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Abstract

The ability of model quantization with arbitrary bit-width
to dynamically meet diverse bit-width requirements dur-
ing runtime has attracted significant attention. Recent re-
search has focused on optimizing large-scale training meth-
ods to achieve robust bit-width adaptation, which is a time-
consuming process requiring hundreds of GPU hours. Fur-
thermore, converting bit-widths requires recalculating statis-
tical parameters of the norm layers, thereby impeding real-
time switching of the bit-width. To overcome these chal-
lenges, we propose an efficient Post-Training Multi-bit Quan-
tization (PTMQ) scheme that requires only a small amount
of calibration data to perform block-wise reconstruction of
multi-bit quantization errors. It eliminates the influence of
statistical parameters by fusing norm layers, and supports
real-time switching bit-widths in uniform quantization and
mixed-precision quantization. To improve quantization accu-
racy and robustness, we propose a Multi-bit Feature Mixer
technique (MFM) for fusing features of different bit-widths
to enhance robustness across varying bit-widths. Moreover,
we introduced the Group-wise Distillation Loss (GD-Loss)
to enhance the correlation between different bit-width groups
and further improve the overall performance of PTMQ. Ex-
tensive experiments demonstrate that PTMQ achieves com-
parable performance to existing state-of-the-art post-training
quantization methods, while optimizing it speeds up by 100×
compared to recent multi-bit quantization works. Code can be
available at https://github.com/xuke225/PTMQ.

Introduction
Model quantization reduces computation and storage by
converting weights and activation values into lower preci-
sion fixed-point values, thereby enabling the deployment
of deep neural networks on resource-constrained hardware
platforms. However, most quantization methods (Zhang
et al. 2018; Choi et al. 2018; Esser et al. 2020; Liu et al.
2020; Li et al. 2021b; Nagel et al. 2022; Liu et al. 2023)
are only able to achieve a predetermined bit-width for
quantization, and modifying the bit-width necessitates re-
optimization. Multi-bit quantization (Jin, Yang, and Liao
2020; Shkolnik et al. 2020; Yu et al. 2021; Xu et al. 2022)
provide a significant opportunity for more powerful model
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compression and acceleration for these very different scenar-
ios with different platforms. It can achieve different resource
budgets by adjusting the bit-width of the quantized model
during inference without further training. Multi-bit quanti-
zation improves the scalability of models and their adapt-
ability to different computational resources.

Recent works (Shkolnik et al. 2020; Yu et al. 2021; Xu
et al. 2022) for multi-bit quantization rely on Quantization-
Aware Training (QAT) methods (Zhou et al. 2016; Esser
et al. 2020; Bhalgat et al. 2020) to achieve robust adaptive
bit-width optimization, and the optimization process is time-
consuming. For instance, the optimization of ResNet50 in
MultiQuant (Xu et al. 2022) requires 1296 GPU hours us-
ing NVIDIA 2080Ti. Furthermore, in order to achieve stable
quantized training, norm layers are typically not folded with
the previous layer. When switching the bit-width, statistical
parameters of the norm layers need to be recalculated, which
affects the real-time response of multi-bit quantization.

Post-Training Quantization (PTQ) only requires a small
number of unlabeled calibration samples to quantize the
pre-trained models without retraining, which is suitable for
rapid deployment. Currently, there are two mainstream ap-
proaches: searching for quantization scale factors (Migacz
2017; Banner, Nahshan, and Soudry 2019; Nahshan et al.
2019) and optimizing rounding values (Nagel et al. 2020;
Hubara et al. 2021; Wei et al. 2022; Liu et al. 2023). These
metrics aim to determine the ideal range by minimizing
the discrepancy between FP32 and quantized feature maps
such as Mean Squared Error (MSE) distance (Choukroun,
Kravchik, and Kisilev 2019) and cosine distance (Wu et al.
2020). Searching only scaling factors is insufficient for
achieving robust multi-bit quantization, and full-parameters
fine-tuning can lead to overfitting with limited data. Fortu-
nately, rounding value optimization methods offer possibil-
ities for post-training multi-bit quantization. Additionally,
folding norm layers with previous layers helps mitigate the
influence of statistical parameters (Li et al. 2021b). How-
ever, how to optimize rounding values and scaling factors
using calibration samples to achieve high precision in multi-
bit quantization has become a new technical challenge.

