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Abstract

A fundamental task in the realms of computer vision, Low-
Rank Matrix Recovery (LRMR) focuses on the inherent low-
rank structure precise recovery from incomplete data and/or
corrupted measurements given that the rank is a known prior
or accurately estimated. However, it remains challenging for
existing rank estimation methods to accurately estimate the
rank of an ill-conditioned matrix. Also, existing LRMR opti-
mization methods are heavily dependent on the chosen param-
eters, and are therefore difficult to adapt to different situations.
Addressing these issues, A novel LEarning-based low-rank
matrix recovery with Rank Estimation (LERE) is proposed.
More specifically, considering the characteristics of the Ger-
schgorin disk’s center and radius, a new heuristic decision rule
in the Gerschgorin Disk Theorem is significantly enhanced
and the low-rank boundary can be exactly located, which leads
to a marked improvement in the accuracy of rank estimation.
According to the estimated rank, we select row and column
sub-matrices from the observation matrix by uniformly ran-
dom sampling. A 17-iteration feedforward-recurrent-mixed
neural network is then adapted to learn the parameters in the
sub-matrix recovery processing. Finally, by the correlation
of the row sub-matrix and column sub-matrix, LERE suc-
cessfully recovers the underlying low-rank matrix. Overall,
LERE is more efficient and robust than existing LRMR meth-
ods. Experimental results demonstrate that LERE surpasses
state-of-the-art (SOTA) methods. The code for this work is
accessible at https://github.com/zhengqinxu/LERE.

Introduction
Low-rank matrix recovery (LRMR) is extensively employed
across several applications, notably in collaborative fil-
tering for recommendation system (Zadeh Kashani and
Hamidzadeh 2020), background subtraction in video pro-
cessing (Markowitz et al. 2022), robust principal component
analysis (RPCA) for feature extraction (Wang et al. 2022),
matrix sensing (Ma, Li, and Chi 2021) and matrix completion
(Tong, Ma, and Chi 2021). Mathematically, for a large-scale
observation matrix Y = f(L∗), where operator f(·) denotes
the sensing process, LRMR seeks to recover its underlying
rank-r∗ low-rank matrix L∗ ∈ Rn1×n2 . Commonly, LRMR
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is formulated as:

min
L∈Rn1×n2

1

2

∥∥Y − f(L)
∥∥2

F
s.t. rank(L) ≤ r∗, (1)

which is a constrained optimization problem. Apparently,
the rank function constraint is NP-hard and computationally
intractable. Several seminal works (Candès et al. 2011; Recht
2011) relaxed problem (1) as:

min
L∈Rn1×n2

1

2

∥∥Y − f(L)
∥∥2

F
+ λ

∥∥L∥∥∗, (2)

where
∥∥L∥∥∗ denotes the nuclear norm of L. The nuclear norm

is recognized to offer the most stringent convex envelope of
the rank function, which can yield precise recovery under
matrix-restricted isometry property (RIP) settings (Recht,
Fazel, and Parrilo 2010). To address the challenge of the
high computational complexity inherent in existing convex
solutions to the problem (2), in spire of the ideas of Singular
Value Decomposition (SVD) and Factorization, a range of
efficient LRMR techniques have been developed.

For SVD-based methods, Phan et al. (Phan and Nguyen
2021) proposed a faster algorithm involving iterative
reweighting of nuclear norm, which ensures that each limit
point becomes a critical point to facilitate rapid outcomes.
Gregor et al. (Gregor and LeCun 2010) achieved the most
accurate possible approximation of the sparse code by train-
ing a non-linear feed-forward predictor with a specific ar-
chitecture and a fixed depth. Their approach successfully
implemented deep unfolding for sparse coding and achieved
significant acceleration. Later works (Monga, Li, and Eldar
2021; Shen et al. 2021) successfully expanded their method
to various tasks and network architectures. Inspired by these
efforts, recent works (Cohen et al. 2019; Solomon et al. 2019)
employed deep unfolding techniques to accelerate compu-
tation. Nevertheless, existing learning-based approaches for
the nuclear-norm optimizations entail several singular value
thresholding (SVT) (Van Luong et al. 2021), which neces-
sitate a significant amount of computations for SVD (Hu
et al. 2012). Consequently, these methods cannot be scaled
to high-dimensional problems. When the prior rank is known
beforehand, Cai et al. (Cai et al. 2021a) recently substituted
SVD with CUR decomposition to streamline the computa-
tional process in LRMR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16228



Alternatively, in line with matrix factorization theory, when
the prior rank rp is known, L∗ is factorized as L∗ = U∗V

T
∗ ,

where U∗ ∈ Rn1×rp and V∗ ∈ Rn2×rp , the optimization
problem (1) is reformulated as:

min
L=UVT

1

2

∥∥Y − f(UVT )
∥∥2

F
. (3)

As such, this optimization can be solved by performing gradi-
ent descent (GD) on U and V alternatively, thereby circum-
venting the expensive computation of SVD. Despite problem
(3) being a non-convex optimization, recent advancements
have shown that GD (Yi et al. 2016) and alternating mini-
mization (Mishra, Apuroop, and Sepulchre 2012) algorithms
can converge to the accurate low-rank factors, provided they
are based on mild statistical assumptions and are appropri-
ately initialized (Tong, Ma, and Chi 2021). To balance the
two factors U and V, these matrix factorization approaches
typically incorporate additional regularization terms. These
terms take forms such as 1

2

∥∥UTU − VTV
∥∥2
F

(Park et al.

