in Table 3.
Numbers inside parentheses indicate the relative difference
against the best uni-modal prediction. The results show that
combining EHR and CXR is not always helpful for all dis-
eases, due to the modal inconsistency issue as mentioned
earlier. For example, when predicting conduction disorders
and other upper respiratory disease, the performance of
MedFuse drops 40.5% and 30.9%, respectively, compared
with uni-modal predictions. On the contrary, DrFuse only
drops 1% for conduction disorders and achieves 24.2% im-
provement for other upper respiratory disease. This demon-
strates that the proposed DrFuse could better address the
modal inconsistency issue by inferring the disease-specific
and patient-specific modal significance.

Visualization of Disentangled Representation
To further validate the effectiveness of the disentangled
representation learning, we visualize the shared and dis-
tinct representations for EHR and CXR data with t-SNE in
Fig. 3. The shared representations, hEHR

shared and hCXR
shared, are

well blended as a cluster. Meanwhile the distinct represen-
tations, hEHR

distinct and hCXR
distinct, remain well-separated not just

from each other but also from the shared features.
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Disease Label Prevalence ResNet50
(CXR)

Transformer
(EHR) MedFuse MedFuse-II DrFuse

Acute and unspecified renal failure 0.32 0.469 0.537 0.559 (4.1%) 0.541 (0.7%) 0.541 (0.7%)
Acute cerebrovascular disease 0.07 0.145 0.457 0.461 (0.9%) 0.441 (-3.5%) 0.441 (-3.5%)

Acute myocardial infarction 0.09 0.165 0.170 0.217 (27.6%) 0.177 (4.1%) 0.193 (13.5%)
Cardiac dysrhythmias 0.38 0.566 0.513 0.552 (-2.5%) 0.517 (-8.7%) 0.568 (0.4%)

Chronic kidney disease 0.24 0.400 0.424 0.455 (7.3%) 0.455 (7.3%) 0.445 (5%)
Chronic obstructive pulmonary disease 0.15 0.374 0.239 0.323 (-13.6%) 0.317 (-15.2%) 0.355 (-5.1%)
Complications of surgical/medical care 0.22 0.303 0.408 0.379 (-7.1%) 0.395 (-3.2%) 0.407 (-0.2%)

Conduction disorders 0.11 0.625 0.237 0.372 (-40.5%) 0.231 (-63%) 0.619 (-1%)
Congestive heart failure; nonhypertensive 0.29 0.593 0.509 0.597 (0.7%) 0.558 (-5.9%) 0.629 (6.1%)

Coronary atherosclerosis and related 0.34 0.657 0.559 0.603 (-8.2%) 0.588 (-10.5%) 0.640 (-2.6%)
Diabetes mellitus with complications 0.12 0.217 0.520 0.469 (-9.8%) 0.505 (-2.9%) 0.486 (-6.5%)

Diabetes mellitus without complication 0.21 0.276 0.361 0.338 (-6.4%) 0.363 (0.6%) 0.381 (5.5%)
Disorders of lipid metabolism 0.41 0.587 0.593 0.598 (0.8%) 0.612 (3.2%) 0.612 (3.2%)

Essential hypertension 0.44 0.558 0.578 0.592 (2.4%) 0.601 (4%) 0.572 (-1%)
Fluid and electrolyte disorders 0.45 0.563 0.675 0.675 (0%) 0.663 (-1.8%) 0.660 (-2.2%)

Gastrointestinal hemorrhage 0.07 0.121 0.193 0.152 (-21.2%) 0.152 (-21.2%) 0.204 (5.7%)
Hypertension with complications 0.22 0.378 0.393 0.418 (6.4%) 0.424 (7.9%) 0.409 (4.1%)

Other liver diseases 0.17 0.341 0.268 0.351 (2.9%) 0.319 (-6.5%) 0.389 (14.1%)
Other lower respiratory disease 0.13 0.182 0.170 0.167 (-8.2%) 0.176 (-3.3%) 0.186 (2.2%)
Other upper respiratory disease 0.05 0.102 0.165 0.114 (-30.9%) 0.161 (-2.4%) 0.205 (24.2%)

Pleurisy; pneumothorax; pulmonary collapse 0.10 0.195 0.126 0.191 (-2.1%) 0.156 (-20%) 0.192 (-1.5%)
Pneumonia 0.18 0.354 0.404 0.400 (-1%) 0.428 (5.9%) 0.419 (3.7%)

Respiratory failure; insufficiency; arrest (adult) 0.28 0.520 0.607 0.591 (-2.6%) 0.605 (-0.3%) 0.615 (1.3%)
Septicemia (except in labor) 0.22 0.371 0.538 0.522 (-3%) 0.514 (-4.5%) 0.528 (-1.9%)

Shock 0.17 0.342 0.558 0.567 (1.6%) 0.545 (-2.3%) 0.542 (-2.9%)

Average Rank 3.96 3.24 2.68 2.84 2.04

Table 3: The PRAUC score for each disease label. “ResNet50” and “Transformer” indicate the performance obtained using
only CXR data and EHR data, respectively. The percentages within parentheses indicate the relative difference against the best
uni-modal prediction. Results show that DrFuse could better address the inconsistency issue, resulting in the highest average
rank over all disease labels. Results with relative differences beyond ±5% over the best uni-modal predictions are highlighted.

Model PRAUC
@matched subset

PRAUC
@full dataset

w/o disentangled 0.446 (0.411, 0.501) 0.374 (0.355, 0.395)
MSE alignment 0.447 (0.410, 0.498) 0.375 (0.356, 0.396)

w/o attn. ranking 0.438 (0.396, 0.485) 0.361 (0.343, 0.382)

DrFuse 0.450 (0.426, 0.498) 0.384 (0.371, 0.402)

Table 4: Results of the ablation study tested over different
datasets by removing each component from DrFuse. The
models are trained using the matched subset.

Ablation Study
To gain further insights into the source of performance gain
of DrFuse, we conduct an ablation study by training the
model using the matched subset with each component of
DrFuse being removed. The results are summarized in Ta-
ble 4. The first row is obtained by removing LJSD and Lorth
and the second row is obtained by replacing the JSD with
the MSE loss and the logit pooling with the average pool-
ing. A significant performance drop can be observed when
the model is tested using the full dataset. This shows that the
proposed disentangled representation learning is effective in
handling missing modalities. The third row removes the at-

tention ranking loss Lattn, where a significant performance
drop is observed, showing that capturing disease-wise modal
significance is important for the disease prediction task and
the proposed method is effective in achieving this goal.

Conclusion
In this paper, we propose a novel model, DrFuse, that
learns the disentangled representation from EHR and CXR
data to achieve medical multi-modal data fusion in the
presence of missing modality and modal inconsistency.
A shared representation and a distinct representation are
learned from each modal. We align the shared representa-
tions by minimizing the Jensen–Shannon divergence (JSD)
and achieve representation disentanglement via imposing
orthogonal constraints. A logit pooling operation is de-
rived to fuse the shared representations. Besides, we pro-
pose a disease-aware attention fusion module that captures
the patient-specific modal significance for each prediction
target via an attention ranking loss. The experimental re-
sults demonstrate that the proposed model is effective in
achieving disentangled representation, addressing the miss-
ing modality and modal inconsistency issues. For future re-
search, we will focus on the domain shift between patients
with and without CXR jointly with multi-modal learning.
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