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Abstract

Personalized federated learning is a new paradigm to address
heterogeneous problems (e.g. issues with non-i.i.d. data) in
federated learning. However, existing personalized federated
learning methods lack standards for how personalized and
shared parts of the models are designed. Sometimes, man-
ual design can even lead to worse performance than non-
personalization. As a result, we propose a new algorithm for
personalized federated neural architecture search, called PerFe-
dRLNAS, to automatically personalize the architectures and
weights of models on each client. With such an algorithm, we
can solve the issues of low efficiency as well as failure to adapt
to new search spaces in previous federated neural architecture
search work. We further show that with automatically assign-
ing different client architectures can solve heterogeneity of
data distribution, efficiency and memory in federated learning.
In our experiments, we empirically show that our framework
shows much better performance with respect to personalized
accuracy and overall time compared to state-of-the-art meth-
ods. Furthermore, PerFedRLNAS has a good generalization
ability to new clients, and is easy to be deployed in practice.

Introduction
Federated learning (McMahan et al. 2017) (FL) has emerged
as an important paradigm in distributed machine learning,
where a large number of clients participate in a collabora-
tive training session while keeping their data private. In fed-
erated learning, clients may have different computational
speed and different data distributions, and such heterogeneity
may significantly affect the performance of federated learn-
ing (Caldas et al. 2018), especially with the conventional
federated averaging (FedAvg) algorithm (Oh, Kim, and Yun
2022). As a result, personalized federated learning (Tan et al.
2023) (PFL) emerged as a new paradigm to address such
heterogeneity and achieve better performance. The objective
of personalized federated learning is to train a personalized
model for each client (Collins et al. 2021; Fallah, Mokhtari,
and Ozdaglar 2020).

Though many solutions have been proposed for personal-
ized federated learning, each of them has its own definition
of the parts of the model to be personalized. Such a lack
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Figure 1: Summary of shared and personalized parts of a
model in four typical methods in personalized FL.

of conventional wisdom and standards may confuse users
when they choose their solutions. Under different settings of
federated learning, users need to choose different manually
defined personalization policy to reach optimal results. For
instance, Figure 1 includes several typical methods of person-
alized federated learning, and summarizes how they defined
shared and personalized parts of the models. Different meth-
ods have different manually set definitions of which parts
we should share or personalize. Such manual design led to
varying performance across these methods, and even with an
abundance of existing work, failed to answer two questions
adequately: (1) Why personalizing models can solve such a
heterogeneous problem in federated learning? (2) Since there
are so many personalization policies, is there a standard and
automated way of deciding personalized and shared parts of
the models on clients to achieve optimal performance?

Apart from conventional personalized federated learning
methods, new methods leveraging automated machine learn-
ing (AutoML) are proposed to seek for automatic ways to
achieve better performance. Federated Neural Architecture
Search (FedNAS) (He, Annavaram, and Avestimehr 2020)
was proposed to directly conduct neural architecture search
(NAS) in the federated learning setting, with which each
client can obtain a model of a different structure along with
different weights. However, previous work either search for
only a global neural architecture shared among all or man-
ually defined clusters of the clients instead of personalized
architecture for each client (Yao et al. 2021; Garg, Saha, and
Dutta 2021; Laskaridis, Fernandez-Marques, and Dudziak
2022) or incrementally carry out a neural architecture search
on each client (He, Annavaram, and Avestimehr 2020; Mush-
taq et al. 2021). Such simple replacements of fixed models in
conventional personalized federated learning with an NAS su-
pernet still cannot provide an insight on personalizing models
without manual settings.
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In this paper, towards setting a new standard for deciding
personalized and shared parts of the models in an automated
fashion, we propose a new framework called personalized fed-
erated neural architecture search via reinforcement learning
(PerFedRLNAS). PerFedRLNAS works as a general frame-
work, and can partially personalize models automatically
without manual settings for personalized and shared parts.
In our framework, each client has a model of a customized
architecture with customized weights. Which parts of their
models need sharing, which parts need personalizing, and
which parts should be shared among which clients will be
automatically decided with the optimal policy. In other words,
the personalized and shared parts of the models are decided
directly by the objective. Back to the first question, we show
that having partly personalized architectures and models on
each client can help solve data and system heterogeneity.

