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Abstract

The visual prompts have provided an efficient manner in ad-
dressing visual cross-domain problems. In previous works,
(Gan et al. 2022a) first introduces domain prompts to tackle
the classification Test-Time Adaptation (TTA) problem by
placing image-level prompts on the input and fine-tuning
prompts for each target domain. However, since the image-
level prompts mask out continuous spatial details in the
prompt-allocated region, it will suffer from inaccurate con-
textual information and limited domain knowledge extrac-
tion, particularly when dealing with dense prediction TTA
problems. To overcome these challenges, we propose a novel
Sparse Visual Domain Prompts (SVDP) approach, which
applies minimal trainable parameters (e.g., 0.1%) to pixels
across the entire image and reserves more spatial informa-
tion of the input. To better apply SVDP in extracting domain-
specific knowledge, we introduce the Domain Prompt Place-
ment (DPP) method to adaptively allocates trainable param-
eters of SVDP on the pixels with large distribution shifts.
Furthermore, recognizing that each target domain sample ex-
hibits a unique domain shift, we design Domain Prompt Up-
dating (DPU) strategy to optimize prompt parameters dif-
ferently for each sample, facilitating efficient adaptation to
the target domain. Extensive experiments were conducted
on widely-used TTA and continual TTA benchmarks, and
our proposed method achieves state-of-the-art performance
in both semantic segmentation and depth estimation tasks.

Introduction
Deep neural networks can achieve promising performance if
test data is of the same distribution as the training data. How-
ever, it is not the common case in real-world scenarios (Ra-
dosavovic et al. 2022), which contain diverse and disparate
domains. When applying a pre-trained model in real-world
tasks, the domain gap commonly exists (Sakaridis, Dai, and
Van Gool 2021), leading to significant performance degra-
dation on target data. Though we can manually collect la-
beled data for each real-world target domain, it is laborious
and time-consuming (Chen, Wu, and Jiang 2022). To this
end, the domain adaptation (DA) methods are introduced
and have drawn growing attention in the community.
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Figure 1: The motivation and main idea of our method.
(a) Previous dense visual domain prompts (VDP) mask out
consecutive spatial details in the placed regions as shown
in red circles. In dense prediction DA problems, applying
dense VDP will lead to inaccurate context information ex-
traction and severe performance degradation. (b) We intro-
duce Sparse Visual Domain Prompts (SVDP), which are tai-
lored for addressing the occlusion problem of pixel-wise in-
formation and can better extract local domain knowledge for
cross-domain learning.

While DA extensively investigates to address distribution
shifts, its typical assumption involves access to raw source
data. However, in real-world scenarios, raw data often can-
not be publicly accessible due to data protection regula-
tions. Meanwhile, traditional DA methods present resource-
intensive backward computation, leading to high training
costs (Ganin and Lempitsky 2015). To address this, Test-
time adaptation (TTA) (Liang, He, and Tan 2023) is gained
significant attention, which tackles distribution shifts at test
time with only unlabeled test data streams. Prior TTA stud-
ies (Wang et al. 2021, 2022a; Chen et al. 2022a; Goyal et al.
2022) predominantly focus on model-based adaptation, uti-
lizing model parameters to fit target domain knowledge.

To better solve the TTA problem, motivated by the re-
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cent advances of prompting in NLP (Li and Liang 2021;
Liu et al. 2023), VDP (Gan et al. 2022a) first introduces a
prompt-based method to tackle the classification TTA prob-
lem. It employs image-level prompts to enhance domain
transfer efficiency and effectiveness. Specifically, it ran-
domly places the dense prompt on the input image and fine-
tunes them to extract target domain knowledge. However,
this prompt-based technique encounters limitations when
applied to dense prediction tasks such as semantic segmen-
tation and depth estimation TTA. Specifically, the dense
prompts obscure continuous spatial information in the al-
located regions, as illustrated in Figure 1 (a). This occlusion
introduced by prompts leads to incomplete semantic knowl-
edge representation, thereby negatively impacting the qual-
ity of segmentation maps. Simultaneously, the occluded de-
tails within corresponding features impede the extraction of
adequate domain knowledge during cross-domain learning.

