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Abstract

This paper studies the multiobjective bandit problem under
lexicographic ordering, wherein the learner aims to simulta-
neously maximize m objectives hierarchically. The only ex-
isting algorithm for this problem considers the multi-armed
bandit model, and its regret bound is Õ((KT )2/3) under a
metric called priority-based regret. However, this bound is
suboptimal, as the lower bound for single objective multi-
armed bandits is Ω(K log T ). Moreover, this bound becomes
vacuous when the arm number K is infinite. To address these
limitations, we investigate the multiobjective Lipschitz ban-
dit model, which allows for an infinite arm set. Utilizing a
newly designed multi-stage decision-making strategy, we de-
velop an improved algorithm that achieves a general regret
bound of Õ(T (diz+1)/(diz+2)) for the i-th objective, where
diz is the zooming dimension for the i-th objective, with
i ∈ {1, 2, . . . ,m}. This bound matches the lower bound of
the single objective Lipschitz bandit problem in terms of T ,
indicating that our algorithm is almost optimal. Numerical
experiments confirm the effectiveness of our algorithm.

Introduction
Online learning with bandit feedback is a powerful paradigm
for modeling sequential decision-making cases (Robbins
1952), such as clinical trials (Villar, Bowden, and Wason
2015), news recommendation (Li et al. 2010), and website
optimization (White 2012). The fundamental model of this
paradigm is multi-armed bandits (MAB), where a learner
repeatedly selects one arm from K available arms and re-
ceives a stochastic payoff drawn from an unknown distribu-
tion associated with the chosen arm (Bubeck et al. 2015; Luo
et al. 2018; Zhou, Xu, and Blanchet 2019; Xue et al. 2020;
Zhu and Mineiro 2022; Qin et al. 2023; Gou, Yi, and Zhang
2023). The goal of learner is to minimize regret, defined as
the cumulative difference between the expected payoff of the
selected arm and that of the inherently best arm. To achieve
this goal, the learner must strike a balance between explo-
ration and exploitation, attempting potentially better arms
while concurrently employing the best arm identified so far.

Although MAB is powerful, many real-world applications
involve multiple and potentially conflicting objectives, such
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as the Click-Through Rate (CTR) and the Post-Click Con-
version Rate (CVR) in advertising recommendation systems
(Ma et al. 2018). This has led to the study of multiobjective
multi-armed bandits (MOMAB), in which payoffs are vec-
tors containing multiple elements, and the learner aims to si-
multaneously minimize the regret for all objectives (Drugan
and Nowe 2013). A commonly used criterion for evaluat-
ing the performance of MOMAB is Pareto regret, which re-
gards all objectives as equivalent (Van Moffaert et al. 2014;
Q. Yahyaa, M. Drugan, and Manderick 2014; Turgay, Oner,
and Tekin 2018; Lu et al. 2019a; Xu and Klabjan 2023).
However, some scenarios may require varying levels of im-
portance among objectives, such as radiation treatment for
cancer patients, where the primary objective is target cover-
age and the secondary objective is the therapy’s proximity
to organs at risk (Jee, McShan, and Fraass 2007). Similarly,
water resource planning legally mandates the prioritization
of objectives such as flood protection, supply shortage for
irrigation, and electricity generation (Weber et al. 2002).

To deal with these real-world applications, a natural idea
is to utilize lexicographic ordering, as it ranks the objec-
tives according to their importance (Ehrgott 2005; Wray and
Zilberstein 2015; Wray, Zilberstein, and Mouaddib 2015;
Hüyük and Tekin 2021; Hosseini et al. 2021; Skalse et al.
2022). Let X represent an arm space, and the expected pay-
offs for a, b ∈ X are [µ1(a), µ2(a), . . . , µm(a)] ∈ Rm and
[µ1(b), µ2(b), . . . , µm(b)] ∈ Rm. The arm a is said to lexi-
cographically dominate arm b if and only if µ1(a) > µ1(b),
or there exists an i∗ ∈ {2, 3, . . . ,m}, such that µi(a) =
µi(b) for 1 ≤ i ≤ i∗ − 1 and µi∗(a) > µi∗(b). The lexico-
graphically optimal arm is the one that is not lexicographi-
cally dominated by any other arms (Hüyük and Tekin 2021).

The only existing algorithm for multiobjective bandits un-
der lexicographic ordering is specifically designed for the
MOMAB model (Hüyük and Tekin 2021), whose arm set
is finite, i.e., X = [K]1. Let x∗ denote the lexicographi-
cally optimal arm among X and xt be the arm chosen at t-th
epoch. Hüyük and Tekin (2021) defined a priority-based re-
gret to evaluate the performance of their algorithm, given by

R̃i(T ) =
T∑

t=1

(
µi(x∗)− µi(xt)

)
I(Ai(xt)), i ∈ [m]. (1)

Here, I(·) is the indicator function, and Ai(xt) denotes the
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event that the previous i− 1 expected payoffs of the chosen
arm are optimal, i.e., Ai(xt) = {µj(x∗) − µj(xt) = 0, j ∈
[i−1]}. Hüyük and Tekin (2021) proposed an algorithm with
a bound of Õ((KT )2/3) under this priority-based regret.