Apart from the failure of answering those two core ques-
tions, another existing limitation of current personalized fed-
erated learning and federated neural architecture search so-
lutions is that they lack flexibility adapting to various deep
neural network models, which prevents them from enjoy-
ing better performance. However, the structures of neural
networks evolve very quickly, and the new framework we
proposed can be implemented with arbitrary NAS supernet
models. If a new promising NAS supernet model is proposed
later, PerFedRLNAS can adapt it into the federated setting.

In addition, there is another limitation that prevents previ-
ous federated NAS methods from being applied in personal-
ized federated learning effectively: low efficiency. We keep
the architecture search phase entirely on the server, and only
a single model — instead of the entire supernet — is trans-
mitted between the server and the clients. With our approach,
clients only need to perform local training over a normal
scaled neural network model, and no extra communication
and local computation overhead will be incurred. The overall
efficiency is comparable to FedAvg.

Finally, we empirically show that PerFedRLNAS outper-
forms FedAvg, local training and existing state-of-the-art
personalized and heterogeneous federated learning methods.
PerFedRLNAS can achieve much better performance in terms
of accuracy and efficiency among different objectives, dif-
ferent heterogeneous settings and different backbone models
and search space. We also verify that PerFedRLNAS general-
izes well to new clients.

Related Work
Personalized Federated Learning
Recently, a variety of works has studied personalized feder-
ated learning, for example, adopting partial personalization
policy (Pillutla et al. 2022; Collins et al. 2021; Oh, Kim, and
Yun 2022). FedTP (Li et al. 2023b) customized attentions
in vision image transformers (ViT) since previous methods
do not work as well for ViTs as for convolutional neural net-
works. Ditto (Li et al. 2021) additively mixed the local and
global models. Other methods leveraged meta learning (Fal-
lah, Mokhtari, and Ozdaglar 2020), KNN algorithm (Marfoq
et al. 2022), Gaussian processes (Achituve et al. 2021), or
hyper-network (Shamsian et al. 2021). HeteroFL (Diao, Ding,

and Tarokh 2021) aggregated models of different channel
widths to solve system heterogeneity. Some researchers (Qu
et al. 2022) investigated this problem through changing model
architecture. FedDyn (Acar et al. 2021) proposed dynamic
regularization method to solve device heterogeneity. How-
ever, existing methods still cannot automatically decide how
the personalized parts and shared parts of the models are
customized directly based on the objectives.

Neural Architecture Search
Supernet-based one-stage neural architecture search
(NAS) (He, Zhao, and Chu 2021; Elsken, Metzen, and
Hutter 2019) enables efficient architecture optimization
and can achieve state-of-the-art results. A supernet is an
over-parameterized neural network. After the supernet is well
trained, we can sample various single models with different
architectures without further retraining. For example,
NASViT (Gong et al. 2022) is one of the existing state-of-
the-art work, searching for ViTs. MobileNetV3 (Howard
et al. 2019) is a family of convolutional neural networks
(CNN) obtained by neural architecture search.

Federated Neural Architecture Search
Federated neural architecture search conducts NAS in the
federated learning setting, so that each client can obtain
models with different architectures and weights. Direct Fed-
NAS (Garg, Saha, and Dutta 2021) and FedNAS (He, An-
navaram, and Avestimehr 2020) directly treated the super-
net as the global model in FedAvg. FedorAS (Laskaridis,
Fernandez-Marques, and Dudziak 2022) needed three phases:
supernet training, searching and the fine-tuning. These meth-
ods still search for a global model and failed to do personal-
ization. SPIDER (Mushtaq et al. 2021) added a customized
architecture search phase during the client local computing
while the overhead is very large for transmitting the whole
supernet and conducting NAS on the local clients. FedRL-
NAS (Yao et al. 2021) sent only the subspace to each client,
but it still only searched for a global model and had three
phases: warm-up, searching and training which is also ineffi-
cient. Zhu and Jin (Zhu and Jin 2021) proposed to leverage
evolution methods to do federated NAS. However, evolu-
tion methods are quite inefficient to apply into real world
use cases. We propose a new method which can overcome
these drawbacks and has the flexibility to be implemented on
arbitrary neural architecture search supernets.