2017) or 1
2

∥∥U∥∥2
F
+ 1

2

∥∥V∥∥2
F

(Chen et al. 2021, 2020).
Recently, Jia et al. (Jia et al. 2020) proposed the General-

ized Unitarily Invariant Gauge (GUIG) regularization which
achieves equilibrium between U and V, and showed that the
nuclear norm (Cabral et al. 2013), Schatten-p quasi norm
(Xu, Lin, and Zha 2017) and log sum of singular values
are special cases of the GUIG regularization. Although the
regularization terms simplify the theoretical analysis, (Tong,
Ma, and Chi 2021) pointed out that they can be unneces-
sary as long as the initialization is selected properly. Mean-
while, the works in (Chen et al. 2020) and (Mishra, Apuroop,
and Sepulchre 2012) argued that GD and its variations cost
O(κlog(1/ϵ)) flops per iteration, making the convergence
rate significantly reliant on the condition number κ and reach
ϵ-accuracy, where κ of matrix L of rank r is defined as
κ = σ1(L)/σr(L), and σi(L) is the i-th singular value. How-
ever, a diminishing convergence rate was observed when the
underlying matrix becomes ill-conditioned. To address this
issue, ScaledGD (Tong, Ma, and Chi 2021) incorporated
a scaling factor into the gradient descent steps, effectively
eliminating the impact of condition number κ on the GD con-
vergence rate. With the aim of finding the optimal iteration
step size of ScaledGD, Cai et al. (Cai, Liu, and Yin 2021)
proposed LRPCA, a scalable and learned hybrid feedforward-
recursive neural network model designed for potentially in-
finite iterative deployments of RPCA. LRPCA employs a
straightforward formula and differentiable operators to en-
able breakthroughs in tackling higher-dimensional problems.
However, there remain two major limitations of LRPCA:
(1) A large number of iterations for LRPCA will make the
optimization of network parameters excessively costly, and
the convergence process that only relies on gradient descent
is easily trapped in a local optimum; (2) LRPCA necessi-
tates a known rank that can be estimated or obtained through
prior knowledge. Similar to LRPCA, the factorization-based
LRMR relies heavily on the precision of the estimated rank.

It should be noted that the rank is often unknown in practi-
cal applications. To address this issue, LMaFit (Wen, Yin, and
Zhang 2012) employed two heuristic strategies to estimate the

rank. OptSpace (Keshavan, Montanari, and Oh 2010) deter-
mines the rank through the computation of SVD of trimmed
observations. Inspired by the idea of fully Bayesian treatment,
BCPF (Zhao, Zhang, and Cichocki 2015) designed a hier-
archical probabilistic model and automatically determined
the rank. Both Shi et al. (Shi, Lu, and Cheung 2017) and
Li et al. (Li et al. 2023) implemented a rank-one matrix de-
composition model for recovering the target low-rank matrix.
They automatically estimated the rank by applying a l1 norm
regularization to the weight coefficients of the rank-one ma-
trix during iteration. Yet, their rank estimation method based
on iterative approximation incurs a high computational cost.
Recently, Xu et al. (Xu et al. 2021a,b) took into consideration
the distribution of the singular values, and the target rank was
estimated by adapting the Gerschgorin disk method. Com-
pared with aforementioned rank estimation methods based
on iterative approximation, the approach grounded in the
Gerschgorin Disk Theorem offers a more effective estimation
of the target rank. These methods capitalize on the inherent
low-rank attributes within the singular value space of the ob-
servation Y, providing a more precise iteration direction and
reducing computational expenses. While the using of the sin-
gular values’ distribution is effective in estimating the rank,
it is still limited by the adjustment factor. More importantly,
when the matrix is an ill-conditional matrix, it is difficult
to accurately divide the low-rank boundary by the existing
adjustment factor method. Meanwhile, unlike matrix eigen-
values matrix eigenvalues which are calculated in descending
order, the radii of Gerschgorin disks are not necessarily in
descending order which further reduces the accuracy.

Contributions. A novel method, named learning-based
Low-Rank Matrix Recovery via Rank Estimation (LERE),
is proposed to accurately solve LRMR problems of the ill-
conditional matrix in this work. The primary contributions of
this work are outlined as:

• LERE is a LRMR method that does not require rank
priors. By estimating the rank of the observed data’s in-
herent low-rank structure, it provides the rank parameters
for the subsequent non-convex optimization model based
on low-rank matrix factorization, effectively eliminating
the necessity of a known rank prior. In particular, the rank
estimation stage of LERE is more tolerant to the distur-
bance and the ill-conditional matrix.

• LERE is an accurate LRMR method. In accordance with
the estimated rank, it recovers the low-rank sub-matrix
by randomly selecting column and row sub-matrices of
the observation matrix Y. Then, via the relationship of
the column and row low-rank sub-matrices, it obtains the
underlying low-rank matrix L∗. The column/row random
sampling can greatly reduce the size of the matrix to be pro-
cessed in each iteration and effectively prevent the model
from getting trapped in a local optimum throughout the
entire iteration process.

• LERE only employs a 17-iteration feedforward-recurrent-
hybrid neural network within the proposed optimization
framework, which breaks the limitations imposed by spe-
cific train datasets and more iterations of traditional feed-
forward neural networks. LERE guarantees an enhanced
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Figure 1: Rank estimation
accuracy for GDE, RANK
and R_GDE with varying κ.
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Figure 2: Convergence com-
parison for LERE and vary-
ing LPRCA.

performance for low-rank matrix recovery through finite
random sampling based on estimated rank.

• Across both synthetic and real-world datasets, comprehen-
sive experimental findings demonstrate that the proposed
LERE surpasses SOTA methods concerning performance.