There are three limitations of the existing algorithm
(Hüyük and Tekin 2021). First, the performance declines as
K increases and becomes ineffective when the arm set is in-
finite. Second, the regret bound is suboptimal with respect
to T when the number of objectives reduces to one, as the
lower bound for single objective MAB is Ω(K log T ) (Lai
and Robbins 1985). Third, regret (1) is not practicable due
to the impact of I(·). Specifically, for the i-th objective, if
there exists an objective j ∈ [i − 1], the expected payoff of
the chosen arm xt is not optimal, i.e., µj(x∗) ̸= µj(xt), the
gap µi(x∗)− µi(xt) does not accumulate to regret (1).

To remove these limitations, we investigate the multiob-
jective Lipschitz bandit (MOLB) model under lexicographic
ordering, where the arm set X can be infinite. We adopt the
general regret to evaluate our algorithms, as expressed by

Ri(T ) = Tµi(x∗)−
T∑

t=1

µi(xt), i ∈ [m]. (2)

To the best of our knowledge, this work is the first to ex-
plore the MOLB model under lexicographic ordering, and
the main contributions can be summarized as follows:

• We develop an algorithm that achieves the regret bound
Õ(T (di

z+1)/(di
z+2)) for the i-th objective, where diz is the

zooming dimension to be introduced in the next section.
This result matches the lower bound of single objective
Lipschitz bandit problem (Kleinberg, Slivkins, and Upfal
2008), indicating that our algorithm is almost optimal.

• We propose a novel multi-stage decision-making strat-
egy that delicately balances exploration and exploitation,
which is crucial for improving the existing suboptimal
result (Hüyük and Tekin 2021).

• We extend the metric of lexicographically ordered multi-
objective bandits from the priority-based regret (1) to the
general regret (2), which more accurately evaluates the
performance of the learner.

Preliminaries
In this section, we first present the learning setting of MOLP,
and then introduce two necessary concepts, covering dimen-
sion and zooming dimension.

Learning Setting
MOLP is a T -round decision-making system indexed by
t ∈ [T ]. At each epoch t, the learner selects an arm xt from
the metric space X and receives a stochastic payoff vector
[y1t , y

2
t , . . . , y

m
t ] ∈ Rm, where yit is the payoff of the i-th

objective and m is the number of objectives. The payoffs are
conditionally 1-sub-Gaussian, such that

E
[
eα(y

i
t−µi(xt))|Ft−1

]
≤ eα

2/2, ∀α ∈ R (3)

1For any n ∈ N+, [n] denotes the set {1, 2, . . . , n}.

where µi(xt) denotes the i-th expected payoff of arm xt , i ∈
[m], and Ft−1 = {x1, x2, . . . , xt} ∪ {y11 , y12 , . . . , y1t−1} ∪
. . . ∪ {ym1 , ym2 , . . . , ymt−1} is a σ-filtration (Auer 2002;
Bubeck, Stoltz, and Yu 2011; Abbasi-yadkori, Pál, and
Szepesvári 2011; Shao et al. 2018). Another common as-
sumption on the Lipschitz bandit model is that the expected
functions satisfy the Lipschitz property (Turgay, Oner, and
Tekin 2018; Wanigasekara and Yu 2019; Podimata and
Slivkins 2021), such that

|µi(x)− µi(x′)| ≤ D(x, x′), ∀x, x′ ∈ X , i ∈ [m] (4)

where D(·, ·) is the distance function on metric space X .
Without loss of generality, we assume the diameter of X is
smaller than 1, i.e., D(x, x′) ≤ 1, ∀x, x′ ∈ X .

Furthermore, we propose a parameter λ to depict the diffi-
culty of identifying the lexicographically optimal arm. Pre-
cisely, we assume there exists some λ ≥ 0,

µi(x)− µi(x∗) ≤ λ · max
j∈[i−1]

{µj(x∗)− µj(x)} (5)

for any i ∈ {2, 3, . . . ,m} and x ∈ X . An exceptionally
large λ implies the existence of an arm x ∈ X with a sig-
nificantly higher payoff than the optimal arm x∗ for the i-th
objective while maintaining similar payoffs for the preced-
ing i − 1 objectives, which makes the identification of the
lexicographically optimal arm challenging.

Covering Dimension and Zooming Dimension
Let B(x̄, r) denote the ball with center x̄ ∈ X and radius
r ≥ 0, such that B(x̄, r) = {x ∈ X |D(x̄, x) ≤ r}. The r-
covering number of X is the minimal number of balls with
radius r to cover X , i.e.,

Nc(r) = min{n ∈ N | X ⊆ ∪k∈[n]B(x̄k, r)}. (6)

Based on the covering number, the covering dimension of
X is defined as

dc = min{d ≥ 0 | ∃C > 0, Nc(r) ≤ Cr−d, ∀ r > 0}. (7)

We present two specific cases to help with the understanding
of covering dimension. One is the unit ball in d-dimensional
Euclidean space, whose covering dimension is d and C =
1. Another case is any set containing finite elements, i.e.,
|X | = K, whose covering dimension is 0 and C = K.