To this end, as shown in Fig.1 (b), we propose a novel
Sparse Visual Domain Prompts (SVDP) approach for ef-
fectively extracting target domain knowledge, specially de-
signed to combat domain shifts in dense prediction tasks.
By introducing sparse prompts, which applies minimal train-
able parameters (e.g., 0.1%) to pixels across the entire im-
age, more spatial information from the input is preserved.
Furthermore, the semantic information can be extracted suf-
ficiently (shown in line 2), leading to noticeable improve-
ments in segmentation outcomes (shown in line 3). In order
to better apply SVDP in the pixel-wise TTA task, we pro-
pose the Domain Prompt Placement (DPP) to adaptively al-
locates trainable parameters of SVDP on the pixel with large
distribution shifts. In this way, SVDP excels at extracting lo-
cal domain knowledge, facilitating the transfer of pixel-wise
data distribution from the source to the target domain. Fur-
thermore, recognizing that each target domain sample ex-
hibits a unique domain shift, we design a Domain Prompt
Updating (DPU) method to optimize prompt parameters ef-
ficiently during the TTA process. Specifically, based on the
extent of the domain gap observed in target domain samples,
we employ varying weights to update the visual prompts.
It’s worth noting that we are the pioneers in designing spe-
cific strategies for pixel-level placement and image-level op-
timization in vision prompt learning, which work in synergy
to address domain shifts in dense prediction TTA tasks.

Since data privacy and transmission limit access to source
data in the real world, we evaluate our method on seman-
tic segmentation and depth estimation source-free adapta-
tion settings, including online TTA (Liang, Hu, and Feng
2020) and Continual Test-Time Adaptation (Wang et al.
2022a) (CTTA). Our proposed approach demonstrates supe-
rior performance compared to most state-of-the-art (SOTA)
methods across three benchmarks, covering Cityscapes to
ACDC (Sakaridis, Dai, and Van Gool 2021) and KITTI
(Geiger, Lenz, and Urtasun 2012) to Drivingstereo (Yang
et al. 2019). The main contributions are shown as follows:

1) We are the first for introducing the visual prompt ap-
proach to the dense prediction TTA problem. We propose
a novel Sparse Visual Domain Prompts (SVDP) approach
to better extract local domain knowledge and transfer pixel-
wise data distribution from the source to the target domain.

2) In order to efficiently apply SVDP in pixel-wise TTA
tasks, we propose Domain Prompt Placement (DPP) method
to adaptively allocates trainable parameters in SVDP based
on the degree of distribution shift at the pixel level. And
Domain Prompt Updating (DPU) is designed to optimize
prompt parameters differently for each sample, facilitating
efficient adaptation on target domains.

3) We conduct extensive experiments to evaluate the ef-
fectiveness of our method, which outperforms most SOTA
methods on four TTA and two CTTA benchmarks, covering
semantic segmentation and depth estimation tasks.

Related Work
Test-Time Adaptation
Test-time adaptation (TTA), (Boudiaf et al. 2023; Kundu
et al. 2020; Liang, Hu, and Feng 2020; Yang et al. 2021),
aims to adapt a source model to an unknown target do-
main distribution without using any source domain data. Re-
cent research has focused on using self-training or entropy
regularization to fine-tune the source model. Specifically,
SHOT (Liang, Hu, and Feng 2020) optimizes only the fea-
ture extractor using information maximization and pseudo
labeling. AdaContrast (Chen et al. 2022b) also uses pseudo
labeling for TTA, but introduces self-supervised contrastive
learning to enhance performance. In addition to model-level
adaptation, (Boudiaf et al. 2022) adjusts the output distri-
bution to address this problem. Tent (Wang et al. 2021) up-
dates the training parameters in the batch normalization lay-
ers by entropy minimization. Recent works (Niu et al. 2023;
Yuan, Xie, and Li 2023) follow Tent to continually explore
the robustness of normalization layers in the TTA process.
While the aforementioned works primarily focus on classi-
fication tasks, there has been a recent surge of interest in
performing TTA on dense prediction tasks (Shin et al. 2022;
Song et al. 2022; Zhang et al. 2021). Continual Test-Time
Adaptation (CTTA) is a scenario in which the target do-
main is not static, increasing challenges for traditional TTA
methods (Wang et al. 2022a). (Wang et al. 2022a) serves as
the first approach to tackle this task, using a combination of
bi-average pseudo labels and stochastic weight reset. While
(Wang et al. 2022a; Song et al. 2023) addresses the contin-
ual shifts at the model level, (Gan et al. 2022a) leverages
visual domain prompts to address the problem in the classi-
fication task at the input level for the first time. In this paper,
we evaluate our approach on both TTA and CTTA with a
specific focus on the dense prediction task.