To address the above-mentioned issues, we design a novel
framework for post-training multi-bit quantization, called
PTMQ. To the best of our knowledge, it is the first to collab-
orate the multi-bit-width quantization into the PTQ frame-
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Figure 1: Overview of our proposed Post-Training Multi-Bit Quantization (PTMQ). PTMQ calibrates the step-size set Sa of
activations and weight rounding values R in block-wise reconstruction, weights W and the step-size set Sw of weights are
frozen. The quantitative reconstruction process consists of two stages: (1) merging multiple bit-width features from different
bit groups by Multi-bit Feature Mixer; (2) optimizing rounding values using Group-Distill Loss.

work. The pipeline of PTMQ is illustrated in Figure 1.
The PTMQ scheme enables real-time conversion of differ-
ent bit-widths and mixed-precision quantization. To achieve
robust bit-width adaptation, PTMQ utilizes shared weights
and rounding values. Through block-wise PTQ reconstruc-
tion, the robust rounding values across varying bit-widths
are learned. In order to enhance the robustness across var-
ious bit-widths, we propose the Multi-bit Feature Mixer
(MFM), which can perform block-wise reconstruction of
multi-bit quantization errors by fusing features of different
bit-widths. In the reconstruction process, the mixed features
serve as the input for each block. We then introduce Group-
wise Distillation Loss (GD-Loss) to enhance the correlation
between different bit-width groups by capturing and trans-
ferring the high-bit-width representations to the reconstruc-
tion of low-bit-width representations and further improve the
overall performance of PTMQ. Overall, the PTMQ frame-
work offers to calibrate the multi-bit quantized model only
once with post-training quantization methods and supports
uniform and mixed-precision quantization by adjusting the
bit-width of models without additional operations. Our con-
tributions are summarized as follows:
• We propose PTMQ, an efficient multi-bit quantization

framework based on PTQ. The multi-bit quantized model
with PTMQ supports uniform and mixed-precision quan-
tization, and can perform real-time bit-width conversion.

• We propose a Multi-bit Feature Mixer (MFM), which en-
hances the robustness of rounding values at various bit-
widths by fusing features of different bit-widths.

• We introduce the Group-wise Distillation Loss (GD-

Loss), to enhance the correlation between different bit-
width groups, thereby improving the overall quantization
performance of PTMQ.

• Extensive experiments conducted on CNN and ViT back-
bones verify that PTMQ performs comparably to current
PTQ methods, while achieving a 100× speed-up com-
pared to recent multi-bit quantization approaches.

