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Abstract

Discovering the causality from observational data is a cru-
cial task in various scientific domains. With increasing aware-
ness of privacy, data are not allowed to be exposed, and it is
very hard to learn causal graphs from dispersed data, since
these data may have different distributions. In this paper, we
propose a federated causal discovery strategy (FedCausal) to
learn the unified global causal graph from decentralized het-
erogeneous data. We design a global optimization formula
to naturally aggregate the causal graphs from client data and
constrain the acyclicity of the global graph without exposing
local data. Unlike other federated causal learning algorithms,
FedCausal unifies the local and global optimizations into a
complete directed acyclic graph (DAG) learning process with
a flexible optimization objective. We prove that this optimiza-
tion objective has a high interpretability and can adaptively
handle homogeneous and heterogeneous data. Experimental
results on synthetic and real datasets show that FedCausal
can effectively deal with non-independently and identically
distributed (non-IID) data and has a superior performance.

Introduction
Causal structure discovery is a fundamental and critical
problem in many fields, such as economics (Koller and
Friedman 2009) and biology (Sachs et al. 2005). Random-
ized controlled experiments are the golden standard for dis-
covering causal structure, but they are often limited by cost
and may even be prohibited by ethics. Causal discovery typ-
ically infers a directed acyclic graph (DAG) from obser-
vational data at a central site (Pearl 2009; Peters, Janzing,
and Schölkopf 2017); this DAG encodes causal relationships
between variables. However, with the increasing awareness
of privacy and security, data are scattered among different
clients and cannot be shared, which makes it difficult for
canonical causal discovery algorithms to find reliable causal
structure from limited client data.

Federated learning (FL), as a secure framework for coop-
erative training with multiple clients, learns a unified model
from scattered data by exchanging model parameters or gra-
dients among clients, without exposing local clients’ data
(McMahan et al. 2017). FL has made good progress in areas
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such as image classification and recommendation systems
(Chai et al. 2020). However, recent FL algorithms are based
on continuous optimization and cannot be directly applied to
causal discovery algorithms with a combinatorial optimiza-
tion property. For example, constraint-based algorithms PC
(Spirtes et al. 2000) and FCI (Spirtes, Meek, and Richard-
son 2013) use conditional independence between variables
to judge whether there is a causal structure, while score-
based algorithms GES (Chickering 2002) and the max-min
hill-climbing algorithm (Tsamardinos, Brown, and Aliferis
2006) use score functions and heuristic search strategies to
find causal graphs with the best scores.

Recent gradient-based causal discovery algorithms,
Zheng et al. (2018) and Yu et al. (2019) make use of smooth
equality constraints instead of discrete acyclic constraints to
discover causal structures through continuous optimization
(i.e., Augmented Lagrange method (Nemirovsky 1999)),
and they provide the opportunity of learning causal graphs
in a continuous manner within a federated framework. Sub-
sequently, Lachapelle et al. (2019) and Zheng et al. (2020)
introduced deep neural networks to deal with more complex
causal models. However, these gradient-based algorithms
need to center data, which is not feasible due to privacy
protection. For dispersed data, several distributed causal dis-
covery methods have been proposed. Some of them need to
make assumptions about parameters but lack generalization
(Shimizu 2012; Xiong et al. 2021), and others need to share
additional learning parameters but cause privacy leakage
(Na and Yang 2010; Ye, Amini, and Zhou 2022). More im-
portantly, they are often unable to deal with non-independent
identical distributed (non-IID) data among clients.

In this paper, we develop a general federated DAG learn-
ing strategy (FedCausal) to seek the global causal graph
from horizontally partitioned data with different distribu-
tions. This strategy designs a global optimization process in-
stead of traditional weighted average in the server to aggre-
gate local causal graphs, which naturally ensures the spar-
sity and acyclicity of the global causal graph. The local
and global optimization processes form a whole as an ex-
plainable adaptive optimization objective, which is consis-
tent with the centralized optimization objective under sta-
tistical homogeneity. In addition, this explainable objective
allows clients to flexibly learn local data distributions with
statistical heterogeneity and seek a uniform global graph on
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Figure 1: Schematic framework of FedCausal on the non-
parametric model. In each interaction, the clients optimize
local causal models based on local data and send the first
layer parameters θ

(1)
k to the server. The server optimizes

the global model to conform to the local distributions and
explicitly constrains its acyclicity to obtain a global causal
graph G. FedCausal then broadcasts server parameters θ(1)
to clients for the next round interaction.