Limitation and Analysis
We reveal and analyze the limitations of the ill-conditioned
matrix rank estimation task and the current learning-based
LRMR, respectively, in this section.
Rank Estimation The target rank is a critical parameter
during LRMR, it is, however, unknown in most practical ap-
plications. While two different rank estimation methods were
proposed in GDE (Xu et al. 2021a) and RANK (Xu et al.
2021b), they are not suitable for an ill-conditional matrix
characterized by a large condition number κ, as illustrated in
Fig. 1. Compared to RANK, GDE employed different degrees
of contraction for Gershgorin disk radii based on the value
of the center of each Gershgorin disk. When the condition
number κ is small, this significantly increases the boundary
distance between the sparse subspace and the low-rank sub-
space effectively improving the accuracy of the estimated
rank. However, in the case of a larger condition number κ,
the disparity in the center values among distinct Gerschgorin
disks within the low-rank subspace will notably increase,
which causes the contraction scheme of GDE to push the
subspace corresponding to the small center value Gershgorin
disk away from the low-rank subspace. It’s worth emphasiz-
ing that the radii do not necessarily follow a descending order
similar to that of the center values, which results in the failure
of GDE when confronted with a large condition number κ,
rank r = 5, and α = 0.4, as shown in Fig. 1.
LRMR To address the optimization problem (3), ScaledGD
introduces a scaling gradient descent method with a carefully
selected step size. Subsequently, when the sparsity is known,
LRPCA learns the step sizes corresponding to ScaledGD by
employing the proposed Feedforward-Recurrent-Mixed Neu-
ral Network (FRMNN). Nevertheless, the above-mentioned
methods still face challenges as they can only adapt to spe-
cific scenarios and are susceptible to getting trapped in local
optima. While increasing the number of iterations of the
FRMNN in LRPCA can lead to a more accurately recovered
low-rank matrix L∗, it is important to note that once LR-
PCA’s convergence starts to occur gradually as the number

of iterations surpasses 50, as observed in Fig. 2, where rank
r = 5, κ = 10, α = 0.4, and LRPCA_100 means that LR-
PCA with 100 iterations. Furthermore, LRPCA with varying
iteration numbers yields distinct convergence and differing
points of extremity. Consequently, in real-world applications,
it might be essential to learn multiple instances of LRPCA
employing different iterations.

Proposed Method
Robust Rank Estimation
In this section, a robust rank estimation method named
R_GDE is proposed to perform rank estimation of an ill-
conditional low-rank matrix with a large condition number
κ. For the purpose of estimating the rank of the underly-
ing low-rank structure L implicit in an observation matrix
Y, we first define the covariance matrix RY of the matrix
Y ∈ Rn1×n2 is RY = YYT (in this work, we assume that
n1 < n2), where the target rank of L is r and RY ∈ Rn1×n1 .
Subsequently, through unitary transformation matrix Ut and
shrinkage matrix ΣY from the work of (Xu et al. 2021a), the
resultant transformed matrix RΣY

can be acquired as below:

RΣY = ΣYUH
t RY UtΣ

−1
Y

=



σ′
1 · · · 0

σ′
1

σ′
n1

ρ1

...
. . .

...
...

0 · · · σ′
n1−1

σ′
n1−1

σ′
n1

ρn1−1

σ′
n1
σ′
1
ρ′1 · · ·

σ′
n1

σ′
n1−1

ρ′n1−1 Rn1,n1


. (4)

The diagonal elements of the transformed matrix RΣY
satisfy

the interlacing property (Wu, Yang, and Chen 1995): σ′
1 ≥

σ′
2 ≥ · · · ≥ σ′

r ≥ · · · ≥ σ′
n1−2 ≥ σ′

n1−1. According to the
Gerschgorin disk theorem (Wu, Yang, and Chen 1995), when
the i-th Gerschgorin disk is in the non-low-rank space, its
corresponding radius, denoted as radi = | σ′

i

σ′
n1

ρi|, becomes
an extremely small, near-zero value. Conversely, if the disk
is in the low-rank space, its radius will be far from zero.
Therefore, in the works of (Xu et al. 2021a,b), the rank is
identified through a heuristic decision rule given by:

RE(k) = radk − DY

n1 − 1

n1−1∑
i=1

radi, (5)

where k = 1, 2, 3, · · · , n1−2, and DY is a adjustment factor.
When RE(k) first becomes negative, r = k − 1 is the rank
of the underlying low-rank structure. It is important to high-
light that both the GDE, which involves manually setting the
adjustment factor DY based on the size of matrix Y, and the
RANK, which automatically sets the adjustment factor DY

using the diagonal elements of matrix RΣY
, face challenges

in accurately solving the problem of rank estimation for a
matrix with a large condition number and significant sparsity.
This difficulty, illustrated in Fig 1, arises because the radii of
the Gershgorin disk radi do not follow a descending order,
unlike the center values σ′

i. For a significant Gershgorin disk
center value, its corresponding radius might be smaller than
the radii corresponding to other significant Gershgorin disk
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center values. Consequently, even though the heuristic deci-
sion rule (5) halts at the first negative value, there could still
be other positive values remaining.