Problem Formulation
In personalized federated learning, we have K clients in total,
and each client has its own local objective. We denote them as
fi, ∀i ∈ [K]. In personalized federated learning, customized
weight wi does not need to be and is usually not the same as
global weights. It is specific to each client. So, the problem is

min
wi

∑
i∈[K]

fi(wi) (1)

where we are trying to make performance on each local
dataset good. If wi = w, only a global model is used. If
fi(wi) = E(xi,yi)∼Di

[l(w(xi), yi)], ∀i ∈ [K] where w is a
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Figure 2: The overview flowchart of the PerFedRLNAS

Input
Resolution 128, 192, 224, 256

Block Channel
Width

Block
Numbers

Kernel
Size

Convolution 16, 24 1 3, 5, 7
Transformer 16,24, 32 1, 2, 3, 4, 5 -

Table 1: An example of search space of the ViT based NAS
structure, where we have search dimensions over input reso-
lution, convolutions blocks and transformer blocks.

shared global model and l is the loss function, this is con-
sistent with the standard formulation of FedAvg. We use
federated neural architecture search to automatically decide
the shared weights and customize the local weights of clients.
The formulation is

min
αi,A

∑
i∈[K]

fi(wi), (2)

s.t. wi = S(αi,A) (3)

whereA is the supernet, αi are structure parameter indicating
the structure of each local model, S is a sampling function:
for example, passing αi through a softmax function and pick
one operation on each edge of the supernet.

The difference between different personalized federated
learning methods is how the constraints (Equation (3)) are
designed. Such constraints do not have to involve wi. In
conventional personalized federated learning methods, there
are no supernet and architecture parameters. Equation (3)
is predefined by a manually set policy. For example, in Fe-
dRep (Collins et al. 2021), wi is directly composed of head
hi and representation ϕi. The constraint can also be a regu-
larization form over loss function (FedProx (Li et al. 2020)).

Personalized Federated Neural Architecture
Search via Reinforcement Learning

In previous work on federated NAS, methods were specific to
a particular NAS search space. However, as new models and
new search spaces are continuously proposed, the federated
NAS framework should have the ability to adapt to new NAS

supernets. In this section, we will give out the routine building
up PerFedRLNAS framework with an arbitrarily given NAS
supernet and the solution to searching for the best model
architecture on each client.

Build up Personalized Federated NAS Framework
We use A to denote the supernet, or we call it search space,
which is placed on the server. A supernet can be of any
structure and each has many different search dimensions with
various candidate operations. Each search dimension does
not need to have the same number of candidate operations.
We use an example search space shown in the Table 1 to
better illustrate our method.

In a supernet, there are D search dimensions. In this ex-
ample, a convolution block has search dimensions of width,
block numbers and kernel sizes; a transformer block has
search dimensions of width and block numbers; and the in-
put resolution has search dimensions of width. As a result,
there are 6 search dimensions. For each search dimension,
we assign the probability of each choice: pd1, · · · , pdkd

, where
d means the index of each dimension and kd is the number of
choices. In this example, when d = 4, it means the kernel size
dimension of Conv. We have three choices: 3, 5, 7. So, we
have k4 = 3. We can know that p41 is the probability of choos-
ing 3, p42 is the probability of choosing 5 and p43 is the prob-
ability of choosing 7. We have

∑
j∈[kd]

pdj = 1, ∀d ∈ [D].
Next, we assign an architecture parameter αd

i,j ∈ R for each
probability pdi,j , where i is the client index. We can get the
probability through a softmax.