the server. Figure 1 shows the conceptual framework of Fed-
Causal. Our main contributions can be outlined as follows:
(i) We meticulous extend the centralized DAG learning
framework to federated scenarios. FedCausal explicitly con-
strains the acyclicity of the global causal graph and opti-
mizes it to conform to dispersed data, ensuring effective
causal information interaction between local and global.
(ii) FedCausal unifies the global aggregation optimization
and local DAG optimization, and formulates a complete
causal graph learning process. We prove that its optimization
process is consistent with centralized DAG optimization on
homogeneous data and is suitable for heterogeneous data.
(iii) We conduct experiments on synthetic and real datasets,
and prove that FedCausal is close to or even better than cen-
tralized learning on homogeneous data, and outputs more
accurate and acyclic causal graphs than other methods (Ng
and Zhang 2022; Gao et al. 2023) on heterogeneous data.

Related Work
The number of DAGs is super-exponential in the num-
ber of variables. As such, learning discrete DAGs is gen-
erally NP-hard for traditional causal discovery algorithms
(Spirtes et al. 2000; Chickering 2002; Bernstein et al. 2020).
To avoid the difficult combinatorial optimization of the
acyclic constraint, NOTEARS (Zheng et al. 2018) trans-
forms the acyclic constraint into a smooth equality con-
straint, and converts the causal discovery problem into a
continuous optimization one with efficient solvers. DAG-
GNN (Yu et al. 2019) extends NOTEARS using graph neu-

ral networks to handle various variable types. Gran-DAG
(Lachapelle et al. 2019) uses neural networks to deal with
non-linear causal relationships. NOTEARS-MLP (Zheng
et al. 2020) proposes a generalized function model and
characterizes a non-parametric structure equation model of
DAG via partial derivatives. HetDAG (Liang et al. 2023) ex-
tends NOTEARS-MLP to learn the DAGs of attributed het-
erogeneous network, and DARING (He et al. 2021) con-
siders the independence of heterogeneous noises to im-
prove the robustness. MCSL (Ng et al. 2022) adopts a
Gumbel− Sigmoid function to approximate the parameter
matrix of a DAG into a binary adjacency one. However, the
above approaches target at centralized data, and their as-
sumptions or strategies for identifying causal graphs can-
not cope with statistically heterogeneous data. Based on the
continuous optimization framework, we design a global op-
timization to flexibly learn the global causal graph by aggre-
gating local causal graphs from decentralized data that may
have different distributions.

Several attempts have been made to learn the causal struc-
ture from distributed datasets with different subsets of vari-
ables. (Tillman, Danks, and Glymour 2008) estimated the
local partial ancestral graph from each dataset, and then
found global partial ancestral graphs on the complete set of
variables with the same d-connection and d-separation re-
lationships as the local PAGs. (Triantafillou and Tsamardi-
nos 2015) used a SAT solver in a similar process to improve
the algorithm’s scalability. However, these methods cannot
uniquely identify the causal graph and suffer from a large
indeterminacy. For the horizontally distributed dataset, Gou,
Jun, and Zhao (2007) and Na and Yang (2010) used a two-
step process that independently estimates the Bayesian net-
work by each client’s dataset, then performs conditional in-
dependent testing and voting to obtain the final causal graph.
These distributed methods separately use local datasets dur-
ing training and directly share local models parameters,
which result in poor performance and privacy leakage. Our
FedCausal aggregates the global causal graph using a very
small fraction of the parameters of local models, effectively
avoiding the risk of reconstructing local data from model
parameters. It does not simply aggregate the local causal
graphs, but adds a proximal term and global optimization
to enable sufficient information to be exchanged between
clients and the server.

The recent NOTEARS-ADMM (abbreviated as NO-
ADMM) approach (Ng and Zhang 2022) adopts the alter-
nating direction method of multipliers to decompose the
continuous optimization objective of gradient-based meth-
ods, and learns the global causal structure by exchanging
client model parameters. However, NO-ADMM requires all
clients to participate in the training and makes all local mod-
els consistent, and thus lacks flexibility and does not ac-
count for statistical heterogeneity. Although FedDAG (Gao
et al. 2023) takes into account heterogeneous data, it di-
rectly masks local models with a global binary matrix. As a
consequence, it cannot effectively update the masked model
parameters and obtain accurate causal graphs. Both NO-
ADMM and FedDAG enforce too stringent local models
and suffer from performance degradation. FedCausal nat-
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urally combines local and global optimizations, forms an
adaptive optimization process, and has a consistent opti-
mization objective with the centralized DAG learning under
IID data without additional assumptions. Compared with ex-
isting federated DAG learning methods, FedCausal is more
interpretable and more suitable for non-IID data, it trains
local models without strong restrictions to learn the uni-
fied global graph. FedCausal accurately identifies the unique
causal graph while conforming to the heterogeneous distri-
bution of local data.