Prompt Learning
Visual prompts are inspired by their counterparts (Liu et al.
2021) which are used in natural language processing (NLP).
Language prompts are presented as text instructions to im-
prove the pre-trained language model’s understanding of
downstream tasks (Brown et al. 2020). Recently, researchers
have attempted to discard text encoders and use prompts
directly for visual tasks. (Bahng et al. 2022) employs vi-
sual prompts to pad input images, enabling pre-trained mod-
els to adapt to new tasks. Rather than fine-tuning the en-
tire model, VPT (Conder et al. 2022; Jia et al. 2022a; San-
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dler et al. 2022; Wang et al. 2022b) inserts prompts into
image or feature-level patches to adapt Transformer-based
models. While these approaches all utilize opaque-block
prompts, such prompts can cause performance degradation
in dense prediction tasks. Domain prompts are first intro-
duced in DAPL (Ge et al. 2022), which proposes a novel
prompt learning paradigm for unsupervised domain adapta-
tion (UDA). Embedding domain information using prompts
can minimize the cost of fine-tuning and enable efficient do-
main adaptation. Recognizing the potential of prompt learn-
ing for UDA, MPA (Chen, Wu, and Jiang 2022) proposes
multi-prompt alignment for multi-source UDA. DePT (Gao
et al. 2022a) combines domain prompts with a hierarchical
self-supervised regularization for TTA, which aims to solve
the error accumulation problem in self-training. (Gan et al.
2022a) further divides domain prompts into domain-specific
ones and domain-agnostic ones to address the more chal-
lenging CTTA task. However, these studies mainly focus on
classification DA tasks. Our method, for the first time, ap-
plies sparse domain prompts to dense prediction DA tasks.

Method
Preliminaries
Test Time Adaptation (TTA) (Liang, He, and Tan 2023)
aims at adapting a pre-trained model with parameters trained
on the source data (XS , YS) to multiple unlabeled target data
distribution XT1

,XT2
, . . . ,XTn

at inference time. The entire
process can not access any source domain data and can only
access target domain data once. XTi = {xT

i }
Nt
i=1, where Nt

denotes the scale of the target domain. The upcoming target
domain can be a single one (TTA) or multiple continually
changing distributions (CTTA), the latter of which is a more
realistic setting that requires the model to achieve stability
while preserving plasticity.

Domain Prompt. Inspired by language prompt in NLP,
(Gan et al. 2022a) first introduces visual domain prompt
(VDP) serving as a reminder to continually adapt to the tar-
get domain for the classification task, which aims to extract
target domain-specific knowledge. Specifically, VDP (p) are
dense learnable parameters added on the input image.

x̃ = x + p (1)

where x represent the original input image. The reformulated
image x̃ will serve as the input for our model instead.