pdi,j =
eα

d
i,j∑

j∈[kd]
eα

d
i,j

, ∀i ∈ [K], d ∈ [D] (4)

For each client, we can assign such architecture parameters.
We use αi to represent the model structure on each client.
With each αd

i , we can sample and generate an one-hot vector
vdi . For example, v2 = [1 0]⊤ means in current communica-
tion round, on the dimension of width of Conv., we choose
the option of 16. We can sample the model wi for client i
with all vdi , d ∈ [D] of client i, which is the sample policy
in wi = S(αi,A). So, we can represent arbitrary supernet
models in such a formulation.

To aggregate the single models into the supernet during
aggregation in each round, we follow the conventional meth-
ods of aggregation in previous federated neural architecture
search methods. We directly expand the single model to the
same dimension as the supernet with filling in the zero and
conducting aggregation. When we conduct the averaging
operation, we divide the model weight with the counts of
non-zero occurrences regarding each parameter.

Solve PerFedNAS via Reinforcement Learning
In the next step, we view our problem as a Markov Decision
Process (MDP) and illustrate the solution to the architecture
search via reinforcement learning. We use on-policy online
RL here. The advantage of adapting RL methods into FL is
that each client can be solved with an individual agent evalu-
ating the action. Each client observes the reward individually.
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Markov Decision Process. We view each communication
round as one step of MDP and follow the conventional steps
in reinforcement learning to define states and actions:

State: The state include two parts: the supernet A and K
clients parameters αi. Though these are the states of clients,
they are stored and processed only on the server. The initial
value of αi are all set to 0 which represents that all operations
have the same probabilities to be selected.

Action: Each client will have a virtual agent placed on
the server responsible for searching architectures for each
client. In each communication round, this agent will send a
personalized model server sampled from the supernet accord-
ing to the αi to the client. Each client will then do the local
training on their local dataset and return the trained model,
along with test accuracy to the server. We use ai, i ∈ [K] to
denote action of each agent.

Policy: We can use the architecture parameter we design
to represent our policy. παi(A, ati, rti |A, a

t−1
i , rt−1

i ) is the
policy at t communication round for each virtual agent. The
state is (A, αt−1

i ) and takes the action at−1
i to turn state into

(A, αt
i), according to reward ri.

In the final state, the αi on each client will indicate the best
architecture for each client searched, the model weights on
clients can be directly deployed without any further training.

Search through policy gradient. So, the key part is to opti-
mize the policy parameters so as to find the best personalized
model for each client. In each communication round, for each
participated client, it will have a reward and we leverage this
reward ri to update the policy net, which is parameterized
by αi. We maximize the expected reward of the sub-model
sampled from the supernet by ascending gradients:

∇Jαi
(αi) = ∇αi

Evi∼αi
[ri]

=
∑
d∈[D]

∇αip
d
i r(A(e = od))

≈ ri∇αi
log(pi(vi))

(5)

The meaning of e = od means on the search dimension d,
the chosen option is od. We can further calculate Equation (5)

∇αd
i
log(pdi (v

d
i )) = δ − pdi , ∀d ∈ [D] (6)

where we assume the n-th entry of vdi is 1 and for m ∈ [kd]:

δm =

{
0,m ̸= n
1,m = n

(7)

With such a formulation, we can then optimize the policy
network which is one layer of softmax. This makes the server
barely have extra overhead besides aggregation.

Design of reward functions. To accommodate arbitrary
levels of heterogeneity in federated learning, we can design
reward functions based on our objective. Here, we set our ob-
jective of solving statistical and computing speed heterogene-
ity with designing a reward function considering accuracy
and efficiency: ri(wi) = Acci − RTi to add in the tradeoff
between round time (RT) of each client and local inference

Algorithm 1: PerFedRLNAS

1: Input: K clients, with objective functions fi, ∀i ∈ [K].
2: Initialize supernet A0, αi.
3: for each round r ← 1 to R do
4: On Server:
5: Sample N clients: N ⊆ {1, . . . ,K}.
6: Each client weight wi ← Sample(αi,A) and send.
7: On Client:
8: for on client i ∈ N parallel do
9: Conduct Local Update with objective function fi.