Background
The causal discovery problem can be defined as follows:
given the observed data X ∈ Rn×d and the variables’ set
V = {V1, · · · , Vd}, we need to learn a DAG G from X ,
where n and d represent the sample size and the number of
variables respectively. In the federated scenario, this prob-
lem becomes more complicated: let the number of clients
be K, X = {Xk}Kk=1 represent the clients’ local data, and
N = {nk}Kk=1 represent the sample size of clients’ data;
we need to learn a uniform causal graph G without expos-
ing clients’ data. The difficulty is that clients’ data may be
non-iid. Even though existing DAG learning methods based
on continuous optimization mostly focus on centralized data
and cannot handle statistical heterogeneity, they are neces-
sary for federated causal discovery because most of the fed-
erated learning algorithms adopt continuous optimization.
For this reason we introduce next some of the existing con-
tinuous DAG learning strategies.

Continuous Optimization for DAG Learning
NOTEARS uses equality to constrain the acyclicity of causal
graphs and continuously optimizes a causal graph on the lin-
ear data model. NOTEARS defines a weight matrix W ∈
Rd×d to represent the causal model, thus Wij = 0 if and
only if there is no edge from Vi to Vj in the real causal graph
G. Then, it uses the equation h(W ) = tr(eW◦W )−d = 0 to
replace the discrete constraint G ∈ DAGs (see (Zheng et al.
2018) for details). With this constraint, NOTEARS recon-
structs data from W to minimize the reconstruction residual
and designs the following constrained optimization formula:

min
W

L(W ;X) =
1

2n
||X −XW ||22 + λ||W ||1

s.t. h(W ) = tr(eW◦W )− d = 0 (1)

where ||W ||1 guarantees the sparsity of the causal graph,
and λ is the hyper-parameter. The approximate solution is
sought via the L-BFGS-B algorithm (Byrd et al. 1995).

To extend NOTEARS to non-parametric models, Zheng
et al. (2020) proposed NOTEARS-MLP, which learns the
causal model via a multi-layer perceptron (MLP) and uses
partial derivatives to express the dependence between vari-
ables. NOTEARS-MLP learns the causal generation model
f = {f1, · · · , fd} for each variable. It is easy to show that
there is no edge from Vj to Vi, if and only if the partial
derivative ∂jfi of fi with respect to Xj is equal to 0. So,
NOTEARS-MLP uses the partial derivatives of f to repre-
sent the parameter matrix W (f): [W (f)]ji = ||∂jfi||2. Let

θ = {(A(1)
1 , · · · , A(h)

1 ), · · · , (A(1)
d , · · · , A(h)

d )} be the pa-
rameters of all MLPs and A

(h)
i be the h-th layer parameter

of the MLP corresponding to fi, NOTEARS-MLP uses the
first layer parameters θ(1) = {A(1)

1 , · · · , A(1)
d } of all MLPs

to represent the weight matrix [W (θ(1))]ji = ||A(1)
i,(:,j)||2.

The constrained optimization formula of NOTEARS-MLP
is as follows:

min
θ

L(θ;X) =
1

2n
[||X −mlp(X; θ)||22 + λ||θ||1]

s.t. h(θ(1)) = tr(eW (θ(1))◦W (θ(1)))− d = 0 (2)

where mlp(X; θ) is the reconstruction result of original data
X from all causal generation models parameterized by MLP
and ||θ||1 guarantees the causal model sparsity.

Both NOTEARS and NOTEARS-MLP require centerized
IID data. In contrast, FedCausal targets decentralized non-
IID data. It unifies local DAG learning on non-IID data into a
global optimization framework, which improves the causal-
ity learning capability of client models under limited local
data, and ensures unity and accuracy of global causal graphs
under statistical heterogeneity. The global model of Fed-
Causal corresponds to the unique causal graph that explains
causality between variables, and the local models learn the
heterogeneous distributions of clients’ data.