In light of this, leveraging the characteristic of the descend-
ing order in Gerschgorin disk center values, we propose a
new heuristic decision rule, named R_GDE, formulated as:

R_GDE(k) = σ′
k − DkY

n1 − 1

n1−1∑
i=1

σ′
i. (6)

Taking into account the impact of both the large condition
number and the significant sparsity on the Gerschgorin disk,
we combine the radii and the center values of Gerschgorin
disks into a novel unified adjustment factor:

DkY _c = 1− σ′
k√∑n1−1

i=1 σ′2
i

(7)

DkY _r = 1− radk√∑n1−1
i=1 rad2i

(8)

DkY = (DkY _c +DkY _c)/2, (9)

where k = 1, 2, · · · , n1 − 1. The descending property of
the Gerschgorin disk center values ensures that the heuristic
decision rule R_GDE does not miss any positive value. When
R_GDE(k) first becomes negative value, rank r = k − 1.
Due to different sensitivities of DkYc

and DkYr
to the pres-

ence of a large condition number and significant sparsity, with
DkYr

being less influenced by significant sparsity and DkYc

remaining relatively unaffected by a large condition number,
the unified adjustment factor DkY exhibits enhanced robust-
ness to the challenges posed by a large condition number and
significant sparsity.

Consequently, the heuristic decision rule R_GDE, which
introduces the unified adjustment factor DkY , has a stronger
ability to capture the boundary of the low-rank subspace,
and can automatically obtain an accurate rank estimation.
Compared to GDE and RANK, R_GDE achieves accurate
rank estimation with varying sparsity α and varying condition
numbers κ, as shown in Fig 1.

Learning-based Low-Rank Matrix Recovery with
Rank Estimate (LERE)
This section presents a novel learning-based low-rank matrix
recovery method via the above-described rank estimation and
uniformly random sampling. It aims to robustly solve the
optimization problem (3) while effectively eliminating the
need for a rank prior.

The proposed method comprises three distinct phases: uni-
form random sampling, low-rank matrix recovery, and it-
erative update. The first phase involves uniformly and ran-
domly sampling a column sub-matrix C = Y(:,J ) and a
row sub-matrix R = Y(I, :) of the observation matrix Y.
In the second phase, by approximating L(:,J ) and L(I, :),
Ĉ and R̂ are obtained, respectively. Afterward, the underly-
ing low-rank matrix L is derived via the correlation matrix
Û between Ĉ and R̂. In the third phase, we repeatedly up-
date the aforementioned procedure until the loss function
F (L) := Y − f(L) convergence.

Mathematically, the ℓ-th iteration of the above process is
defined as:

Cℓ = min
L(:,J )=UCVT

C

1

2

∥∥Y(:,J )− f(UCV
T
C)

∥∥2

F
(10)

Rℓ = min
L(I,:)=URVT

R

1

2

∥∥Y(I, :)− f(URV
T
R)

∥∥2

F
(11)

Uℓ = T (Cℓ(I, :)) or T (Rℓ(:,J )) (12)

where Cℓ ∈ Rn1×J , Rℓ ∈ RI×n2 , and Uℓ ∈ RJ×I . The
low-rank matrix Lℓ = CℓUℓRℓ. T (·) denotes the truncated
SVD based on the above estimated rank.

In this work, we take RPCA which is a canonical low-rank
recovery task for illustration. The observation data matrix
Y = L+S, where S is a sparse matrix that satisfies a certain
sparsity Sα defined in (Tong, Ma, and Chi 2021). We apply
alternating project to solve the L and S sub-problems until
convergence.
Update for L The Eq. (10) and Eq. (11) can be rewritten:

Cℓ = min
L(:,J )

1

2

∥∥Y(:,J )−UCV
T
C − Sℓ−1(:,J )

∥∥2

F
(13)

Rℓ = min
L(I,:)

1

2

∥∥Y(I, :)−URV
T
R − Sℓ−1(I, :)

∥∥2

F
, (14)

where L(:,J ) = UCV
T
C and L(I, :) = URV

T
R. In order

to efficiently solve problems (13) and (14), a learning-based
method is adapted. In this work, we employ the Feedforward-
Recurrent-Mixed Neural Network (FRMNN) (Cai, Liu, and
Yin 2021) to learn the step size parameters in the above prob-
lems. It should be emphasized that, unlike classical FRMNN
which requires a greater number of iterations to achieve opti-
mal performance, the proposed method only needs 17 itera-
tions of FRMNN in each update of L due to the convergence.
As the update process continues, the low-rank matrix L is
gradually less influenced by the sparse matrix S. Hence, the
proposed method only requires training one set of parame-
ters by the small sparsity dataset and obviates the need for
specific training tailored to different sparsity.

Finally, we update Lℓ via Lℓ = CℓUℓRℓ.
Update for S The S sub-problem is formulated as:

Sℓ = min
S

1

2

∥∥Y − Lℓ−1 − S
∥∥2

F
= H(Y − Lℓ−1). (15)

The hard thresholding operator H(·) denotes as follow:

[H(S)]i,j =

{
Si,j , if |Si,j | > ζ

0 otherwise
(16)

The iteration is terminated when∥∥Err(:,J )
∥∥2

F
+

∥∥Err(I, :)
∥∥2

F∥∥Y(:,J )
∥∥2

F
+

∥∥Y(I, :)
∥∥2

F

< δ (17)

where Err = Y − Lℓ − Sℓ.
The proposed LERE for RPCA is summarized in Algo-

rithm 1.
Convergence According to Theorem 3.10 of (Cai et al.
2021b), if low-rank matrix L ∈ Rn1×n2 and sparse matrix
S ∈ Rn1×n2 satisfy the {µ1(L), µ2(L)}-incoherence and α-
sparsity assumptions, respectively, the error of the Algorithm
1 output L∗ will satisfy∥∥L− L∗

∥∥
2∥∥L∥∥

2

< ϵκ−1, (18)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16231



Algorithm 1: LERE for RPCA

Input: Y = L+ S ∈ Rn1×n2 , rank r of Y is estimated by
Eq. (6), ζ0 = max(Y), I, J , δ = 1e−7, η = 0.7.