The covering dimension does not account for the struc-
ture of expected payoff functions, thus failing to reflect the
complexity of a Lipschitz bandit problem accurately. To il-
lustrate this issue, we provide a simple example. Suppose
the arm space is X ⊂ Rd with a Euclidean metric, and the
expected functions are µi(x) = x1, i ∈ [m] for all x ∈ X .
Here, x1 denotes the first element of vector x. In this case,
the complexity of identifying the optimal arm remains the
same, regardless of the covering dimension of X .

To deal with this issue, another concept termed zoom-
ing dimension was proposed (Kleinberg, Slivkins, and Upfal
2008). In this paper, we extend this concept to multiobjec-
tive setting. First, we define the r-optimal region for the
i-th objective as

X i(r) = {x ∈ X |λir/2 < µi(x∗)− µi(x) ≤ λir} (8)
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where λi = 1 + λ+ . . . + λi−1 is a fixed constant and r ≥
0. Then, similar to the r-covering number, the r-zooming
number can be defined as the minimal number of balls with
radius r/96 to cover X i(r), denoted by N i

z(r), i.e.,

N i
z(r) = min{n ∈ N | X i(r) ⊆ ∪k∈[n]B(x̄k, r/96)}. (9)

Now, we are ready to define the zooming dimension for the
i-th objective, which is

diz = min{d ≥ 0 | ∃ Zi > 0, N i
z(r) ≤ Zir

−d, ∀r > 0}.
(10)

Compared with the zooming dimension of single objective
Lipschitz bandits (Kleinberg, Slivkins, and Upfal 2008), the
only difference is the adoption of the constant λi in (8),
which is due to technical reasons (see Theoretical Analy-
sis section) and does not constitute an essential different, as
r can approach zero arbitrarily closely.

Related Work
In this section, we give a brief review of the research for
Lipschitz bandits and multiobjective bandits.

Lipschitz Bandits
Plenties of work on Lipschitz bandits have been conducted
in recent years, and most of them employ two basic tech-
niques: static discretization (Agrawal 1995; Kleinberg 2004;
Auer, Ortner, and Szepesvári 2007) and adaptive discretiza-
tion (Kleinberg, Slivkins, and Upfal 2008; Bubeck et al.
2008, 2011; Lu et al. 2019b; Wang et al. 2020; Feng, Huang,
and Wang 2022). Static discretization involves dividing the
arm space into a uniform mesh and directly applying MAB
algorithms to the mesh regions, such as UCB (Auer 2002).
The seminal work of Agrawal (1995) investigated a specific
case called continuum-armed bandits, wherein the arm set is
a compact interval (i.e., X ∈ [0, 1]). Building upon this re-
search, Kleinberg (2004) proposed a near-optimal algorithm
with a bound of O(T 2/3) and established a matching lower
bound. Subsequently, Auer, Ortner, and Szepesvári (2007)
improved this result by achieving a regret bound of O(

√
T )

under mild assumptions.
Adaptive discretization dynamically discretizes the arm

space according to observed payoffs and allocates more
trials to promising regions. This technique was first pro-
posed by Kleinberg, Slivkins, and Upfal (2008), who ex-
tended the arm set into a general metric space and intro-
duced the zooming algorithm, achieving a regret bound of
Õ(T (dz+1)/(dz+2)). Here, dz represents the zooming dimen-
sion of the expected payoff function. Furthermore, Klein-
berg, Slivkins, and Upfal (2008) provided a matching lower
bound of Ω(T (dz+1)/(dz+2)). A subsequent work of Bubeck
et al. (2011) relaxed the Lipschitz assumption to locally Lip-
schitz and proposed a tree-based algorithm that attains a re-
gret bound of Õ(T (dz+1)/(dz+2)). Wang et al. (2020) con-
nected tree-based methods with Gaussian processes and de-
veloped a new analytical framework.

Multiobjective Banidts
Drugan and Nowe (2013) initially formalized the MOMAB
model and introduced two algorithms enjoying the bounds

O(K log T ) under the metrics of scalarized regret and Pareto
regret, respectively. Scalarized regret refers to the weighted
sum of all objectives’ regret, while Pareto regret measures
the cumulative Pareto distance between the obtained pay-
off vectors and the Pareto optimal payoff vector. Turgay,
Oner, and Tekin (2018) studied the multiobjective contex-
tual bandit model and proposed a zooming-based algorithm
that achieves a Pareto regret bound of Õ(T (dp+1)/(dp+2)),
where dp represents the Pareto zooming dimension. Subse-
quently, Lu et al. (2019a) investigated a parameterized ban-
dit model called multiobjective generalized linear bandits.
To our knowledge, the study by Hüyük and Tekin (2021) is
the only one that focuses on bandits with lexicographic or-
dering. They proposed the algorithm PF-LEX, which enjoys
a regret bound of Õ((KT )2/3). However, this bound is sub-
optimal as existing single objective MAB algorithms attain
a regret bound of O(K log T ) (Lai and Robbins 1985).