Related Works

Rounding-based PTQ. The rounding-based PTQ ap-
proach focuses on optimizing the rounding value and
scaling factors with some unlabeled calibration data.
AdaRound (Nagel et al. 2020) was the first to propose a
method for learning the rounding mechanism by analyzing
the second-order error term and suggesting a layer-by-layer
reconstruction of the output. BRECQ (Li et al. 2021a) suc-
cessfully extends AdaRound to a block-wise reconstruction.
QDrop (Wei et al. 2022) found that higher accuracy could
be achieved by randomly dropping quantized activation val-
ues and incorporating activation quantization into the weight
tuning. FlexRound (Lee et al. 2023) provides weights with
the opportunity to be mapped to a wider range of quantized
values, rather than being limited to only the nearby 0 or 1
values during the quantization process. However, they can
only quantize for a specific bit-width at a time, and it is
not directly accessible to perform multi-bit quantization with
them. Our work incorporates a rounding-based PTQ scheme
to solve the multi-bit optimization problem.
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Multi-Bit Quantization. Recently, several research works
on multi-bit quantization. RobustQuant (Shkolnik et al.
2020) proves that the uniformly distributed weight tensor is
more tolerant to quantization, has a higher signal-to-noise
ratio, and is less sensitive to specific quantizer implementa-
tions than the typical case of normally-distributed weights,
and introduces Kurtosis regularization to unify the weight
distribution and improve its quantization robustness. Any-
Precision (Yu et al. 2021) method trains the model using
the DoReFa (Zhou et al. 2016) quantizer, but the quantized
model is stored in the floating-point form. In addition, the
runtime floating-point model can be flexibly set to a differ-
ent bit-width directly by truncating the least significant bits.
MultiQuant (Xu et al. 2022) overcomes the vicious competi-
tion between high-bit-width and low-bit-width quantization
networks by using an adaptive soft-labeling strategy to en-
hance multi-bit supernet training. Previous studies have fo-
cused on using QAT methods to train a multi-bit quantized
neural network, while the heavy training cost of QAT meth-
ods renders them less feasible for rapid deployment in the
context of diverse models in different scenarios. In addition,
the necessity to recalculate the statistical parameters of the
norm layers in order to adapt to different bit-widths during
runtime prevents real-time switching of bit-widths. Conse-
quently, the extra computational load is introduced due to
norm layers during inference. While our approach is effi-
cient for multi-bit quantization through post-training quan-
tization, and the impact of statistical parameters can be mit-
igated by fusing norm layers.

Approach
In this section, we start by modeling post-training multi-bit
quantization, and then the PTMQ pipeline is described. Fol-
lowing that, we provide a detailed explanation of the opti-
mization of PTMQ, including MFM and GD-Loss. Addi-
tionally, we introduce a mixed precision method for PTMQ.

Post-Training Multi-Bit Quantization Modeling
We start by modeling the multi-bit quantization problem
based on the rounding-based PTQ method. Note that to
simplify the description, we omit the zero-point in the
quantization process. For the multi-bit quantization model,
we assume that the set of bit-width candidates B =
{b|b ∈ Z+, 2 ≤ b ≤ 8}. The optimization target of multi-bit
quantized models can be formulated as:

min
R∗,sa

∗

∑
b∈B

E
[(
N (w;x)−Nb

(
ŵ|

(
R, sbw

)
; x̂|sba

))2]
(1)

where Nb

(
ŵ|

(
R, sbw

)
; x̂|sba

)
denotes the weigths and ac-

tivations of quantized network under b-bit quantization, R
represents the rounding value of weights, and sbw is the
quantization step size with b-bit of weights. The quantiza-
tion parameters are usually optimized as block-independent
sequences in PTQ methods. For block-wise optimization, we
thus end up with the following optimization problem

min
R∗,sa

∗

∑
b∈B

E
[(
f ℓ (w;x)− f ℓ

b

(
ŵ|

(
R, sbw

)
; x̂|sba

))2]
(2)

f ℓ
b represents the ℓ-th block under b-bit quantization. Multi-

bit quantization of PTQ aims to learn robust rounding values
and stand-alone quantization step size set of activation with
few unlabeled data under different bit-widths. For rounding
values, we optimize over soft-quantized weights

ŵ = sbw · clip
(⌊

w

sbw

⌋
+R,−2b−1, 2b−1 − 1

)
(3)

During reconstruction, R is a learnable continuous variable
w.r.t. w, which is regularized to converge to {0, 1}. While
R ∈ {0, 1} is the rounding value for up or down in infer-
ence. The robust rounding values and quantization step size
set of activations will be optimized together.