Proposed Methodology
Optimization for Linear SEM
To learn causal graphs that conform to the data distribu-
tion, both centralized and federated DAG learning methods
aim to minimize the reconstruction residual of observational
data and guarantee the graph acyclicity. For a linear struc-
tural equation model (SEM), assume that there are K clients
holding n =

∑K
k=1 nk samples in total. If we can collect de-

centralized data {Xk}Kk=1, the global weight matrix W can
be learned as follows:

W = argmin
W

K∑
k=1

1

2nk
[||Xk −XkW ||22 + λ||W ||1]

s.t. tr(eW◦W )− d = 0 (3)

However, clients cannot expose their own data and they
can only use local data to optimize the local weight matrix
Wk ∈ Rd×d. In addition, the acyclic constraint term is ap-
plied to the local matrix Wk rather than the global W . A
natural idea is to aggregate the local matrices into a global
one with guaranteed sparsity and acyclicity.

Without loss of generality, we assume that the probabil-
ity of the observational data being distributed over k−th
client is equal to the frequency nk/n of samples appearing
in it, given sufficient data. To measure local empirical risks
over possible data distributions, the global matrix should be
the weighted average of the local matrices based on sam-
ple sizes: W =

∑K
k=1 nkWk/n. Unfortunately, clients may

learn weight matrices with opposite causal relationships,
which introduces a strong numerical bias to the global ma-
trix and violates the acyclicity. To solve this problem, we
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design a global constrained optimization to aggregate local
matrices and ensure the global sparsity and acyclicity:

min
W

L(W ) =
K∑

k=1

[
nk

n
||W −Wk||22]

s.t. h(W ) = tr(eW◦W )− d = 0 (4)

where nk||W − Wk||22/n is the distribution loss term to
constrain the global matrix to approach the local matrix.
Obviously, Eq. (4) measures and minimizes local empirical
risks, and its equality constraint also explicitly constrains the
acyclicity of the global causal graph. Since the global matrix
resulting from aggregating sparse local matrices is also nu-
merically sparse, we do not add the sparse penalty term to
Eq. (4). We broadcast the learned global matrix W to all
clients and further optimize their local matrices as follows:

min
Wk

Lk(Wk;Xk) =
1

2nk
||Xk −XkWk||22 + λ1||Wk||1

s.t. h(Wk) = tr(eWk◦Wk)− d = 0 (5)

Local matrix optimization still requires the sparsity penalty
and acyclic constraint to prevent its overfitting. In prac-
tice, we find that adding a penalty term λ2||Wk − W ||22 to
bring local matrices close to the global one is beneficial for
the convergence of local optimization. This penalty term is
weaker than the equality constraint of NO-ADMM (Ng and
Zhang 2022), which forces the local matrix to be equal to the
global matrix, but it is more flexible and suitable for address-
ing the statistical heterogeneity. FedCausal first optimizes
local matrices {Wk}Kk=1 at clients using Eq. (5) and uploads
them to the server. The server then optimizes the global ma-
trix W using Eq. (4) and distributes it to the local models.
FedCausal repeats the above local and global optimizations
for a sufficiently large number of iterations, or stops when
the global acyclic constraint term falls below a pre-defined
threshold.

Optimization for Non-Parametric SEM
The non-parametric model is more complex than the linear
model, since it has unknown parameters and clients’ data
distributions. Exchanging all models’ parameters between
the clients and the server not only causes excessive commu-
nication overheads, but also leads to the same local models
and to the violation of statistical heterogeneity. To address
these issues, we adjust the global optimization and pass only
a few parameters between the clients and the server. We de-
note the parameters of the local causal generation model as
θk, the parameters of the first layer as θ(1)k and those of other
layers as θ

(−1)
k . The global optimization formula of Fed-

Causal in the non-parametric model is:

min
θ(1)

L(θ(1)) =
K∑

k=1

[
nk

n
||θ(1) − θ

(1)
k ||22]

s.t. h(θ(1)) = tr(eW (θ(1))◦W (θ(1)))− d = 0 (6)

FedCausal receives only the first layer parameters θ
(1)
k of

the local models to optimize the global model. The unified

Algorithm 1: FedCausal: Federated Causal Learning
Input: Observed data X = {X1, · · · , XK}
Output: Causal weight matrix W (θ(1))

1: Initial global parameters θ(1), local parameters
{θk = (θ

(1)
k , θ

(−1)
k )}Kk=1 and hyperparameter-list

{α, ρ, htol, ρmax, γ, β}
2: for t = 0, 1, 2, · · · do
3: while ρ < ρmax do
4: Broadcast θ(1), α, ρ: θ(1)k = θ(1), αk = α, ρk = ρ
5: Update local parameters {θk}Kk=1 using Eq. (7)
6: Upload {θ(1)k }Kk=1 to the server
7: Update global parameters θ(1) using Eq. (6)
8: if h(θ(1)) > γH then
9: ρ = βρ