To illustrate the intuition for improving PF-LEX, we
briefly introduce the decision-making strategy of PF-LEX.
The fundamental framework to settle the bandit problem is
the upper confidence bound (UCB), which first constructs
confidence intervals for all arms, and then selects the arm
with the highest upper confidence bound (Lattimore and
Szepesvári 2020). When adapting UCB to MOMAB, the
main modification is considering all objectives in the arm se-
lection. Let ct(a) denote the confidence term of arm a ∈ [m]
at round t. PF-LEX considers two cases for arm selection. If
some arm at ∈ [K] satisfies ct(at) > ϵ for a given cri-
terion ϵ > 0, PF-LEX chooses this arm at. Otherwise, if
ct(a) < ϵ for all arms a ∈ [K], PF-LEX filters promising
arms based on the confidence intervals sequentially, ranging
from the first to the m-th objective, and ultimately selects
an arm in the m-th filtered set. PF-LEX consumes numerous
trials in the first case, which is a pure exploration case and
leads to suboptimal regret. Therefore, we consider avoiding
the pure exploration case by dividing the decision-making
process into multiple stages.

Algorithms
In this section, we first introduce a simple algorithm based
on static discretization, which is easy to understand but
needs an oracle. Then, we use adaptive discretization to re-
move the oracle, creating an almost optimal algorithm.

Warm-up: SDLO
As a warm-up, we propose a simple algorithm called Static
Discretization under Lexicographic Ordering (SDLO),
which first discretizes the arm set X statically, and then uti-
lizes a multi-stage decision-making strategy to select arms.

According to the Lipschitz property of expected payoff
functions, knowing the expected payoff of x̄ ∈ X enables
us to estimate the expected payoff of any arm x ∈ B(x̄, r),
i.e., |µi(x) − µi(x̄)| ≤ r, i ∈ [m]. Consequently, a natu-
ral strategy for addressing the Lipschitz bandit problem is to
discretize the arm space X into a collection of small balls
and identify the best one. Given the radius r, using fewer
balls to cover the arm space simplifies the task of identify-
ing the optimal ball. Thus, covering X with Nc(r) balls is
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Algorithm 1: Static Discretization under Lexicographic Or-
dering (SDLO)

Input: confidence parameter δ ∈ (0, 1), query radius r ≥ 0
1: Query the oracle with r to obtain the static arm set A =

{x̄1, . . . , x̄Nc(r)} satisfying X ⊆ ∪k∈[Nc(r)]B(x̄k, r)

2: Initialize µ̂i(x) = 0, i ∈ [m] for x ∈ A
3: Initialize r(x) = +∞ and n(x) = 0 for x ∈ A
4: for t = 1, 2, . . . , T do
5: Invoke the Algorithm 2 to select the arm xt =

MSDM-SD
(
{µ̂i(x), i ∈ [m]}x∈A, {r(x)}x∈A, r

)
6: Play arm xt and receive the payoff [y1t , y

2
t , . . . , y

m
t ]

7: Update µ̂i(xt), i ∈ [m] and n(xt) according to (14)
8: Compute r(xt) according to (15)
9: end for

the best choice, as Nc(r) is the minimum number of balls
with radius r needed to cover X . However, constructing this
minimal coverage is challenging due to the potentially intri-
cate structure of X . Hence, we assume there exists an oracle
that takes radius r as input and outputs the minimal arm set
A = {x̄1, x̄2, . . . , x̄Nc(r)} satisfying

X ⊆
⋃

k∈[Nc(r)]

B(x̄k, r). (11)

Note that for any x ∈ X , there always exists an arm x̄k ∈ A
satisfying D(x, x̄k) ≤ r, which reduces our MOLP problem
to a MOMAB problem with Nc(r) arms.

Similar to existing MAB algorithms (Auer 2002; Yu et al.
2018), SDLO initializes the mean payoffs µ̂i(x), i ∈ [m]
and the counter n(x) to zero for all x ∈ A, where n(x)
counts the times arm x is played. Meanwhile, the confi-
dence term r(x) is initialized to infinity. These terms will
be updated with new trial data as learning goes, whose de-
tails are given in equations (14) and (15). Equipped with
the mean payoffs and confidence terms, SDLO is ready to
make a decision. At each epoch t, SDLO utilizes a novel
decision-making method to select an arm xt from A, whose
details are outlined in Algorithm 2, referred to as Multi-stage
Decision-Making under Static Discretization (MSDM-SD).