The Pipeline of PTMQ
A conceptual overview of the reconstruction process is de-
picted in Figure 1. ❶ For initialization, the scaling factors
of the model are initialized with the given data. Block-wise
optimization is adopted for reconstruction. ❷ Intuitively, the
bit-width configuration B is divided into three groups, each
requiring different scaling levels of tuning during the recon-
struction process (The supplementary material D provides
further details on the experiments conducted on the effects
of these subgroups). ❸ During the reconstruction of a block,
a random bit is selected for each bit group. The inputs of
the block are obtained by integrating the output features of
reconstructed blocks from different bit groups through the
Multi-bit Feature Mixer. ❹ The outputs of the block under-
going reconstruction are calculated by sampling random bits
from each bit group. The reconstruction loss is then aggre-
gated over all sampled bit-widths. Then, all rounding val-
ues and step sets of activation within the block are opti-
mized through back-propagation. PTMQ aims to enhance
the robustness of the quantized block across different bit-
widths by simultaneously improving the lower performance
bound (low group bit-width model) and the upper perfor-
mance bound (high group bit-width model).

Optimization-based Multi-Bit Quantization
Absorb Multi-Bit Errors into Rounding Values. Con-
ventionally, activation quantization is often modeled by
adding noise to the full-precision counterpart, represented as
â = a · (1 + u). The range of u is affected by the bit-width
and rounding error. This transformation can absorb the noise
on activation and transfer it to the weight. For instance, in a
simple matrix-vector multiplication wa during the forward
pass, this can be expressed as:

w (a⊙ (1 + u(x))) = (w ⊙ (1 + v(x)))a (4)
1 + u(x) represents the activation noise, where the noise is
related to a specific input data point x. The perturbation on
the weight is denoted as 1 + v(x). The symbol ⊙ denotes
element-wise multiplication for matrices or vectors.

The quantization noise 1+ ũ(x), which combines the ac-
tivation with multi bit-widths, can be transposed into per-
turbation on the weight 1 + ṽ(x), which can be denoted
as R in the reconstruction process. Since the combination
of activation quantization with multi bit-width can be seen
as introducing multi-bit quantization errors into the network
weights, these errors can be absorbed by rounding values.
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(a) Ablation analysis of Multi-Bit Feature Mixer (b) Ablation analysis of Group-Distill Loss

Figure 2: Ablation study for the MFM and GD-Loss. In (a), different components are introduced in the mixed features. In (b),
case 1 is conducted without GD-Loss. The illustration module’s meaning aligns with the legend of Figure 1.

Multi-Bit Feature Mixer. As previously mentioned, mix-
ing features with multi-bit quantization as inputs can en-
hance the robustness of rounding values for various bit-
widths. To delve deeper into the utilization of quantiza-
tion features with multi bit-width, we conducted an ablation
study by employing different input feature compositions.
Figure 2a demonstrates the three cases that are examined:

• Case 1: Randomly select one type of feature quantiza-
tion from low, medium, and high bit-width groups, and
then fuse it with full-precision features through random
dropout as the input for the reconstruction block.

• Case 2: Firstly, random bit features are sampled from
each bit group. Secondly, the high-bit group features are
mixed with the mid-bit group features through addition
operation. Finally, the fused features, obtained by ran-
domly replacing with the low-bit group features, are used
as the input for the reconstruction block.

• Case 3: Random bit features are sampled in each bit
group and mixed them by addition operation, and then
fused with full-precision features by randomly dropping
as input to the reconstruction block.

Case 3 is verified experimentally as the most efficient Multi-
bit Feature Mixer (MFM) in PTMQ. It cleverly aggregates
multi-bit quantized and full-precision features, so that the
input of the reconstruction block combines multiple quanti-
zation features instead of only biasing towards one quanti-
zation feature. The MFM can be formalized as follows:

MFM
(
f̂{l,m,h}, f

)
=

{
f with p

λ1f̂l + λ2f̂m + λ3f̂h with 1− p

(5)
In the MFM operation, each element is processed indi-
vidually. f̂{l,m,h} denotes an element in the features with
{low,middle, high}-bit group selected bit of the recon-
structed blocks on given mini-batch data. The full-precision
feature is denoted as f . The hyperparameters (λ1, λ2, λ3)
are used to control the scale of fusion for different bit
groups. To enhance the flatness of the optimization land-
scape, we randomly drop features that are mixed with the
full-precision ones. The dropping probability is set to p =

0.5, which aligns with QDrop (Wei et al. 2022). Further-
more, the output features of the block are also fused with
different selected bits from bit groups. This guarantees con-
sistency with the input scheme, as the output of this block
becomes the input for the subsequent block, thereby improv-
ing the adaptability of multi-bit quantization.