10: else
11: Break
12: end if
13: end while
14: Set H = h(θ(1)), α = α+ ρh(θ(1))
15: if h(θ(1)) <= htol or ρ >= ρmax then
16: Break
17: end if
18: end for
19: return W (θ(1))

global causal graph is derived from the partial derivative of
the first-layer global model parameters θ(1), so there is no
need to send θk. This design not only reduces the commu-
nication overhead compared to passing all parameters as in
NO-ADMM (Ng and Zhang 2022), but also enforces privacy
protection, because it is difficult for attackers to reconstruct
data from the first layer parameters of a complex model. We
then broadcast θ(1) to all clients, replace their θ(1)k , and op-
timize their θk with the following formula:

min
θk

Lk(θk;Xk) =
1

2nk
||Xk −mlp(Xk; θk)||22 + λ1||θ(1)k ||1

s.t. h(θ(1)k ) = tr(eW (θ
(1)
k )◦W (θ

(1)
k ))− d = 0 (7)

FedCausal learns the global causal graph using Eq. (6), al-
lows clients to learn different causal models conforming to
non-IID local data using Eq. (7), and thus provides high
flexibility for causal discovery in non-IID data. Algorithm
1 gives the main process of FedCausal on non-parametric
data, where α and ρ are the Lagrangian multiplier and the
penalty parameter, htol and ρmax are the thresholds that con-
trol the loop termination, γ and β are the condition and the
step size that control the update of ρ and α. After obtaining
the causal weight matrix W (θ(1)), we prune the edges with
small weight (<0.3) to get the DAG.

Let’s consider the case of K client models with one hid-
den layer of m units. FedCausal’s clients take O(nkd

2m +
d2m + d3) to compute the objective and the gradient. The
computation complexity of FedDAG’s clients is O(nkd

2m+
nkd

2 + d2m + d3), due to the additional mask operation.
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NO-ADMM does not compute the acyclic term on clients,
so its clients’ computation complexity is O(nkd

2m+d2m),
but it suffers from overfitting local models. Both FedCausal
and NO-ADMM optimize the global graph on the server, so
their complexity on the server side is O(Kd2m+d3). How-
ever, FedCausal only needs to compute the first layer param-
eters of the model, so it is usually faster than NO-ADMM,
especially when the model has at least two layers. The com-
munication overheads of FedCausal, NO-ADMM, and Fed-
DAG for a single round interaction are d2m, d2m+ dm and
d2, respectively. As the model becomes complex with more
layers, the overhead of NO-ADMM sharply increases. Fed-
DAG averages only local matrices and has a lower server
computation than NO-ADMM and FedCausal, but its global
matrix may not uncover an accurate global causal graph, as
we show in our experiments.

Analysis of Explainable Adaptive Optimization
Lemma 1. Under the condition that local data are homo-
geneous and obey linear SEM, the optimization objective
of FedCausal is consistent with that of centralized DAG
learning, i.e. the global matrix W → argminW ||X −
XW ||22/2n+ λ||W ||1 + ρh2(W )/2 + αh(W ).

For the linear data model, the optimization objective of
the penalty term ||W − Wk||22 in Eq. (4) is W → Wk,
and that of Eq. (5) is Wk → argminWk

Lk(Wk;Xk) +

ρkh
2(Wk)/2 + αkh(Wk), so the actual optimization ob-

jective of ||W − Wk||22 is W → argminW Lk(W ;Xk) +
ρkh

2(W )/2 + αkh(W ). We can then replace the penalty
term in the global optimization (Eq. (4)) with the actual ob-
jective, and obtain the following:

W → argmin
W

K∑
k=1

nk

n
[
1

2nk
||Xk −XkW ||22 + λ||W ||1]

+
ρ

2
h2(W ) + αh(W ) (8)

Eq. (8) only preserves the global acyclic constraint term, be-
cause the local acyclic constraint acts on the local matrices
and does not constrain the global matrix. By merging the
terms in Eq. (8), we find that the optimization objective of
the global matrix is: W → argminW ||X − XW ||22/2n +
λ||W ||1 + ρh2(W )/2 + αh(W ). Obviously, this optimiza-
tion objective is consistent with the centralized optimization
objective of NOTEARS, which means that FedCausal may
achieve the same results as NOTEARS, even though the data
are scattered.
Lemma 2. Under the condition that local data are ho-
mogeneous and obey non-parametric SEM, the optimiza-
tion objective of FedCausal is consistent with that of cen-
tralized DAG learning, i.e. the global parameters θ(1) →
argminθ(1) ||X −mlp(X; θ(1), θ(−1))||22/2n+ λ||θ(1)||1 +
ρh2(θ(1))/2 + αh(θ(1)).