Starting with the initialized arm set A1 = A and stage
index s = 1, MSDM-SD enters a loop that continues until
an arm is chosen. In each stage s, MSDM-SD first checks if
there exists an arm xt ∈ As whose confidence term r(xt) is
greater than 2−s. If such an arm exists, MSDM-SD chooses
this arm xt. If no arm in As meets this criterion, MSDM-SD
proceeds to an inner loop containing m iterations, whhich
sequentially filters promising arms from the first objective to
the m-th objective. The initialized arm set for the inner loop
is A0

s = As. For the i-th objective, MSDM-SD first selects
the arm x̂i

t who is highest in mean payoff plus confidence
term from the previously filtered arm set Ai−1

s , i.e.,

x̂i
t = argmax

x∈Ai−1
s

µ̂i(x) + r(x). (12)

Then MSDM-SD updates the arm set Ai−1
s to Ai

s by keeping

Algorithm 2: Multi-stage Decision-Making under Static
Discretization (MSDM-SD)

Input: estimated payoffs {µ̂i(x), i ∈ [m]}x∈A, confidence
interval width {r(x)}x∈A, query radius r ≥ 0

1: Initialize s = 1 and A1 = A
2: repeat
3: if r(xt) > 2−s for some xt ∈ As then
4: Choose this arm xt

5: else
6: Initialize the arm set A0

s = As

7: for i = 1, 2, . . . ,m do
8: x̂i

t = argmaxx∈Ai−1
s

µ̂i(x) + r(x)

9: Ai
s = {x ∈ Ai−1

s |µ̂i(x) + r(x) ≥ µ̂i(x̂i
t) +

r(x̂i
t)− (1 + 2λ+ . . .+ 2λi−1) · (r+ 2 · 2−s)}

10: end for
11: Update As+1 = Am

s and s = s+ 1
12: end if
13: until an arm xt is chosen
14: Return the chosen arm xt

the promising arms, such that

Ai
s =

{
x ∈ Ai−1

s |µ̂i(x) + r(x) ≥ µ̂i(x̂i
t) + r(x̂i

t)

−(1 + 2λ+ . . .+ 2λi−1) · (r + 2 · 2−s)
}
.

(13)

After filtering on the last objective, MSDM-SD sets the arm
set As+1 = Am

s and proceeds to the next stage s = s + 1.
According to equation (15), r(x) > 1/

√
T for all x ∈ A,

MSDM-SD will return an arm xt before s = log2(T ).
Once SDLO plays the arm xt returned by MSDM-SD and

receives payoff vector [y1t , y
2
t , . . . , y

m
t ], it updates the mean

payoffs µ̂i(x), i ∈ [m] and counter n(xt) as follows:

µ̂i(xt) =
n(xt)µ̂

i(xt) + yit
n(xt) + 1

, n(xt) = n(xt) + 1. (14)

Meanwhile, SDLO updates the confidence term of the cho-
sen arm xt as

r(xt) =
√
2α(xt)/n(xt). (15)

Here, α(xt) = 1 + 2 ln(mNc(r)
√
1 + n(xt)/δ) and δ is an

input confidence parameter. The following theorem provides
a theoretical guarantee for the SDLO algorithm.

Theorem 1 Suppose that (3), (4) and (5) hold. If SDLO is
run with δ ∈ (0, 1) and r ≥ 0, then with probability at least
1− δ, the regret of SDLO can be bounded as

Ri(T ) ≤ 2λi

(
rT + 8

√
αTNc(r)T

)
, i ∈ [m]

where λi = 1 + λ + . . . + λi−1 and αT = 1 +
2 ln(mNc(r)

√
1 + T/δ).

Remark: Theorem 1 states that SDLO achieves a regret
bound of Õ(rT +

√
Nc(r)T ). If the arm set is finite, i.e.,

|X | = K, the query radius r can be 0 and Nc(r) = K. Thus,
Theorem 1 provides a regret bound Õ(

√
KT ) for MOMAB,

which not only improves the existing results of Hüyük and
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Algorithm 3: Adaptive Discretization under Lexicographic
Ordering (ADLO)

Input: confidence parameter δ ∈ (0, 1)

1: Initialize Ã = ∅
2: for t = 1, 2, . . . , T do
3: if X ̸⊂ ∪x∈ÃB(x, r(x)) then
4: Pick an arm x randomly from the uncovered region

X − ∪x∈ÃB(x, r(x))

5: Ã = Ã ∪ {x}
6: Initialize µ̂i(x) = 0, i ∈ [m] and n(xt) = 0
7: Play xt = x and receive the reward [y1t , . . . , y

m
t ]

8: else
9: Invoke the Algorithm 4 to select the arm xt =

MSDM-AD
(
{µ̂i(x), i ∈ [m]}x∈Ã, {r(x)}x∈Ã

)
10: Play xt and receive the reward [y1t , . . . , y

m
t ]

11: end if
12: Update µ̂i(xt), i ∈ [m] and n(xt) according to (14)
13: Compute r(xt) according to (18)
14: end for

Tekin (2021) by order of Õ((KT )1/6), but also extends the
priority-based regret (1) to general regret (2).

Recalling the definition of covering dimension dc in (7),
Nc(r) ≤ Cr−dc for some constant C > 0. Taking this in-
equality into Theorem 1 and minimizing the regret with re-
spect to r results in a tight bound, as presented below.

Corollary 1 Suppose that (3), (4) and (5) hold. If SDLO is
run with δ ∈ (0, 1) and r = T− 1

2+dc , then with probability
at least 1− δ, the regret of SDLO can be bounded as

Ri(T ) ≤ Õ
((

1 + λ+ . . .+ λi−1
)
T

1+dc
2+dc

)
, i ∈ [m].