Motivation
Sparse Visual Domain Prompt. Traditional visual prompts
(Jia et al. 2022b) are deployed on the image or feature level
to realize fine-tuning by updating a small number of prompt
parameters. Recent works (Gan et al. 2022a; Gao et al.
2022b) explore visual prompts in classification DA prob-
lems, which extract domain knowledge for the target domain
and transfer data distribution from the source to the target
domain. However, DePT (Gao et al. 2022b) concatenate the
domain prompts with class token and image tokens to the
input of transformer layers, which neglect the local domain
knowledge extraction. Meanwhile, VDP (Gan et al. 2022a)
randomly set the locations of dense prompts on the input

image, masking out continuous spatial details in prompt al-
located regions. Different from classification cross-domain
learning, dense prediction DA not only requires global do-
main knowledge but also relies on extracting intact local do-
main knowledge. As shown in Fig.1(a), partial spatial infor-
mation deficiency caused by dense prompts will lead to inac-
curate contextual information and negative effects on target
domain knowledge extraction. This observation motivates us
to propose a novel Sparse Visual Domain Prompts (SVDP),
which is tailored for pixel-wise prediction DA tasks. It in-
serts minimal trainable parameters into pixels across the en-
tire image and reserves more spatial information.

Domain Prompt Placement. Previous work (Gan et al.
2022a; Gao et al. 2022b) randomly put the prompts on the
target domain image to extract global domain knowledge.
Specifically, it may set prompts on regions with trivial do-
main shifts, hindering the extraction of local domain knowl-
edge. Especially in the source-free TTA setting, we can
only access target domain data once, which makes the ef-
ficiency of transfer learning crucial. Therefore, we propose
Domain Prompt Placement (DPP) which efficiently extracts
more domain-specific knowledge and addresses local do-
main shift. Specifically, we measure the degree of domain
gap by general uncertainty scheme (Gal and Ghahramani
2016; Guan et al. 2021; Roy et al. 2022; Gan et al. 2022b)
and tactfully place trainable parameters of SVDP on the
pixel with large distribution shifts.

Domain Prompt Updating. The amount of prompt pa-
rameters is minimal which brings the challenge of fully
learning target domain knowledge during TTA process.
Meanwhile, the degree of domain shift is not only various
on pixels within the image but also on each target domain
test sample. It thus motivates us to update prompt parame-
ters differently for each target sample. Therefore, we design
a Domain Prompt Updating (DPU) which efficiently opti-
mizes prompt parameters to fit in target domain distribution.
Specifically, we adopt the same uncertainty scheme to mea-
sure the degree of domain shift for each target sample. Ac-
cording to the degree, we update prompt parameters for the
individual sample with different updating weights.

Sparse Visual Domain Prompt
SVDP maintains the same resolution as the input image
(p ∈ RH×W×3), it only masks out original information
by minimal discrete trainable parameters (e.g. 0.1%) on the
pixels with large domain shifts. Compared with the previ-
ous dense visual prompt, SVDP preserves more contextual
information and possesses the capacity to capture local do-
main knowledge through pixel-wise prompt parameters. The
overall framework of our method is shown in Fig .2, and the
specially designed prompt Placement and Updating methods
are introduced in the following.

Domain Prompt Placing
We propose the Domain Prompt Placement (DPP) strat-
egy of SVDP to efficiently extract local domain knowledge
in pixel-wise. We intend to place trainable parameters of
SVDP on the pixel with large distribution shifts and adapt
pixel-wise data distribution from source to target domain.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16336



Model EMA

Reformulated Input

Target Domain Input + SVDP Pre-trained Source Model

Consistency Loss

Back-prop

Dense Prediction Loss function & Uncertainty

Teacher model

Student model

DPU

Student Output

Pseudo Label

Pixel-level Uncertainty

Augment

SVDP

warp

EMA
Eq.5

Prompt Parameters

DPU

DPP

Current 
Prompt Parameters

Mean

Image-level 
Uncertainty-guide

Eq. 4

Eq.6

Figure 2: The overall framework. Left: We warp the SVDP into the image and place prompt parameters on the selected pixel
by Domain Prompt Placement (DPP) method. The reformulated image serves as the input of the teacher and student model.
We obtain the uncertainty map as described in Eq. (2) through the teacher model. The uncertainty map is used to evaluate the
degree of pixel-level distribution shift. SVDP adopts consistency loss (Eq. (6)) and exponential moving average (EMA) as the
optimization strategies. Right: Domain Prompt Updating (DPU). Based on the image-level uncertainty value, we adopt different
EMA weights to realize stable updating of SVDP parameters, facilitating efficient adaptation to the target domain.