10: Upload wi and test accuracy to the server.
11: end for
12: On Server:
13: Receive wi and check the round time of client i and

calculate score ri, i ∈ N .
14: Aggregate wi to update A.
15: for Each client i ∈ N do
16: Use ri as the reward function of each policy παi

and update αi with policy gradient.
17: end for
18: end for

accuracy. Since each client has a reward in each communi-
cation to reflect their performance individually, each reward
will not have extreme steep changes. The round time is the
time spent from sending out the model until receiving the
clients’ updated model parameters. However, directly using
the value of accuracy and round time can cause the training
to be unstable. As a result, in each round, we just need to
update the accuracy of the participated clients this round
in the history information and calculate average accuracy
among clients. And we can still select a part of the clients
to participate in each round as usual FL. Clients only need
to send accuracy besides model parameters, which approx-
imately adds no communication overhead. The round time
is in real time. And min(RT) means the shortest round time
over participated clients in each communication round. To
address stability concerns, probably caused by too large vari-
ance between different clients’ training time, we use λtime to
regulate accuracy and round time to the same scale.

ri(wi) = Acci −Acc− λtime(RTi −min(RT)) (8)

PerFedRLNAS Algorithm
With the framework of PerFedRLNAS and the reinforce-
ment learning solution, we can initiate personalized federated
learning as shown in the Algorithm 1.The whole process is
depicted in Figure 2, the server will sample the client mod-
els and distributed them to the clients. As standing on the
view of clients, their duties are exactly the same as those in
FedAvg, As a result, our algorithm adds no extra overhead
over clients. While on the server, it conducts the detailed
updates of architecture parameters through virtual RL agents
for each client along with aggregation. Since the policy net
is a shallow net with one layer of softmax, the overhead on
the server is negligible. In each round, the server receives wi

and aggregates wi to the supernet.
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ViT MobileNetV3

CIFAR10 Dα = 0.3 CIFAR100 Dα = 0.1 CIFAR10 Dα = 0.3 CIFAR100 Dα = 0.1

Methods Acc±Std Latency Acc±Std Latency Acc±Std Latency Acc±Std Latency

FedAvg 72.22± 6.70 34.95 52.70± 4.24 34.30 74.44± 6.11 19.12 47.19± 4.24 13.76
Local Training 60.26± 8.27 – 37.66± 5.28 – 57.60± 13.60 – 31.98± 7.08 –

FedRep 71.37± 6.44 35.40 48.37± 4.34 34.98 74.75± 5.97 19.42 48.75± 4.07 18.08
FedBABU 72.32± 6.28 37.11 54.35± 4.38 34.41 75.00± 5.92 17.81 48.46± 4.07 19.41

FedTP 80.27± 8.39 6.05 48.27± 5.62 6.74 – – – –

PerFedRLNAS 85.02 ± 4.11 28.14 65.08 ± 3.97 26.73 82.02±4.85 9.96 63.85±4.02 9.68

Table 2: Comparison of accuracy and efficiency over 100 clients under cross-device scenario (participation rate 5%) using ViT
and CNN structures. Higher average accuracy, lower std, and shorter elapsed wall clock time (hours) indicate better performance.

Experiments
We empirically compare PerFedRLNAS with the state-of-the-
art personalized federated learning methods and previous fed-
erated neural architecture works to see how well our method
solves the heterogeneous problems.

Dataset, tasks, and models. We study on image classi-
fication tasks with CIFAR10 and CIFAR100 (Krizhevsky,
Hinton et al. 2009). For measuring flexibility of different
methods and having a comprehensive evaluation, we em-
ploy ViT (NASViT (Gong et al. 2022) as search space,
LeViT (Graham et al. 2021) as fixed model) and CNN (Mo-
bileNetV3 (Howard et al. 2019) and DARTS (Liu, Simonyan,
and Yang 2019) as search space, MobileNetV3-Large as
fixed model). NASViT is the supernet for one-shot and block-
wise search. MobileNetV3 is the supernet for block-wise and
evolutionary-based search, while DARTS is the supernet for
path-wise and differentiable search.