Improved Algorithm: ADLO
Although SDLO is easy to understand, it presents two lim-
itations. Firstly, it requires a complicated oracle to dis-
cretize the arm space X . Secondly, SDLO fails to match the
lower bound of the single objective Lipschitz bandit problem
(Kleinberg, Slivkins, and Upfal 2008), which means SDLO
can be further improved. Therefore, we adopt the adaptive
discretization method proposed by Kleinberg, Slivkins, and
Upfal (2008) to improve it. Our second algorithm based on
adaptive discretization is called Adaptive Discretization un-
der Lexicographic Ordering (ADLO), and the detailed pro-
cedure can be found in Algorithm 3.

ADLO maintains an adaptive arm set Ã to construct a col-
lection of balls that cover the arm space X , and the radius of
these balls is the confidence term r(x), which is dynami-
cally adjusted as the learning goes. To begin with, ADLO
initializes the adaptive arms set Ã with the empty set ∅. In
each round t, if the arm space X is not covered by the set of
balls constructed by Ã, i.e., X ̸⊂ ∪x∈ÃB(x, r(x)), ADLO
selects an arm x randomly from the uncovered region, adds
it to the arm set Ã, and plays this arm. The mean payoffs
µ̂i(x), i ∈ [m] and the counter n(x) of the new arm x are ini-
tialized to zero. If the arm space is covered, ADLO employs

Algorithm 4: Multi-stage Decision-Making under Adaptive
Discretization (MSDM-AD)

Input: estimated payoffs {µ̂i(x), i ∈ [m]}x∈Ã, confidence
interval width {r(x)}x∈Ã

1: Initialize s = 1 and Ã1 = Ã
2: repeat
3: if r(xt) > 2−s for some xt ∈ Ãs then
4: Choose this arm xt

5: else
6: Initialize the arm set Ã0

s = Ãs

7: for i = 1, 2, . . . ,m do
8: x̂i

t = argmaxx∈Ãi−1
s

µ̂i(x) + 2r(x)

9: Ãi
s = {x ∈ Ãi−1

s |µ̂i(x) + 2r(x) ≥ µ̂i(x̂i
t) +

2r(x̂i
t)− (3 + 6λ+ . . .+ 6λi−1) · 2−s}

10: end for
11: Update Ãs+1 = Ãm

s and s = s+ 1
12: end if
13: until an arm xt is chosen
14: Return the chosen arm xt

a multi-stage decision-making method called Multi-Stage
Decision-Making under Adaptive Discretization (MSDM-
AD) to select the most promising arm from Ã.

As shown in Algorithm 4, MSDM-AD takes a similar
framework to MSDM-SD, which utilizes an outer loop to re-
strict the confidence term r(x) of the arms to be chosen, and
an inner loop to filter promising arms from the first objective
to the m-th objective. Unlike MSDM-SD, MSDM-AD does
not take the query radius r as input, and the candidate arm set
Ã changes as ADLO goes, resulting in a different filtering
mechanism within the inner loop of MSDM-AD. Precisely,
for the i-th objective, MSDM-AD first selects an arm x̂i

t that
maximizes the mean payoff plus twice the confidence term,
i.e.,

x̂i
t = argmax

x∈Ãi−1
s

µ̂i(x) + 2r(x) (16)

where Ãi−1
s is the set filtered on the previous i − 1 objec-

tives and Ã0
s = Ãs. Then, MSDM-AD eliminates arms from

Ãi−1
s who are less promising on the i-th objective as follows,

Ãi
s =

{
x ∈ Ãi−1

s |µ̂i(x) + 2r(x) ≥ µ̂i(x̂i
t)

+2r(x̂i
t)− (3 + 6λ+ . . .+ 6λi−1) · 2−s

}
.

(17)

After the inner loop ends, MSDM-AD obtains a set Ãm
s con-

taining arms that are promising for all m objectives. MSDM-
AD then passes Ãm

s to the next stage s + 1 as Ãs+1 = Ãm
s

for a more refined filtration. Similar to MSDM-SD, MSDM-
AD chooses an arm xt before the stage s increases to log(T ).

Upon playing the arm xt and receiving the correspond-
ing payoff vector, ADLO proceeds to update the mean pay-
offs µ̂i(x), i ∈ [m] according to the equation (14). Note
that the update of the confidence term in SDLO relies on
the arm number Nc(r), and ADLO picks at most T arms,
thus ADLO updates the confidence term as follows,

r(xt) =
√
2α̃(xt)/n(xt) (18)
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where α̃(xt) = 1 + 2 ln(mT
√
1 + n(xt)/δ).

There are two main differences between SDLO and
ADLO. The first one is the construction of the candidate arm
set. SDLO constructs the arm set statically at the beginning
of the algorithm by querying an oracle, while ADLO grows
arm set to cover previously uncovered regions. The second
difference is the filtering mechanism in the decision-making
stage. MSDM-SD filters arms by the operation (13), which
relies on the parameter r. In contrast, MSDM-AD employs
a mechanism for the adaptive arm set, as demonstrated by
equation (17), which removes the dependence on r. The fol-
lowing theorem provides a theoretical guarantee for ADLO.