For the non-parametric data model, the optimization
objective of the penalty term ||θ(1) − θ

(1)
k ||22 in Eq.

(7) is θ(1) → θ
(1)
k . By expressing the local parame-

ters θk optimized by Eq. (6) as (θ
(1)
k , θ

(−1)
k ), we obtain

the actual optimization objective of ||θ(1) − θ
(1)
k ||22 as

θ(1) → argminθ(1) Lk(θ
(1), θ

(−1)
k ;Xk) + ρkh

2(θ(1))/2 +

αkh(θ
(1)). Similarly, we can deduce the global optimization

objective in the non-parametric data model as:

θ(1) → argmin
θ(1)

K∑
k=1

nk

n
[
1

2nk
||Xk −mlp(Xk; θ

(1), θ
(−1)
k )||22

+λ||θ(1)||1] +
ρ

2
h2(θ(1)) + αh(θ(1)) (9)

We consider two cases. On the one hand, if clients’ data
are homogeneous, the local parameter θ

(−1)
k can be the

same or very similar, so we can merge the terms in Eq.
(9) to obtain the final optimization objective: θ(1) →
argminθ(1) ||X −mlp(X; θ(1), θ(−1))||22/2n+ λ||θ(1)||1 +
ρh2(θ(1))/2 + αh(θ(1)). This optimization objective is also
consistent with the centralized optimization objective of
NOTEARS-MLP. On the other hand, if clients have decen-
tralized heterogeneous data, Eq. (9) allows clients to learn
different θ(−1)

k , and still optimizes a unified θ(1). In other
words, regardless whether the local data fit linear or non-
linear models, FedCausal learns different data joint distri-
butions on the clients and optimizes a uniform causal graph
on the server. In other words, FedCausal adapts to the case
where clients have different causal generation models but the
same causal graph. In summary, our FedCausal can flexibly
adapt to statistical heterogeneous/homogeneous data with an
explainable proof.

Experiments
We compare FedCausal against recent federated causal dis-
covery algorithms, including FedDAG (Gao et al. 2023) and
NO-ADMM (Ng and Zhang 2022). We also set three base-
lines based on NOTEARS (Zheng et al. 2018). The first
baseline (NO-ALL) learns DAGs from all data by center-
ing local data; the second (NO-Avg) independently learns
local causal graphs and combines these graphs by weighted
average; the third one (NO-w/oAcy) is similar to our strat-
egy but disregards the acyclic constraint on the global causal
graph. For nonlinear or heterogeneous data, we adapt the
nonlinear or non-parametric version of FedCausal, FedDAG
and NO-ADMM, and replace NOTEARS with NOTEARS-
MLP (Zheng et al. 2020) for NO-ALL, NO-Avg and NO-
w/oAcy. For real datasets, we add two classic baselines PC
(Spirtes et al. 2000) and GES (Chickering 2002), which use
all data but identify complete partially DAG (CPDAG) with
undirected edges. We provide the hyperparameter settings
of FedCausal and other baselines in the supplementary file
(Yang et al. 2023).

We study the performance of the compared methods on
synthetic IID and non-IID datasets, as well as real datasets.
We use the Erdös–Rényi (ER) and Scale-free (SF) mod-
els to generate the ground truth DAGs. We use the linear
Gaussian (LG) model and the additive noise model with
MLP (ANM-MLP) (Zheng et al. 2020) respectively to syn-
thesize linear and nonlinear data. For non-IID data, we fix
the generated DAG and randomly sample models from the
linear Gaussian model (LG), the additive noise model with

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16312



MLP (ANM-MLP), the additive model with Gaussian pro-
cesses (ADD-GP) (Bühlmann, Peters, and Ernest 2014) and
the additive index model (MIM) (Yuan 2011) to generate
data for different clients. We guarantee that, even if different
clients choose the same model, their model parameters will
be different. We use the same server (Ubuntu 18.04.5, Intel
Xeon Gold 6248R and Nvidia RTX 3090) to perform exper-
iments and report the structural hamming distance (SHD),
true positive rate (TPR) and false discovery rate (FDR) of
the estimated DAGs, averaged over 10 random runs. A larger
TPR indicates a better performance, while the opposite trend
holds for SHD and FDR. The code of FedCausal is shared at
https://www.sdu-idea.cn/pubDetail?pubId=279.