Non-i.i.d. datasets and implementation. We use Dirich-
let distribution with parameter Dα < 1 to generate non-
i.i.d. datasets. Smaller Dα indicates stronger non-i.i.d. as-
sumptions. All experiments use the same non-i.i.d. datasets.
The training samples and test samples are equally partitioned
over all the clients. We mainly consider the cases of cross-
device scenario, where some clients participate in the feder-
ated learning process. All experiments are performed on the
federated learning framework Plato (Li et al. 2023a).

Personalization Performance
To fairly compare the results and simulate real federated
learning settings, during each round, 5 out of 100 clients are
selected. In each communication round, each client does the
local training for 5 epochs. We evaluate performance in terms
of accuracy and efficiency. For accuracy, we report average
test accuracy and standard deviation over local datasets on
these K = 100 clients. For efficiency, we directly measure
the latency for the whole system to reach the reported accu-
racy including time spent on the client, transmission and the
server. We set the upload and download data transmit rate
to 100Mbps. Random seeds are fixed during all experiments.
The variance between different runs of experiments is much
smaller than the variance between local accuracy of different

clients (e.g. 0.5 comparing to 4.11 when using PerFedRL-
NAS on NASViT search space, 5 times run with different
seeds). All methods are trained to convergence.

Comparing with conventional methods. For conventional
personalized FL, we choose FedRep (Collins et al. 2021),
FedBABU (Oh, Kim, and Yun 2022) and FedTP (Li et al.
2023b) because they are representative work of personaliz-
ing part of the models on clients. More importantly, these
methods show better performance than previous methods
such as FedProx (Li et al. 2020), Ditto (Li et al. 2021), and
SCAFFOLD (Karimireddy et al. 2020). To set up a basic
benchmark, we also compare PerFedRLNAS with FedAvg
(with 10 epochs post-fine tuning on the local dataset after
training) and only training locally. In the method of FedTP,
we directly use the structure self-designed in the paper. Since
our methods have flexibility to different search space, we
compare both ViT and CNN structured models and show
numerical results in Table 2.

Sharing is necessary for personalization. From the re-
sults, only local training performs the worst and has a large
variance across all the clients. Even the FedAvg can pro-
vide much improvement over local training. On the other
hand, if we adopt a reasonable personalization policy, perfor-
mance can greatly be improved, empirically showing that we
need personalization for solving heterogeneity. Our method
reaches a good tradeoff between the shared parts and person-
alized parts, achieving good performance.

PerFedRLNAS shows better performance in terms of
accuracy and efficiency.The conventional state-of-the-art
methods bring little improvement over FedAvg when using
state-of-the-art manually tuned models. PerFedRLNAS has
more improvements in terms of both accuracy and efficiency
when data is more non-i.i.d. distributed. FedTP has great
improvement, while it suffers from large variance. Apart from
that, it also lacks the flexibility to apply itself to arbitrary
transformer models, for example, LeViT, whose attention
maps have different sizes over different layers. Although
FedTP has smaller customized models, our method needs
only 3.29 hours on CIFAR10 and 1.13 hours on CIFAR100
to reach the same accuracy. Despite that our searched models
have similar architectures with manually tuned models, we
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Figure 3: The average inference accuracy and the standard
deviation among K local clients on search space NASViT.

need less communication overhead and training time.