Group-Distill Loss. To enhance the correlation between
different bit-width groups and further improve the overall
performance and robustness of PTMQ, we propose a group-
wise distillation strategy. The advantage of this strategy is
inherent in PTMQ, as the output features of the block with
different bit groups in reconstruction are always accessible.
As shown in Figure 2b, in Case 1, the mixed features of each
bit group are supervised by the full-precision features. In
Case 2 with GD-Loss, based on Case 1, high-bit group fea-
tures is introduced to supervise the features of the middle-bit
and low-bit groups. The goal of supervision is to minimize
the mean squared error between different features. The re-
construction loss of the block with GD-Loss is described as:

Lrecon = γ1MSE(Ômixed,Ofp32)

+ γ2MSE(Ôh, Ôm)

+ γ3MSE(Ôh, Ôl)

(6)

where Ômixed means the mixed output feature of the block
with MFM, while Ofp32 denotes the output of correspond-
ing full-precision block, Ô{l,m,h} denotes the output feature
with {low,middle, high}-bit group selected bit quantiza-
tion. (γ1, γ2, γ3) are hyperparameters to control the scale of
GD-Loss (Detailed sensitivity analysis of λ and γ, see Sup-
plementary Material G).

Mixed Precision Quantization with PTMQ
To further push the performance of PTMQ, we employ
mixed precision techniques with PTMQ. PTMQ enables
real-time conversion for mixed-precision quantization by
just switching the quantization step size of blocks without
additional analysis and optimization.

Sensitivity Analysis of Blocks. After obtaining the multi-
bit quantized model through PTMQ, we analyze the sensi-
tivity of quantization for each model block while storing the
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Figure 3: The Pareto frontier of ResNet-18 on ImageNet.
The x-axis shows the resulting model size for each configu-
ration, and the y-axis shows the resulting sensitivity.

measured sensitivity from the calibration dataset. The sensi-
tivity of the quantized blocks is measured using KL diver-
gence (Cai et al. 2020), which is defined as:

Ωi(b) = KL
(
N (w;x) ,N i

b

(
ŵ|

(
R, sbw

)
; x̂|sba

))
(7)

Here, Ωi(b) represents the measurement of sensitivity for
the i-th block when quantized to b-bits, and N i

b denotes the
quantized neural network with the i-th block under b-bit pre-
cision. If Ωi(b) is small, it indicates that the output of the
quantized model does not deviate significantly from the out-
put of the full-precision model when the i-th block is quan-
tized to b-bits. This implies that the i-th block is relatively in-
sensitive to b-bit quantization. Conversely, if Ωi(b) is large,
it suggests that the i-th block is more sensitive.

Pareto Frontier Search for Mixed Precision. Once we
obtain the sensitivity table, it can be used to rank the blocks
based on their relative sensitivity. The main idea is to allo-
cate higher bit-width to sensitive blocks and lower bit-width
to less sensitive ones. To achieve this, we employ the Pareto
frontier search method to assign a specific bit width to each
block. Given a target quantized model size St, we aim to find
the bit-width configuration that minimizes the overall sensi-
tivity while satisfying the constraint on the target model size.
This optimization problem can be defined as follows:

min
{bi}L

i=1

Ωsum =
L∑

i=1

Ωi (bi) s.t.
L∑

i=1

Pi ∗ bi ≤ St (8)

where bi is the quantization bit-width of the i-th block, and
Pi is the size for the i-th block. We use the genetic algo-
rithm (Guo et al. 2020) to search the optimal bit-width con-
figuration with model size threshold.