Results on IID Data
To test FedCausal on IID data, we set up 10 clients and
generate 200 samples for each client with linear (LG) and
nonlinear (ANM-MLP) IID data models. We conduct the
experiment to estimate randomly generated DAGs with
{10, 20, 40, 80} variables. Based on the results of FedCausal
and other baselines in Figure 2, we have some observations:
(i) FedCausal obtains the highest TPR on the linear model
across different numbers of variables. NO-ALL learns the
causal graph using all data, so its results can be taken as an
upper bound. FedCausal even outperforms NO-ALL, proba-
bly because there are sufficient data for clients to learn local
causal graphs on the simple linear model. In addition, the
collaboration between clients works alike an ensemble sys-
tem that helps to reinforce correct edges and remove erro-
neous ones. NO-ADMM achieves the lowest TPR and high-
est FDR and SHD, since it does not consider the sparsity and
acyclicity on clients, which cause overfitted local graphs and
fail to form a good global causal graph. FedDAG performs
well in the linear model, approaching NO-ALL with only a
few variables; it does not with more variables. NO-Avg per-
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(a) Results on linear model
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(b) Results on nonlinear model

Figure 2: Results on linear and non-linear IID data. Solid
lines correspond to federated methods and dotted lines are
NOTEARS-based baselines.

forms almost as well as NO-ALL on the linear model, since
the linear model is simple and clients can confidently learn
local graphs without any collaboration.
(ii) FedCausal also achieves the lowest FDR and SHD val-
ues on the nonlinear model, being clearly superior to NO-
ALL, with very close TPR values. This is because our global
optimization aligns with the centralized optimization objec-
tive of NO-ALL that uses all data, and federated learning
allows clients to collaborate with each other to reduce erro-
neous edges. For the same reason as for the linear model,
NO-ADMM still performs poorly on the nonlinear model.
FedDAG does not perform as well on the nonlinear model,
as it did on the linear one, because the Gumbel-Sigmoid
function it uses is not suitable for dealing with nonlinear
causality, which leads to biased results. We do not report
the results of FedDAG on 80 nodes, since Gao et al. (2023)
only provided the hyperparameters of FedDAG on 10, 20,
and 40 nodes, and FedDAG is very sensitive to the hyper-
parameters and fails on 80 nodes. NO-Avg yields unreliable
results with very high FDR and SHD values, even though its
TPR is also high. This indicates that simply averaging local
causal graphs may result in more erroneous edges.
(iii) Our aggregation optimization effectively improves the
performance of FedCausal. Compared to NO-w/oAcy, Fed-
Causal performs better on the linear model and obtains
significantly lower FDR and SHD values on the nonlinear
model. This is because our adaptive optimization not only
measures the local empirical risk, but also constrains the
acyclicity of the global graph, while NO-w/oAcy disregards
this constraint. FedCausal trains the global graph to conform
to the local data distribution and eliminates the numerical
bias caused by aggregation that may lead to a cyclic graph,
thus effectively improves the global graph.

Results on Non-IID Data
In this experiment, we also set 10 clients, 200 samples for
each client and graphs with {10, 20, 40, 80} variables. We
randomly select models from LG, ANM-MLP, ADD-GP or
MiM to generate non-IID data for different clients. Figure 3
shows the results of FedCausal and other baselines. We have
some important observations:
(i) FedCausal manifests the best performance among the
compared methods on decentralized heterogeneous data.
NO-ADMM pursues the consistency of all local models
and thus does not identify the global causal graph in this
practical and challenging non-IID setting. NO-ALL gets
extremely high FDR values because the training data are
mixed with multiple causal models, which prevent NO-ALL
to accurately identify causal relationships. This observa-
tion suggests that causal algorithms with the prerequisite
of centralized data cannot identify the causal graphs from
non-IID data. Federated causal discovery algorithms (Fed-
Causal, FedDAG, and NO-w/oAcy) perform better on het-
erogeneous data than on homogeneous nonlinear data. This
is because clients discover the same false causal relation-
ships on IID data and reinforce these false edges in aggre-
gation, while clients on non-IID data can offset the false
edges. FedCausal has a much lower FDR than FedDAG and
a higher TPR than NO-w/oAcy. The graph found by NO-
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(a) Results on ER graphs
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(b) Results on SF graphs

Figure 3: Results on linear and non-linear non-IID data.