1: // Iterative updates
2: while Not (Stopping Condition) do
3: Update Sℓ according to Eq. (15)
4: Estimate the rank r of Y − Sℓ by Eq. (6),
5: Resample I, J
6: Update Cℓ by Eq. (13), Rℓ by Eq.(14) and Uℓ by Eq.

(12)
7: Lℓ = CℓUℓRℓ

8: Update ζℓ = ηζℓ−1

9: end while
Output: L∗ and S∗

0 50 100 150 200
10-15

10-10

10-5

100

Figure 3: Convergence of LERE with varying sparsity α.
Data dimension n1 = n2 = 3000, κ = 10 and rank r = 5.

when

|I| ≥ c1max{µ1(L)rlog(n1), log(n1)/α}
|J | ≥ c2max{µ2(L)rlog(n2), log(n2)/α}

are respectively uniformly selected. As shown in Fig. 3,
LERE demonstrates the ability to achieve convergence across
diverse sparsity scenarios. Furthermore, as illustrated in Fig.
2, the error incurred in LERE is notably smaller in compari-
son to that observed in LRPCA with 200 iterations.

Experimental Results
For the purpose of assessing the performance of the pro-
posed LERE, we carry out comprehensive experiments using
RPCA as an example of LRMR. This section presents the ex-
perimental outcomes of LERE, contrasting them with SOTA
methods, as assessed on synthetic datasets and two real-world
visual understanding scenarios. In our method, the sampling
numbers are I = 4r · log(n1) and J = 4r · log(n2); the
iteration number of FRMNN is 17. All parameters in com-
pared methods follow their default settings. Moreover, all of
our tests run on a Windows 10 laptop with Intel i7-9750H
CPU, 64G RAM. The parameters learning processes run on
an Ubuntu workstation with Intel i9-9900K CPU and two
Nvidia RTX-2080Ti GPUs.

Comparison of Various Rank Estimation Methods
To confirm the efficiency and accuracy of R_GDE, diverse
data matrices are utilized in testing to estimate the rank,
and the method is compared with two SOTA rank estimate

n2 3000 1000

α 0.1 0.4 0.1 0.4

κ 1 15 30 1 15 30 1 15 30 1 15 30

GDE 98 65 0 100 37 0 99 58 0 100 29 0
RANK 100 95 87 79 78 77 98 94 87 53 52 46
R_GDE 100 100 100 100 100 100 100 100 100 100 100 97

Table 1: The accuracy of estimated rank by using R_GDE
(ours), GDE (Xu et al. 2021a), and RANK (Xu et al. 2021b)
with varying size of matrix (n1 = 3000), varying outlier
sparsity α and varying condition number κ.
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Figure 4: Rank estimation of sparse matrices.

approaches: GDE (Xu et al. 2021a) and RANK (Xu et al.
2021b). The tests of synthetic matrices with varying settings
are based on 100 Monte Carlo runs, Table 1 illustrates the
results of these tests.

It is evident that while GDE successfully accomplishes pre-
cise rank estimation for various sparsity α when the condition
number κ is equal to 1, its performance sharply deteriorates
as κ increases, ultimately leading to failed rank estimation.
Even though RANK demonstrates robustness in handling
varying condition number κ, it is more vulnerable to the im-
pact of the sparsity α compared to GDE. Meanwhile, both
GDE and RANK experience a decline in their performance
when confronted with narrow matrices whose dimensions are
n1 = 3000 and n2 = 1000. Compared with GDE and RANK,
the proposed R_GDE method exhibits stronger adaptability
to different sparsity α and different condition number κ, and
achieves a more accurate rank estimation of ill-conditioned
low-rank matrix. It’s noteworthy to highlight that R_GDE
maintains excellent performance even when applied to nar-
row matrices.

Next, SuiteSparse Database 1 which provides general data
matrices with low numerical ranks, is tested, and these out-

1https://sparse.tamu.edu/
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n2 3000 500

κ 1 10 1 10

α 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

ARE-RPCA Lrec 6.5E-9 1.4E-8 1.3E-7 1.2E-8 6.1E-6 1.6E-5 4.2E-5 2.1E-1 3.1E-1 2.7E-6 2.1E-5 3.0E-1
Srec 7.0E-7 7.0E-7 9.2E-7 1.4E-6 4.7E-5 7.3E-5 1.7E-4 8.9E-1 9.9E-1 5.7E-5 8.9E-1 9.9E-1

ADW-RPCA Lrec 1.3E-6 3.1E-6 5.8E-6 2.7E-6 6.2E-6 1.2E-5 9.2E-2 9.1E-1 9.1E-1 7.6E-1 7.7E-1 7.8E-1
Srec 1.4E-4 1.5E-4 1.6E-4 3.1E-4 3.1E-4 3.3E-4 6.6E+0 3.8E+0 3.9E+0 5.6E+0 3.3E+0 2.6E+0

AccAltProj Lrec 7.9E-3 1.3E-2 1.8E-2 7.6E-3 1.3E-2 1.7E-2 1.5E-2 2.6E-2 3.4E-2 1.5E-02 2.5E-2 2.8E-2
Srec 5.7E-2 5.7E-2 5.8E-2 5.6E-2 5.7E-2 5.7E-2 1.1E-1 1.1E-1 1.1E-1 1.0E+0 1.1E-1 8.5E-1

RPCA_HQF Lrec 8.7E-5 3.9E-5 1.2E-7 9.3E-5 3.9E-5 1.4E-7 5.4E-4 7.7E-4 7.8E-7 5.4E-4 7.3E-4 1.1E-6
Srec 6.2E-4 1.6E-4 2.8E-7 6.7E-4 1.6E-4 3.3E-7 3.9E-3 3.2E-3 1.8E-6 4.0E-3 3.1E-3 2.6E-6