As shown in Fig. 3, we employ the MC Dropout method
(Gal and Ghahramani 2016) to perform m forward propaga-
tions (m = 10) and obtain m group probabilities for each
pixel. Specifically, dropout operation is only applied to the
linear layer within the prediction head. Calculating the un-
certainty value does not significantly increase the computa-
tional cost. Meanwhile, we can also obtain m sets of prob-
abilities through the simpler method of input image resolu-
tion augmentation. Inspired by (Roy et al. 2022; Gan et al.
2022b), we calculate the uncertainty value (Eq.(2)) of the
input and figure out the pixel-wise degree of domain shift.

U(x̃j) =

(
1

m

m∑
i=1

∥pi(ỹj |x̃j)− µ∥2
) 1

2

(2)

, where pi(ỹj |x̃j) is the predicted probability of input pixel
x̃j in the ith forward propagation, and µ is the mean predic-
tion (m rounds) of x̃j . U(x̃j) thus represents the uncertainty
of the source model for pixel-wise target input x̃j . As shown
in the bottom of Fig .3, we sort all pixels based on their pixel-
wise uncertainty value and place prompt parameters on the
pixels with high uncertainty score.

Domain Prompt Updating

Motivated by the fact that the mean teacher predictions have
a higher quality than the standard model (Tarvainen and
Valpola 2017a), we utilize a mean-teacher model to pro-
vide more accurate predictions in the TTA process. To be
specific, we adopt the widely-used exponential moving av-
erage (EMA) to achieve the model and prompt updating.
Same as previous works (Wang et al. 2022a), the teacher
model (Tmean) is updated by EMA from the student model

Figure 3: The detailed process of Domain Prompt Placing.
The uncertainty map is estimated by MC Dropout (Gal and
Ghahramani 2016). The SVDP parameters are placed on the
pixels with high uncertainty, then warp into the raw image.

(Starget), shown in Eq. (3):

T t
mean = αT t−1

mean + (1− α)St
target (3)

When t = 0 (t is the time step), we utilize the source do-
main pre-trained model to initialize the weight of the teacher
and student model. And we set α = 0.999 (Tarvainen and
Valpola 2017b), which is the updating weight of EMA.

Different from traditional model updating, we design a
special Domain Prompt Updating (DPU) strategy for SVDP
to stably fit in target domain distribution. As shown in Fig .4,
we adopt image-level uncertainty value to reflect the degree
of domain shift for each target domain sample. We calculate
the image-level uncertainty value U(x) by average the pixel-
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Figure 4: The process of Domain Prompt Updating. We
adaptively adjust the prompt EMA updating rate for each tar-
get domain sample based on image-level uncertainty value.

wise uncertainty, shown in Eq. (4):

U(x) = 1

H ×W

H×W∑
j

U(x̃j) (4)

Based on the image-level uncertainty score, we update
prompt parameters for each sample with different weight.

pt = βpt−1 + (1− β)pt, (5)

Note that, pt represents the parameters of the SVDP that is
updated by Eq. (6). In DPU, we set the prompt EMA updat-
ing rate β = 1− (U(x)× θ). θ is intended to bring the value
of uncertainty up to the same order of magnitude as the value
of the common EMA update parameter (e.g., θ = 0.01). As
shown in the top of Fig .4, the prompt EMA weight is set to a
large value when the input is of high uncertainty score since
the large weight can efficiently adapt to the sample with the
large data distribution shift.

Loss Function
We utilize teacher model to generate the pseudo labels (ỹt),
which is refined by test-time augmentation and confidence
filter (Wang et al. 2022a). Then, we adopt consistency loss
(Lcon) as the optimization objective for segmentation task,
which is a pixel-wise cross-entropy loss (Xie et al. 2021).

Lcon(x̃) = − 1

H ×W

W,H∑
w,h

C∑
c

ỹt(w, h, c) log ŷt(w, h, c)

(6)
Where ŷt is the output of our student model, C means the
amount of categories.