Avg has a very high TPR and FDR values without guaran-
teed acyclicity.
(ii) FedCausal effectively improves the local causal graphs
and guarantees the acyclicity. NO-Avg cannot obtain a reli-
able and acyclic causal graph on non-IID data, due to the
poor local results and high h(θ(1)) (a smaller h(θ(1)) in-
dicates a better acyclicity) in Table 1. This is because the
clients of NO-Avg are trained independently, but the lim-
ited local data can’t support them to accurately learn the
nonlinear and heterogeneous data models, which are more
complex than linear ones. In contrast, by aggregating local
results at each interaction, FedCausal, NO-w/oAcy and Fed-
DAG significantly improve the quality of local graphs. Fed-
DAG learns local graphs masked by an approximate binary
global matrix, which allows clients to get very similar results
with global h(θ(1)) equal to 0. However, the masked model
parameters cannot be effectively updated, which causes the
model to be unable to correct error edges and limits its accu-
racy. In terms of the client performance and global acyclic-
ity, FedCausal is superior to NO-w/oAcy. This proves the ef-
fectiveness of our adaptive optimization that guarantees the
acyclic global causal graph for clients.

In addition, to study the communication efficiency of Fed-
Causal and other federated baselines, we show the perfor-
mance trend of the algorithm as a function of the number

40 nodes Metrics of local graphs
h(θ(1)) ↓TPR↑ FDR↓

FedDAG 82.4±0.0 10.8±0.3 ≈0
FedCausal 92.4±1.9 4.4±2.8 ≈4.2×10−12

NO-w/oAcy 84.7±3.4 8.3±5.0 ≈7.8×10−7

NO-Avg 77.0±11.2 71.9±6.0 ≈2.2×10−1

Table 1: Evaluation of global acyclic constraint term h(θ(1))
and local causal graph

TPR↑ FDR↓ SHD↓ NNZ

CP PC 50.00 61.54 24 26
GES 40.00 78.95 31 38

DAG

FedCausal 45.00 52.63 15 19
NO-ALL 45.00 57.14 18 21
NO-w/oAcy 40.00 69.23 24 26
NO-Avg 40.00 70.37 25 27
FedDAG 40.00 71.43 26 28
NO-ADMM 20.00 80.00 29 20

Table 2: Results on the Sachs dataset. DAG and CP refer to
algorithms that identify directed acyclic graph and complete
partially directed acyclic graph, respectively.

of communications in the supplementary file (Yang et al.
2023). The results show that FedCausal has the most supe-
rior communication efficiency. We also explore the robust-
ness of FedCausal against different numbers of clients and
local sample sizes, and present the results in the supplemen-
tary file (Yang et al. 2023). We observe that FedCausal is
stable and in all cases outperforms the rivals.

Results on a Real Dataset
We evaluate FedCausal on a protein signaling network based
on expression levels of proteins and phospholipid given by
(Sachs et al. 2005), which is generally accepted by the bi-
ology community. There are a total of n = 7466 samples,
d = 11 variables, and 20 edges in the ground truth DAG of
this dataset (Sachs). We randomly select n = 7460 samples
and evenly distribute them to 10 clients to mimic scattered
data. The results are shown in Table 2.

FedCausal achieves the best and most reliable results. PC
and GES, as centralized and typical causal discovery algo-
rithms, both show good TPR but high SHD, because they
can only identify CPDAGs. NO-ALL also uses all data to
identify DAGs, so its results are better than most federated
approaches. Federated methods NO-w/oAcy, NO-Avg, Fed-
DAG and NO-ADMM are limited by decentralized data and
are outperformed by centralized PC and NO-ALL. The per-
formance of FedCausal is not only better than other feder-
ated methods, but even better than NO-ALL, which may be
owed to the effective interaction between the clients and the
server powered by our adaptive optimization.

Conclusion
This paper introduces a federated approach (FedCausal) to
learn a unified global causal graph from decentralized non-
IID data. FedCausal uses an explainable and adaptive opti-
mization process to coordinate clients to optimize the local
causal graphs based on clients’ data and to learn the global
graph with ensured acyclicity. Our analysis shows that the
optimization objective of FedCausal under statistically ho-
mogeneous data is consistent with that of causal discovery
algorithms for centralized data, and FedCausal can flexibly
learn DAGs from decentralized heterogeneous data. Experi-
mental results confirm its effectiveness, generality and reli-
ability on IID, and non-IID data.
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