Experiments
Performance Comparison with SOTA Method
We assess the performance of the proposed PTMQ scheme
on various CNN-based architectures (ResNet (He et al.

2016), MobileNetV2 (Sandler et al. 2018), RegNet (Ra-
dosavovic et al. 2020)) and transformer-based architectures
(ViT (Dosovitskiy et al. 2021), DeiT (Touvron et al. 2021))
on ImageNet (Russakovsky et al. 2014) dataset. To our
knowledge, prior research has yet to be conducted on multi-
bit quantization using PTQ. Therefore, we compare the
performance of PTMQ with existing PTQ approaches and
multi-bit quantization using QAT methods.

Results of CNN-based Architectures. We compare the
accuracy results of several recently proposed quantization
methods, including single-bit post-training quantization and
multi-bit quantization. The summarized results are pre-
sented in Table 1. Specifically, when comparing ResNet-18
to AdaRound (Nagel et al. 2020) and BRECQ (Li et al.
2021a) using 3-bit quantization, our method achieves an
accuracy improvement of 0.8% and 0.6% respectively. In
the 4-bit setting, PTMQ outperforms AdaRound by 0.3%
but experiences a decrease in accuracy (0.7%) compared
to BRECQ. This is due to the allocation of 3- and 4-bits
in the same bit group, leading to competition for differ-
ent bit-widths within the group. However, with other bit-
widths, such as those used in BRECQ and QDrop (Wei et al.
2022), we can achieve almost lossless accuracy with only a
0.20%/0.3% drop.

For ResNet-50 and RegNetX-600MF, the performance
gap between PTMQ and AdaRound, as well as BRECQ,
widens at 3-bit quantization. PTMQ achieves an accuracy
improvement of 3.0% and 1.11% respectively on ResNet-
50, while RegNetX-600MF demonstrates an accuracy im-
provement of 8.28% and 4.13%. The performance gap with
QDrop narrows to 1% for ResNet-50 under 4-bit quantiza-
tion, while ResNet-18 exhibits a performance gap of 2%
with QDrop. This can be attributed to the fact that ResNet-
50 is a heavier model than ResNet-18, where the distribution
of activations across the adjacent quantization bit-widths
is much more similar (Xu et al. 2022), and competition
within the same group is relatively alleviated. On the com-
pact model MobileNet-V2, our proposed scheme achieves
accuracy boosts of 15.6% and 1.6% respectively compared
to AdaRound at 3- and 4-bit. Due to the large differences in
the distribution of output channels in MobileNet-V2 (Nagel
et al. 2019), PTMQ exhibits performance degradation com-
pared to BRECQ and QDrop, with an average drop of 0.76%
and 1.31%, respectively.

Except for post-training quantization methods, we com-
pare our approach with multi-bit methods (Shkolnik et al.
2020; Yu et al. 2021; Xu et al. 2022) based on QAT. Com-
pared with RobustQuant (Shkolnik et al. 2020), the pro-
posed PTMQ shows 7.6%/4.1% accuracy boosts at 3-bit for
ResNet-18 and ResNet-50 models, respectively. At high bit-
widths (e.g., 6 to 8 bits) the performance of PTMQ is com-
parable to MultiQuant (Xu et al. 2022)(within 0.5% drop
on ResNet-18/50 and MobileNet-V2). Noting that PTMQ
achieves 100× optimization acceleration compared to Mul-
tiQuant. Moreover, our method only requires once calibra-
tion to adapt the model for multi-bit quantization without
task of repetitive optimizations.
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Model Benchmark Criterion Mixed BN Folding
Bit-width

FP32 GPU Hour3 4 6 8

ResNet-18

LSQ QAT 70.60% 71% —— 71.10% 70.50% 60N

AdaRound
PTQ

✓ 64.18% 67.26% 70.17% 70.78% 71.00% 0.45N
BRECQ ✓ 64.24% 68.21% 70.44% 70.80% 71.00% 0.5N
QDrop ✓ 66.26% 69.54% 70.52% 70.83% 71.00% 0.65N