Comparing with federated NAS methods. We compare
our method with previous federated NAS work in Table 3. We
omit the method DirectFedNAS as it is a similar method to
FedNAS except for changing a supernet. For multi stage meth-
ods like FedNAS (He, Annavaram, and Avestimehr 2020), Fe-
dRLNAS (Yao et al. 2021), FedorAS (Laskaridis, Fernandez-
Marques, and Dudziak 2022), the results are generated after
all their stages are applied instead of only supernet training
stage. For FedorAS, it partitions clients into four clusters and
trains a model for each cluster in the final stage. So, we report
the accuracy of the personalized model for each cluster. For
fair comparison, all methods are implemented over DARTS
search space. Since DARTS is a CNN structured search space,
we can see the results obtained by federated NAS methods
are better than those obtained by conventional personalized
federated learning methods with CNN model MobileNetV3.
The reason is that the federated NAS can seek in a larger
space to find the parts that need personalization.

PerFedRLNAS shows better performance than other
federated NAS baselines. In addition, PerFedRLNAS has
much less transmission overhead than methods like FedNAS,
SPIDER as they need to transmit the whole search space
across the clients and the server.

PerFedRLNAS is a one-stage algorithm that naturally
combines warm-up, post fine-tuning, and retraining. At
the beginning stage of PerFedRLNAS, all architectures have
the close probabilities to be sampled, which is the same as
the warm-up stage. At the end stage closing to reaching con-
vergence, as architectures are mostly fixed, the personalized
parts of the models are only updated by particular clusters
of clients. This process has similar functionalities as the post
fine-tuning phase. As a result, PerFedRLNAS does not need
warm-up or post fine-tune, but is competitive to multi-stage
methods such as FedNAS, FedRLNAS, and FedorAS.

Why Can Personalizing Models Solve
Heterogeneous Problem in Federated Learning?
Back to the first question, it is intuitive that different archi-
tectures can solve system heterogeneity as more powerful
devices can get larger models and vice versa. Regarding sta-
tistical heterogeneity, if all clients share the same distribution,
we only need one global model. However, when different
clients have different distributions, the optimized architec-
ture on each client should be different. On the other hand,
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Figure 4: The memory budget and consumption on each
device when we use reward functions in Equation (9).

each architecture they still have similarities with each other.
Clients with closer data distributions will have more similar
architectures. So these clients will have more parts of the
model to be shared. In this way, clients can form clusters of
any scale automatically without a manual definition of client
clustering or revealing datasets privacy to the server. Without
loss of generality, we assume we have 2 clients participat-
ing in federated learning, each holding a local dataset: X1

and X2 respectively. The corresponding distribution proba-
bilities are P1(y|x) and P2(y|x) respectively for a sample x
from the sample space X and y ∈ Y . Their expected optimal
architecture sampling parameters are p1 and p2.

Theorem 1. For any two clients picked from federated learn-
ing setting. If P1 = P2, then E[p1] = E[p2]. When Kull-
back–Leibler divergence DKL (P1∥P2) gets much larger,
⟨E[p1],E[p2]⟩ correspondingly gets smaller.

This theorem answers the first question at the very begin-
ning. From this theorem, it shows that applying both sharing
and proper personalization, applying both model weights and
architectures of personalization can benefit PFL most.

Awareness of Resource Budgets
Besides resolving the data heterogeneity and efficiency het-
erogeneity, we can also consider a case that different clients
may have various memory budgets. Hence, we design another
reward function to realize resource (memory) budget aware-
ness to assign different architectures to clients depending on
their memory limitations. We design such a reward function
considering memory utilization.

r(wi) = Acci −Acc− λtime(RTi −min(RT))− ϕi (9)

where ϕi is the memory utilization of each client device.
If the device cannot fit the currently assigned model into the
physical (GPU) memory, its ϕi will be 1 and the accuracy
will be 0. We set the RTi in this case to the maximal round
time of all clients participated in current round.