Experiments
In the first subsection, we provide the details of the task
settings for test-time adaptation (TTA) and continual TTA
(CTTA), as well as a description of the datasets. In the sec-
ond and third subsections, we compare our method with
other baselines (Xie et al. 2021; Wang et al. 2021, 2022a;
Gao et al. 2022b,b) in four TTA and two CTTA scenarios. In
the final subsection, comprehensive ablation study explore
the impact of each component.

Task Settings and Datasets
TTA and CTTA are commonly used source-free technology
in real-world scenarios in which a source pre-trained model
adapts to the distribution of an unseen target domain (Liang,
He, and Tan 2023). CTTA is of the same setting as TTA but
further sets the target domain constantly changing, bringing
more difficulties during the continual adaptation process.

Cityscapes-to-ACDC is designed for semantic segmenta-
tion cross-domain learning. And we conduct four TTA and
one CTTA experiment on the scenario. The source model
is an off-the-shelf pre-trained segmentation model that was
trained on the Cityscapes dataset (Cordts et al. 2016). The
ACDC dataset (Sakaridis, Dai, and Van Gool 2021) contains
images collected in four different unseen visual conditions:
Fog, Night, Rain, and Snow. For the TTA, we adapt the
source pre-trained model to each of the four ACDC target
domains separately. For the CTTA, we repeat the same se-
quence of target domains (Fog→Night→Rain→Snow) mul-
tiple times to simulate environment changes in real-world
scenarios (Wang et al. 2022a).

KITTI-to-Driving Stereo. To demonstrate the gener-
alization of our method, we also conduct experiments
in depth estimation CTTA scenario. The source model
employed is an off-the-shelf, pre-trained model, initially
trained on the KITTI dataset (Geiger, Lenz, and Urta-
sun 2012). The Driving Stereo(Yang et al. 2019) com-
prises images collected under four disparate, unseen vi-
sual conditions: foggy, rainy, sunny, and cloudy. For the
CTTA, we repeat the same sequence of target domains
(Foggy→Rainy→Sunny→Cloudy) multiple times.

Implementation Details. We follow the implementation
details (Wang et al. 2022a) to set up our semantic segmenta-
tion TTA experiments. Specifically, we use the Segformer-
B5 (Xie et al. 2021) pre-trained on Cityscapes as our off-
the-shelf source model. We down-sample the original image
size of 1920x1080 of the ACDC dataset to 960x540, which
serves as network input. We evaluate our predictions under
the original resolution. We use a range of image resolution
scale factors [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] for the aug-
mentation method in teacher model. For depth estimation
CTTA, we follow the implementation details in previous
work (Liu et al. 2022) and adopt the pre-trained DPT (Ran-
ftl, Bochkovskiy, and Koltun 2021) on the KITTI as the
source model. The optimizer is performed using Adam opti-
mizer (Kingma and Ba 2014) with (β1, β2) = (0.9, 0.999).
We set the learning rate specific values for each backbone,
such as 3e-4 for Segformer and 1e-4 for DPT, and batch size
1 for both TTA and CTTA experiments. All experiments are
conducted on NVIDIA A100 GPUs.

The Effectiveness on Semantic Segmentation
Cityscapes-to-ACDC TTA. We evaluate the performance
of the proposed SVDP on four scenarios with significant do-
main gap during TTA. Tab .1 shows that the Mean-mIoU
for the four domains using the source domain model alone
is only 56.7%. Recent advanced methods CoTTA increases
it to 58.6% while our method further increases it by 1.5%.
These results demonstrate that our method can better ad-
dress the domain shit problem in test time compared to other
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Test-Time Adaptation Source2Fog Source2Night Source2Rain Source2Snow
Mean-mIoU

Method mIoU↑ mAcc↑ mIoU↑ mAcc↑ mIoU↑ mAcc↑ mIoU↑ mAcc↑
Source 69.1 79.4 40.3 55.6 59.7 74.4 57.8 69.9 56.7
TENT 69.0 79.5 40.3 55.5 59.9 74.1 57.7 69.7 56.7
CoTTA 70.9 80.2 41.2 55.5 62.6 75.4 59.8 70.7 58.6
DePT 71.0 80.2 40.9 55.8 61.3 74.4 59.5 70.0 58.2
VDP 70.9 80.3 41.2 55.6 62.3 75.5 59.7 70.7 58.5