LRPCA Lrec 2.1E-3 1.5E-4 3.2E-4 4.5E-6 1.3E-4 4.9E-4 5.3E-2 5.2E-2 6.1E-2 1.8E-2 1.9E-2 1.9E-2
Srec 1.7E-2 6.2E-4 3.4E-3 6.8E-5 5.3E-4 5.6E-3 3.8E-1 2.2E-1 1.9E-1 1.4E-1 8.2E-2 6.5E-2

LRPCA† Lrec 2.6E-8 5.7E-8 1.6E-7 3.7E-8 8.7E-8 2.5E-7 3.2E-2 3.3E-2 3.1E-2 1.3E-2 6.2E-3 6.1E-3
Srec 1.9E-7 2.8E-6 4.2E-6 4.3E-6 4.3E-6 6.9E-6 2.2E-1 1.4E-1 1.0E-1 1.0E-1 2.7E-2 2.0E-2

LERE Lrec 7.6E-9 2.1E-8 2.9E-8 1.9E-8 1.4E-8 3.5E-8 7.8E-9 1.8E-8 5.8E-8 1.7E-8 1.7E-8 4.8E-8
Srec 5.4E-8 8.6E-8 9.7E-8 1.4E-7 6.1E-8 1.2E-7 5.6E-8 7.6E-8 1.9E-7 1.2E-7 7.4E-8 1.6E-6

Table 2: Comparison of various methods with different dimensions n2, sparsity α, conditional number κ, where “LRPCA”:
default 17 iterations and“LRPCA†”: 200 iterations.
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Figure 5: Rank estimation of the real world datasets.

comes are depicted in Fig. 4. Observations show that both
GDE and RANK struggle to precisely capture the low-rank
component when conducting rank estimation on sparse matri-
ces within this database. In Fig. 4 (a) and (b), both GDE and
RANK solely capture the low-rank component associated
with the most prominent singular value. While they manage
to eliminate the impact of the largest singular value in Fig.
4 (c), the low-rank component’s boundary still poses a chal-
lenge for accurate identification by both methods. In Fig. 4(d),
the performance of RANK falters due to the influence caused
by the non-ascending arrangement of Gerschgorin disk radii.
In contrast, the proposed R_GDE method effectively and
accurately estimates the rank of various sparse matrices.

Furthermore, we also conduct evaluation on the video
dataset from the Scene Background Initialization (SBI)
datasets 2 and the Low Dynamic Range (LDR) datasets 3.
These datasets are transformed into full matrices for evalua-

2https://sbmi2015.na.icar.cnr.it/SBIdataset.html
3http://alumni.soe.ucsc.edu/ orazio/deghost.html

tion and Fig. 5 displays the corresponding results. From the
plot, one can observe that whether it is the SBI datasets or
the LDR datasets, the subspace corresponding to the largest
singular value contains static background information from
the video scene. GDE is able to accurately estimate the nu-
merical rank corresponding to this part of the information.
However, the subspaces corresponding to the secondary sin-
gular values often contain other background information. For
instance, in the LDR dataset, the subspace related to the
second singular value frequently encompasses the required il-
lumination change information, which both GDE and RANK
have overlooked. Compared to these two methods, R_GDE
can effectively capture these secondary pieces of informa-
tion, just as it can efficiently estimate the low-rank sub-space
boundaries in ill-conditioned matrices.

Comparison of Various RPCA
Synthetic Datasets For synthetic datasets, we compare
LERE against SOTA RPCA-based methods categorized into
two groups: The first category is based on the estimated rank,
including ARE-RPCA (Xu et al. 2021a) and ADW-RPCA
(Xu et al. 2021b). The second group is grounded on prior rank,
featuring AccAltProj (Cai, Cai, and Wei 2019), ScaledGD
(Tong, Ma, and Chi 2021), RPCA_HQF (Wang et al. 2023),
and LRPCA (Cai, Liu, and Yin 2021).

We corrupt the input matrix Y ∈ Rn1×n2 by sparse noise
with varying corruption rates α = {0.1, 0.3, 0.5} and param-
eters: n1 = 3000, n2 = {3000, 1000, 500}, rank r = 5; the
iteration stop criterion is

∥∥Y − L∗ − S∗
∥∥
F
/
∥∥Y∥∥

F
< 10−7,

where L∗ and S∗ are the reconstruction matrices; The re-
construction errors denote as Lrec =

∥∥L∗ − L
∥∥
F
/
∥∥L∥∥

F

and Srec =
∥∥S∗ − S

∥∥
F
/
∥∥S∥∥

F
; the maximum number of

iterations is 200.
Table 2 presents the results. While the comparative meth-

ods might outperform in certain scenarios, their generaliza-
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Figure 6: Visualization results of foreground-background separation task on HumanBody2 dataset. The first column contains the
original 92-nd and 306-th frames, and the next seven columns are the results of other methods for comparison and ours. The
results show that our LERE performs more precise separation for both of these two frames.