Theorem 2 Suppose that (3), (4) and (5) hold. If ADLO is
run with δ ∈ (0, 1), then with probability at least 1 − δ, the
regret of ADLO can be bounded as

Ri(T ) ≤ 96λi (α̃TZi)
1

diz+2 T
diz+1

diz+2 , i ∈ [m]

where λi = 1 + λ + . . . + λi−1 and α̃T = 1 +
2 ln(mT

√
1 + T/δ).

Remark: Theorem 2 states that ADLO attains a re-
gret bound Õ(λiT

(1+di
z)/(2+di

z)), which matches the lower
bound of the Lipschitz bandit problem with respect to T
(Kleinberg, Slivkins, and Upfal 2008). When applied to the
single objective problem, ADLO removes the dependence
on λ and achieves the regret bound Õ(T (1+d1

z)/(2+d1
z)),

which is the same as the optimal single objective Lipschitz
bandit algorithm (Kleinberg, Slivkins, and Upfal 2008).

Theoretical Analysis
In this section, we provide a proof sketch for Theorem 2. The
omitted details can be found in the supplementary material
due to the page limit. For clarity, we use the notation µ̂i

t(x),
nt(x), and rt(x) to represent the values of µ̂i(x), n(x), and
r(x) at the end of the t-th epoch, respectively. Furthermore,
Ãt denotes the adaptive arm set Ã at the end of the t-th
epoch, and Ãt,s represents the arm set Ãs in MSDM-AD.

Proof of Theorem 2
First, we present Lemma 1 to show that mean payoff µ̂i

t(x)
and confidence term rt(x) construct a reliable confidence
interval for the expected payoff µi(x).

Lemma 1 With probability at least 1− δ, for any x ∈ Ãt,∣∣µ̂i
t(x)− µi(x)

∣∣ ≤ rt(x), i ∈ [m], t ∈ [T ].

Next, we demonstrate an essential property of the multi-
stage decision-making strategy by the following lemma.

Lemma 2 With probability at least 1− δ, for any x ∈ Ãt,s,

µi(x∗)− µi(x) ≤ 6λi · 2−s+1, i ∈ [m], t ∈ [T ]

where x∗ is the optimal arm and λi = 1 + λ+ . . .+ λi−1.

Remark: Lemma 2 establishes a bound on the instantaneous
regret for any arm x ∈ Ãt,s, indicating an exponential de-
crease as the stage advances. This property is crucial for

bounding the cumulative regret, which we will further illus-
trate in the proof of Lemma 4.

Let ∆i(x) = µi(x∗) − µi(x), i ∈ [m]. To proceed with
the analysis, we partition the adaptive arm set Ãi

+ = {x ∈
ÃT | ∆i(x) > 0} into a set of disjoint subsets. Specifically,
we define

Ãi
j = {x ∈ Ãi

+|λi2
−j−1 < ∆i(x) ≤ λi2

−j}, (19)

thus Ãi
+ = ∪j∈NÃi

j . Recall the definitions of r-optimal re-
gion in (8) and zooming dimension diz in (10), we can easily
bound the number of arms in Ãi

j by the following lemma.
Lemma 3 With probability at least 1− δ, for any j ∈ N,

|Ãi
j | ≤ Zi2

j·di
z , i ∈ [m].

Then, we give Lemma 4 to analyze the cumulative regret
of any arm in Ãi

j . A detailed proof of Lemma 4 is provided
since it illustrates the capacity to divide the decision-making
process into multiple stages.
Lemma 4 With probability at least 1− δ, for all j ∈ N, the
regret for any x ∈ Ãi

j can be bounded as

nT (x)∆
i(x) ≤ 1152λiα̃T · 2j , i ∈ [m]

where α̃T = 1 + 2 ln(mT
√
1 + T/δ).

Proof. For any x ∈ Ãi
j , if nT (x) = 1, Lemma 4 holds

trivially. Now, we assume nT (x) ≥ 2. Recalling Step 3 of
MSDM-AD, if the last time x is chosen occurs at the sT (x)-
th stage among the total T rounds, we get

nT (x)− 1 ≤ 2sT (x)
√
2α̃T (nT (x)− 1)

since x is played nT (x) − 1 times before this round. Then,
due to the fact that 1 ≤ (2−

√
2)2sT (x)

√
α̃TnT (x), we have

nT (x)∆
i(x) ≤ 2sT (x)+1

√
α̃TnT (x)∆

i(x). (20)

Taking Lemma 2 into the right-hand side of (20) yields

nT (x)∆
i(x) ≤ 24λi

√
α̃TnT (x). (21)

This step reduces the linear term nT (x)∆
i(x) to a sublinear

term Õ(
√

nT (x)), which serves as the crucial function for
dividing the decision-making process into multiple stages.
Squaring both sides of (21) gives

nT (x)∆
i(x) ≤ 576λ2

i α̃T /∆
i(x).