SVDP 72.1 81.2 42.0 54.9 64.4 76.7 62.2 72.8 60.1±0.2

Table 1: Performance comparison of Cityscapes-to-ACDC TTA. We use Cityscape as the source domain and ACDC as the four
target domains in this setting. Mean-mIoU represents the average mIoU value in four TTA experiments.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 2 3

Mean↑ Gain
Method Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑
Source 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 /
TENT 69.0 40.2 60.1 57.3 56.7 68.3 39.0 60.1 56.3 55.9 67.5 37.8 59.6 55.0 55.0 55.7 -1.0
CoTTA 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 58.6 +1.9
DePT 71.0 40.8 58.2 56.8 56.5 68.2 40.0 55.4 53.7 54.3 66.4 38.0 47.3 47.2 49.7 53.4 -3.3
VDP 70.5 41.1 62.1 59.5 58.3 70.4 41.1 62.2 59.4 58.2 70.4 41.0 62.2 59.4 58.2 58.2 +1.5

SVDP 72.1 44.0 65.2 63.0 61.1 72.2 44.5 65.9 63.5 61.5 72.1 44.2 65.6 63.6 61.4 61.1±0.3 +4.4±0.3

Table 2: Performance comparison for Cityscape-to-ACDC CTTA. We take the Cityscape as the source domain and ACDC as
the continual target domains. During testing, we sequentially evaluate the four target domains three times. Mean is the average
score of mIoU. Gain refers to the improvement achieved by the method compared to the Source model.

methods. Furthermore, in contrast to VDP, which employs
dense prompts, our method successfully circumvents the oc-
clusion issue, leading to improved extraction of both seman-
tic and domain knowledge for TTA. In comparison to DePT,
which introduces prompts at the token level, our SVDP ap-
proach operates at the image-level. This aspect enables the
extraction of local domain knowledge, thereby resulting in
substantial performance enhancements.

Cityscapes-to-ACDC CTTA. To demonstrate that our
method can also address continuously changing domain
shifts, we deal with the four domain data during test time pe-
riodically. As shown in Tab .2, due to catastrophic forgetting,
the performance of TENT and DePT gradually decreases
over time. These methods only focus on acquiring new
domain-specific knowledge from the target domain, result-
ing in a neglect of the original knowledge from the source
domain. And we find that our method gains 2.5% increase of
mIoU more than the previous SOTA CTTA method (Wang
et al. 2022a). The results prove that our method can contin-
uously extract target domain knowledge via sparse prompt
and preserve previous domain knowledge via model param-
eters, showing the ability to address dynamic domain shifts.
In term of qualitative analysis, shown in Fig .5, our method
correctly distinguish the sidewalk from the road, avoiding
mis-classification in target domains.

Overall, our method outperforms several previous SOTA
methods on all semantic segmentation TTA and CTTA tasks
and shows promising potential for real-world applications.

The Effectiveness on Depth Estimation
KITTI-to-Driving Stereo CTTA. To demonstrate the ef-
fectiveness of our approach in addressing CTTA problem
in depth estimation task, we conducted a series of eval-
uations on four distinct target domains from the Driving
Stereo dataset at regular intervals during the testing phase.
As shown in Table ??, our method consistently outperforms
the state-of-the-art (SOTA) technique across all four evalua-
tion metrics. Particularly noteworthy is the significant en-
hancement in the mean δ > 1.25, achieving a remark-
able improvement of 65.9% when compared to the Source
model, and an impressive 7.5% improvement over the pre-
vious SOTA method. This result underscores the robust con-
tinual adaptation ability of our method in the context of
depth estimation. Given that CTTA has access to the data
only once, as opposed to CoTTA, our approach leverages
sparse prompt to effectively adapt to the target domain, re-
sulting in significant performance gains. Overall, these re-
sults show that our SVDP consistently attains superior out-
comes in the depth estimation tasks.