AGE pEPs% pCEPS% MSSSIM PSNR CQM

ARE_RPCA 8.024 10.894 7.483 0.934 22.97 22.58
ADW_RPCA 5.425 2.825 1.683 0.964 26.84 26.54
AccAltProj 7.860 5.773 3.272 0.927 23.07 22.58
RPCA-HQF 1.457 1.131 0.250 0.995 36.34 35.96
LRPCA 2.821 0.723 0.106 0.996 35.41 34.71
LRER 2.422 0.162 0.032 0.997 37.64 37.01

Table 3: A comparison of performance of different methods
on one frame from HumanBody2 dataset.

tion performance is limited. As evident from Table 2, increas-
ing the number of iterations for LRPCA from the default
value 17 to 200, a marked improvement in its performance
can be observed. Nevertheless, its performance remains con-
strained by matrix dimensions. In contrast, the proposed
LERE consistently delivers competitive results across varying
matrix dimensions, condition numbers, and sparsity. Mean-
while, LERE only needs training a 17-iteration FRMNN and
obviates the need for retraining with different sparsity. Hence,
it is evident from the above results that LERE possesses ex-
cellent robustness.
Foreground-Background Separation In this work, the pro-
posed LERE is employed for the task of separating fore-
ground from background. We choose the SBI dataset for
this task. With each column corresponding to a vectorized
frame, this dataset can be interpreted as a matrix. The moving
foreground object represents the sparse part of the dataset,
while the static background constitutes the low-rank portion.
Hence we can separate the foreground and the background
via the proposed LERE. The visualized results of LERE,
ARE-RPCA, and ADW-RPCA on the sub-dataset Human-
Body2 of the SBI dataset are shown in Fig. 6, which contain

740 frames with size 240×320. Furthermore, we also carry
out objective evaluations (i.e, AGE, pEP, pCEP, PSNR, MS-
SSIM, CQM) on HumanBody2. The findings, displayed in
Table 3, indicate that SOTA methods are surpassed by the
proposed LERE in terms of performance.

Conclusions and Future Work
A novel learning-based LRMR method, LERE, is presented
in this work. LERE greatly surpasses prior arts in terms
of both generalization performance and recovery accuracy.
Concretely, a robust rank estimation method R_GDE is de-
veloped to estimate the rank of the ill-conditioned matrix
with significant sparsity. The low-rank matrix is more opti-
mally recovered using a novel learning-based approach built
upon the estimated rank. The update process of the low-rank
matrix involves uniformly random sampling. Consequently,
the proposed method only requires a 17-iteration FRMNN
to learn one set of parameters on the small sparsity dataset,
adaptively preventing the modal from falling into the local
optima. Across both synthetic datasets and various partial
vision tasks, extensive experimental results have consistently
highlighted the superiority of our approach over SOTA meth-
ods.

In the future, our method will be extended to more vision
applications. Motivated by the fact that structures of real-
world data for large-scale problems tend to be more tensor-
like than matrix-like, we will be dedicated to exploring the
integration of tensor decomposition theories, and deep learn-
ing to address practical large-scale low-rank tensor recovery
problems in our future research.

Acknowledgements
This work was supported by NSFC 62376156, 62201342,
U19B2035, and Shanghai Municipal Science and Technology
Major Project 2021SHZDZX0102.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16234



References
Cabral, R.; De la Torre, F.; Costeira, J. P.; and Bernardino,
A. 2013. Unifying nuclear norm and bilinear factorization
approaches for low-rank matrix decomposition. In Proceed-
ings of the IEEE international conference on computer vi-
sion(ICCV), 2488–2495.
Cai, H.; Cai, J.-F.; and Wei, K. 2019. Accelerated alternating
projections for robust principal component analysis. The
Journal of Machine Learning Research, 20(1): 685–717.
Cai, H.; Hamm, K.; Huang, L.; Li, J.; and Wang, T. 2021a.
Rapid Robust Principal Component Analysis: CUR Acceler-
ated Inexact Low Rank Estimation. IEEE Signal Processing
Letters, 28: 116–120.
Cai, H.; Hamm, K.; Huang, L.; and Needell, D. 2021b. Ro-
bust CUR Decomposition: Theory and Imaging Applications.
SIAM Journal on Imaging Sciences, 14(4): 1472–1503.
Cai, H.; Liu, J.; and Yin, W. 2021. Learned robust PCA:
A scalable deep unfolding approach for high-dimensional
outlier detection. Advances in Neural Information Processing
Systems (NIPS), 34: 16977–16989.
Candès, E. J.; Li, X.; Ma, Y.; and Wright, J. 2011. Robust
Principal Component Analysis? journal of the Association
for Computing Machinery, 58(3): 1–37.
Chen, Y.; Chi, Y.; Fan, J.; Ma, C.; and Yan, Y. 2020. Noisy
matrix completion: Understanding statistical guarantees for
convex relaxation via nonconvex optimization. SIAM journal
on optimization, 30(4): 3098–3121.
Chen, Y.; Fan, J.; Ma, C.; and Yan, Y. 2021. Bridging convex
and nonconvex optimization in robust PCA: Noise, outliers
and missing data. The Annals of Statistics, 49(5): 2948–2971.
Cohen, R.; Zhang, Y.; Solomon, O.; Toberman, D.; Taieb, L.;
van Sloun, R. J.; and Eldar, Y. C. 2019. Deep Convolutional
Robust PCA with Application to Ultrasound Imaging. In
2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 3212–3216.
Gregor, K.; and LeCun, Y. 2010. Learning Fast Approxima-
tions of Sparse Coding. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine
Learning (ICML), 399–406. ISBN 9781605589077.
Hu, Y.; Zhang, D.; Ye, J.; Li, X.; and He, X. 2012. Fast
and accurate matrix completion via truncated nuclear norm
regularization. IEEE transactions on pattern analysis and
machine intelligence, 35(9): 2117–2130.
Jia, X.; Feng, X.; Wang, W.; and Zhang, L. 2020. General-
ized unitarily invariant gauge regularization for fast low-rank
matrix recovery. IEEE Transactions on Neural Networks and
Learning Systems, 32(4): 1627–1641.
Keshavan, R. H.; Montanari, A.; and Oh, S. 2010. Matrix
completion from a few entries. IEEE transactions on infor-
mation theory, 56(6): 2980–2998.
Li, Z.; Nie, F.; Wang, R.; and Li, X. 2023. Robust rank-one
matrix completion with rank estimation. Pattern Recognition,
142: 109637.
Ma, C.; Li, Y.; and Chi, Y. 2021. Beyond Procrustes:
Balancing-free gradient descent for asymmetric low-rank