The definition of Ãi
j implies that 1/∆i(x) < 2j+1/λi for

any x ∈ Ãi
j . Taking it into the right-hand side of the above

equation finishes the proof of Lemma 4. □
Now, we are ready to prove Theorem 2. First, we relax

Ri(T ) by some r0 > 0 as follows,

Ri(T ) ≤ λir0T +
∑

x∈Ãi
+

nT (x)∆
i(x)I(∆i(x) > λir0).

Next, due to Ãi
+ = ∪j∈NÃi

j and the definition of Ãi
j in (19),

we rewrite above equation as

Ri(T ) ≤λir0T +
∑
j∈N

∑
x∈Ãi

j

nT (x)∆
i(x)I(2−j ≥ r0).
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Figure 1: Comparison of our algorithms versus PF-LEX and zooming algorithm.

Then, Lemma 3 and Lemma 4 tell that

Ri(T ) ≤ λir0T + 1152λiα̃TZi

∑
j∈N

2j(d
i
z+1)I(2−j ≥ r0).

Utilizing the sum formula of the geometric sequence, we get

Ri(T ) ≤ λir0T + 1152λiα̃TZi

⌊− log2(r0)⌋∑
j=0

2j(d
i
z+1)

≤ λir0T + 1152λiα̃TZi(2/r0)
di
z+1.

Finally, we minimize the right side of the above equation by
taking

r0 = (1152α̃TZi2
di
z+1/T )

1

diz+2 .

This concludes the proof. □

Experiments
In this section, we conduct numerical experiments to ver-
ify the effectiveness of our algorithms. We adopt PF-LEX
(Hüyük and Tekin 2021) and zooming algorithm (Kleinberg,
Slivkins, and Upfal 2008) as baselines. PF-LEX is a static
method designed for MOMAB under lexicographic order-
ing, and the zooming algorithm is an adaptive method that is
optimal for single objective Lipschitz bandits.

Following the existing experimental setup (Magureanu,
Combes, and Proutiere 2014), we set the arm space X =
[0, 1] with a Euclidean metric on it. The number of objec-
tives is set as m = 3, and the expected payoff functions are
given as µ1(x) = 1−minp∈{0.1,0.4,0.8} |x−p|, µ2(x) = 1−
2minp∈{0.3,0.7} |x−p| and µ3(x) = 1−2|x−0.3|. Note that
the optimal arms for the first objective are {0.1, 0.4, 0.8},
and the optimal arms for both the first and second objec-
tives are {0.4, 0.8}. Thus, all three objectives must be con-
sidered to determine the lexicographically optimal arm 0.4.
We set the payoff yit = µi(xt)+ηt, where ηt is drawn from a
Gaussian distribution with mean 0 and variance 1. The time
horizon T is 6 × 104, and thus the nearly optimal query
parameter r for SDLO is 0.025, as stated in Corollary 1.
The static arm set for SDLO and PF-LEX is constructed as
A = {0.025 + 0.05 × (k − 1)|k ∈ [20]}. The confidence

term (15) is scaled by a factor searched in [1e−2, 1], which
is a common practice in bandit learning (Chapelle and Li
2011; Li et al. 2012; Zhang et al. 2016; Jun et al. 2017).

We present the cumulative regret for the first and third
objectives. To reduce the randomness, each algorithm is re-
peated 10 times, and the average regret is reported. Fig-
ure 1(a) presents the performance of the static methods, PF-
LEX and SDLO. SDLO and PF-LEX exhibit comparable
performance in the first objective, while SDLO significantly
outperforms PF-LEX in the third objective. The primary rea-
son for this difference is that the theoretical guarantee of PF-
LEX is constructed under the priority-based regret (1) and
is not reliable for general regret (2). Figure 1(b) showcases
the performance of two adaptive methods, the zooming al-
gorithm and ADLO. ADLO demonstrates a similar regret to
the zooming algorithm in the first objective but surpasses it
in the third objective. This result confirms the effectiveness
of ADLO in addressing the MOLP problem.

Conclusion and Future Work
We investigated the MOLB model under lexicographic or-
dering and proposed two algorithms: SDLO and ADLO. The
SDLO algorithm is straightforward but requires an oracle,
yielding a regret bound of Õ((1+ λi−1)T (1+dc)/(2+dc)) for
the i-th objective, where i ∈ [m]. In contrast, the ADLO al-
gorithm removes the dependence on oracle and achieves an
almost optimal bound of Õ((1 + λi−1)T (1+di

z)/(2+di
z)) for

the i-th objective, which matches the lower bound of the Lip-
schitz bandit problem with respect to T (Kleinberg, Slivkins,
and Upfal 2008). Both SDLO and ADLO improve the re-
gret bounds by order of O((KT )1/6) compared to the recent
work of Hüyük and Tekin (2021), as dc = 0 and dz = 0 for
K-armed bandit problem. Moreover, we extended the met-
ric of lexicographically ordered multiobjective bandits from
the priority-based regret to the general regret, which more
accurately evaluates the performance of algorithms.

However, both SDLO and ADLO require the prior knowl-
edge λ. Thus, a challenging open problem is to elimi-
nate the dependence on λ and achieve a regret bound of
Õ(T (1+di

z)/(2+di
z)) for all objectives.
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