Ablation Study
In this subsection, we evaluate the contribution of each
component in our method. Since the CTTA is the most
challenging and realistic scenario, we conduct the ablation
study on the KITTI-to-Driving Stero CTTA. Effectiveness
of each component. As presented in Tab. 3 Ex2, Teacher-
student (TS) structure is a common technique in CTTA
(Wang et al. 2022a; Gan et al. 2022a), which is used to
generate pseudo label in the target domain and only has
0.063 Abs Rel reduces without our method. This verifies
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Figure 5: Qualitative comparison of our method with previous SOTA methods on the ACDC dataset. Our method could better
segment different pixel-wise classes such as shown in the white box.

TS SVDP DPP DPU Abs Rel↓ δ > 1.25 ↑

Ex1 0.312 0.093
Ex2 ✓ 0.249 0.503
Ex3 ✓ ✓ 0.187 0.705
Ex4 ✓ ✓ ✓ 0.169 0.737
Ex5 ✓ ✓ ✓ 0.177 0.723
Ex6 ✓ ✓ ✓ ✓ 0.162 0.741

Table 3: Ablation: Contribution of each component.

the improvement of our method does not come from the us-
age of this prevalent scheme. In Ex3, by introducing sparse
prompts (SVDP), we observe that the Abs Rel reduces 0.062
and δ > 1.25 increases 20.2%, respectively. The result
demonstrates that SVDP facilitates addressing the domain
shift problem, since it can extract local target domain knowl-
edge without damaging the original semantic information.
As shown in Ex4, DPP achieves further 0.018 Abs Rel re-
duces and 3.2% δ > 1.25 improvement since the specially
designed prompt placement strategy can assist SVDP in ex-
tracting target domain-specific knowledge more efficiently.
Compared with Ex3, DPU (Ex5) also reduces the Abs Rel
0.01 and improves 1.8% δ > 1.25, respectively. The results
prove the effectiveness of DPU and show the importance
of adaptively optimizing for different samples during TTA
process. Ex6 shows the complete combination of all com-
ponents which achieves 64.8% δ > 1.25 improvement and
0.150 Abs Rel reduction in total. It proves that all compo-
nents compensate each other and jointly address the depth
estimation domain shift problem in test time.

How does the prompt sparsity affect the performance?
As shown in Fig .6, we investigate the performance impact
caused by the sparsity of SVDP. Specifically, we gradually
increase the density of SVDP pixel-wise parameters and
place it into more pixel. We find that δ > 1.25 initially im-
proves along with increasing SVDP density and then starts
to decrease when the density exceeds 1e-3. This observa-
tion suggests that when SVDP is excessively sparse, it fails
to capture the domain-specific knowledge effectively due to
the limited number of parameters. In contrast, if the SVDP

5e-5 1e-4 5e-4 1e-3 5e-3 0.01 0.05 0.1
sparsity

0.50

0.55

0.60

0.65

0.70

0.75

>
1.
25

Figure 6: Effect of prompts’ sparsity

becomes too dense, the prompt will occlude many spatial de-
tails, leading to depth estimation performance degradation.
Therefore, it is crucial to strike a balance on the degree of
prompt sparsity and we consider that SVDP can achieve op-
timal potential in 1e-3 sparsity.

Conclusion
In this paper, we are the first to introduce the Sparse Vi-
sual Domain Prompt (SVDP) in dense prediction TTA tasks
(i.e., semantic segmentation, depth estimation), which ad-
dress the problem of inaccurate contextual information ex-
traction and insufficient domain-specific feature transfer-
ring caused by dense prompt occlusion. Moreover, the Do-
main Prompt Placement (DPP) and Domain Prompt Up-
dating (DPU) strategies are specially designed for apply-
ing SVDP to ease the pixel wise domain shift better. Our
method demonstrates state-of-the-art performance and ef-
fectively addresses domain shift through extensive experi-
mentation across various TTA and CTTA scenarios.
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