Here, we repeat the experiment of adopting NASViT su-
pernet and train over the CIFAR10 Dα = 0.3 dataset and
CIFAR100 Dα = 0.1 dataset. NASViT covers a wide range
of model flops from 159.22 M Flops to 1293.98 M Flops. We
simulate the memory budgets of each client with a uniform
sample from 2 GB to 16GB. In Figure 3, we show the training
curve of inference accuracy comparing to the use case of no
memory budget in the reward function. The final test accu-
racy on CIFAR10 is 82.87± 4.87% and the training time is
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CIFAR10 Dα = 0.3 CIFAR100 Dα = 0.1

Methods Acc±Std Latency Acc±Std Latency

FedNAS 79.88± 5.27 22.33 55.42± 4.32 22.22
FedRLNAS 79.97± 5.81 5.92 60.85± 4.43 5.80

FedorAS [74.32± 5.87, 75.39± 6.11
74.91± 6.63, 75.52± 5.92]

6.27
[48.23± 5.18, 49.93± 4.52
50.96± 4.91, 55.41± 4.35]

7.67

SPIDER 71.14± 6.74 13.67 47.90± 5.17 14.50

PerFedRLNAS 80.80 ± 5.48 5.76 62.72 ± 4.17 3.72

Table 3: Comparison of accuracy and efficiency (in hours) over 100 clients with under cross-device scenario (participation rate
5%) between different federated neural architecture search methods, on DARTS search space.
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Figure 5: The average validation accuracy and the standard
deviation among new 100 local clients. Gray patterns are
accuracies achieved by PerFedRLNAS in previous training.

27.84 hours and the results on CIFAR100 are 63.24± 4.07%
and 26.56 hours. We also show the memory budgets of each
clients and the consumed memory of searched architectures
on each client in Figure 4. We can see that each device can
receive models of different architectures according to their
memory budget. With this example, we show that PerFedRL-
NAS is flexible to achieve different types of heterogeneity
through setting different reward functions.

Generalization Ability
After supernet training, new clients, uninvolved in federated
training, solely test received models. We select 100 clients
with non-i.i.d datasets, unused in federated training. Figure 5
displays the accuracy of these 100 new clients after R rounds
of architecture search only. The supernet weights remain
unchanged; clients neither train models nor upload weights
during this process.

With high accuracy achieved and good generalization abil-
ity, PerFedRLNAS is easy to use during model deployment
in inference. Even if some clients did not participate in feder-
ated training, they only need a few rounds of testing to get a
better-personalized network. Though conventional methods
only need one round of testing, their performance is worse.
On the other hand, as we can see in Figure 5, at the start point,
a randomly sampled subnet shows better performance than
that by FedAvg.

Ablation Study of Different Federated Settings
Here, we study robustness in different federated settings. We
change the number of participants in each round to 50 while
controlling for other variables. Next we change the total client
K to 200, but use the same sample rate (10%) to control the
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Figure 6: The average inference accuracy and the standard
deviation among K local clients with different federated set-
tings on CIFAR10 Dα = 0.3 and search space MobileNetV3.

variable. From the convergence along elapsed wall-clock
time shown in the Figure 6, we can see that PerFedRLNAS
still outperforms the baselines by taking less time to achieve
the same accuracy and converging to higher accuracy in the
end. We also studied the effect of moving time items in
the reward function. Over the setting CIFAR10 Dα = 0.3,
using MobileNetV3, we set λtime to 0. The accuracy can be
improved to 83.33%± 4.97 while the latency will be 10.65
hours. The accuracy is improved but efficiency is decreased
when we do not consider efficiency into the objective.

Conclusion
In this paper, we propose a new federated neural architecture
search framework PerFedRLNAS. It can automatically search
for customized architectures and weights on each client di-
rectly through optimization over various heterogeneity ob-
jectives including non-i.i.d awareness, efficiency awareness,
and memory budget awareness. The framework gives the
solution to designing personalized parts of models in per-
sonalized federated learning automatically. Finally, we show
PerFedRLNAS outperforms other state-of-the-art personal-
ized federated learning methods over non-i.i.d datasets in
terms of local accuracy and efficiency. Furthermore, it gen-
eralizes well to new clients, which is an excellent property
for us to deploy clients in inference easily. PerFedRLNAS is
also robust in different federated settings. Our source code
is released in https://github.com/TL-System/plato/tree/main/
examples/model search/pfedrlnas.
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