matrix sensing. IEEE Transactions on Signal Processing, 69:
867–877.
Markowitz, S.; Snyder, C.; Eldar, Y. C.; and Do, M. N. 2022.
Multimodal unrolled robust PCA for background foreground
separation. IEEE Transactions on Image Processing, 31:
3553–3564.
Mishra, B.; Apuroop, K. A.; and Sepulchre, R. 2012. A
Riemannian geometry for low-rank matrix completion. arXiv
preprint arXiv:1211.1550.
Monga, V.; Li, Y.; and Eldar, Y. C. 2021. Algorithm unrolling:
Interpretable, efficient deep learning for signal and image
processing. IEEE Signal Processing Magazine, 38(2): 18–
44.
Park, D.; Kyrillidis, A.; Carmanis, C.; and Sanghavi, S. 2017.
Non-square matrix sensing without spurious local minima
via the Burer-Monteiro approach. In Artificial Intelligence
and Statistics (AIS), 65–74.
Phan, D. N.; and Nguyen, T. N. 2021. An accelerated irnn-
iteratively reweighted nuclear norm algorithm for nonconvex
nonsmooth low-rank minimization problems. Journal of
Computational and Applied Mathematics, 396: 113602.
Recht, B. 2011. A simpler approach to matrix completion.
Journal of Machine Learning Research, 12(12): 3413–3430.
Recht, B.; Fazel, M.; and Parrilo, P. A. 2010. Guaranteed
minimum-rank solutions of linear matrix equations via nu-
clear norm minimization. SIAM review, 52(3): 471–501.
Shen, J.; Chen, X.; Heaton, H.; Chen, T.; Liu, J.; Yin, W.;
and Wang, Z. 2021. Learning a minimax optimizer: A pilot
study. In International Conference on Learning Representa-
tions(ICML).
Shi, Q.; Lu, H.; and Cheung, Y.-M. 2017. Rank-one ma-
trix completion with automatic rank estimation via L1-norm
regularization. IEEE transactions on neural networks and
learning systems, 29(10): 4744–4757.
Solomon, O.; Cohen, R.; Zhang, Y.; Yang, Y.; He, Q.; Luo, J.;
van Sloun, R. J.; and Eldar, Y. C. 2019. Deep unfolded robust
PCA with application to clutter suppression in ultrasound.
IEEE transactions on medical imaging, 39(4): 1051–1063.
Tong, T.; Ma, C.; and Chi, Y. 2021. Accelerating ill-
conditioned low-rank matrix estimation via scaled gradient
descent. The Journal of Machine Learning Research, 22(1):
6639–6701.
Van Luong, H.; Joukovsky, B.; Eldar, Y. C.; and Deligiannis,
N. 2021. A deep-unfolded reference-based RPCA network
for video foreground-background separation. In 2020 28th
European Signal Processing Conference (EUSIPCO), 1432–
1436.
Wang, R.; Fang, H.; Zhang, Y.; Yu, L.; and Chen, J. 2022.
Low-Rank Enforced Fault Feature Extraction of Rolling Bear-
ings in a Complex Noisy Environment: A Perspective of
Statistical Modeling of Noises. IEEE Transactions on Instru-
mentation and Measurement, 71: 1–14.
Wang, Z.-Y.; Li, X. P.; So, H. C.; and Liu, Z. 2023. Robust
PCA via non-convex half-quadratic regularization. Signal
Processing, 204: 108816.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16235



Wen, Z.; Yin, W.; and Zhang, Y. 2012. Solving a low-rank
factorization model for matrix completion by a nonlinear
successive over-relaxation algorithm. Mathematical Pro-
gramming Computation, 4(4): 333–361.
Wu, H.-T.; Yang, J.-F.; and Chen, F.-K. 1995. Source num-
ber estimators using transformed Gerschgorin radii. IEEE
transactions on signal processing, 43(6): 1325–1333.
Xu, C.; Lin, Z.; and Zha, H. 2017. A unified convex surro-
gate for the Schatten-p norm. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 926–932.
Xu, Z.; He, R.; Xie, S.; and Wu, S. 2021a. Adaptive Rank Es-
timate in Robust Principal Component Analysis. In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 6573–6582.
Xu, Z.; Xing, H.; Fang, S.; Wu, S.; and Xie, S. 2021b. Double-
Weighted Low-Rank Matrix Recovery Based on Rank Es-
timation. In 2021 IEEE/CVF International Conference on
Computer Vision Workshops (ICCVW), 172–180.
Yi, X.; Park, D.; Chen, Y.; and Caramanis, C. 2016. Fast
algorithms for robust PCA via gradient descent. Advances in
neural information processing systems (NIPS), 29.
Zadeh Kashani, S. M.; and Hamidzadeh, J. 2020. Improve-
ment of non-negative matrix-factorization-based and Trust-
based approach to collaborative filtering for recommender
systems. In 2020 6th Iranian Conference on Signal Process-
ing and Intelligent Systems (ICSPIS), 1–7.
Zhao, Q.; Zhang, L.; and Cichocki, A. 2015. Bayesian CP
factorization of incomplete tensors with automatic rank deter-
mination. IEEE transactions on pattern analysis and machine
intelligence, 37(9): 1751–1763.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16236