RobustQuant
QAT-Multi-Bit

57.30% 66.90% 70% —— 70.30% 214
AnyPrecision —— 67.96% —— 68.04% 68.16% 76
MultiQuant ✓ 67.80% 69.70% 70.50% 70.80% 69.80% 144

PTMQ PTQ-Multi-Bit ✓ ✓ 64.92% 67.57% 70.23% 70.79% 71.00% 1.4

ResNet-50

LSQ QAT 76.90% 77.60% —— 76.80% 76.90% 240N

AdaRound
PTQ

✓ 66.66% 73.79% 76.14% 76.54% 76.80% 3.6N
BRECQ ✓ 68.56% 74.66% 76.35% 76.67% 76.80% 4.1N
QDrop ✓ 71.07% 74.98% 76.44% 76.65% 76.80% 4.7N

RobustQuant
QAT-Multi-Bit

66.50% 74.30% 76.20% —— 76.30% 970
AnyPrecision —— 74.75% —— 74.91% 75.00% 620
MultiQuant ✓ 75.30% 76.40% 76.8% 77% 76.10% 648

PTMQ PTQ-Multi-Bit ✓ ✓ 69.67% 73.93% 76.11% 76.52% 76.80% 7.8

RegNetX-600MF

AdaRound
PTQ

✓ 51.01% 68.20% 72.40% 73.38% 73.50% 1.5N
BRECQ ✓ 55.16% 68.33% 72.88% 73.55% 73.50% 1.9N
QDrop 64.53% 70.62% 73.26% 73.57% 73.50% 2.5N

PTMQ PTQ-Multi-Bit ✓ ✓ 59.29% 68.84% 72.85% 73.32% 73.50% 3.5

MobileNet-V2

AdaRound
PTQ

✓ —— 49.28% 68.43% 71.64% 72.40% 1.15N
BRECQ ✓ —— 65.57% 71.11% 72.31% 72.40% 1.4N
QDrop ✓ —— 67.89% 71.78% 72.34% 72.40% 1.6N

RobustQuant
QAT-Multi-Bit

—— 59% 70.0% —— 71.30% 390
MultiQuant ✓ —— 69.60% 70.30% 70.50% 71.90% 334

PTMQ PTQ-Multi-Bit ✓ ✓ —— 64.94% 70.0% 72.05% 72.40% 3.1

Table 1: Comparison of SOTA quantization methods for CNNs on ImageNet. The Mixed refers to mixed-precision quantization.
The time measurement is carried out with NVIDIA 3090. We use N to denote the number of up-coming deployment scenarios.

Models

#Bit-Width Weights/Activations
4/6 5/6 6/6 7/7 8/8

PTQ4ViT PTMQ PTQ4ViT PTMQ PTQ4ViT PTMQ PTQ4ViT PTMQ PTQ4ViT PTMQ
ViT-S/224/16 71.41% 71.67% 74.94% 75.14% 75.95% 76.09% 77.69% 77.14% 78.24% 78.16%
ViT-B/224/16 75.43% 75.00% 76.17% 76.64% 77.66% 77.70% 78.85% 78.62% 78.98% 79.12%
DeiT-S/224/16 74.35% 77.20% 76.14% 78.24% 76.74% 78.74% 79.08% 79.30% 79.49% 79.53%
DeiT-B/224/16 77.95% 80.00% 79.64% 80.62% 80.07% 80.81% 81.20% 81.35% 81.50% 81.54%

Table 2: Summary of results for transformer. PTQ4ViT results reproduced through official open source code1. ViT-S/16/224
denotes patch size is 16 × 16, and the input resolution is 224 × 224. All results listed are the top-1 accuracy.

Results of Transformer-based Architectures. In addi-
tion, we compare our proposed method on Vision Trans-
formers (Dosovitskiy et al. 2021; Touvron et al. 2021) with
PTQ4ViT (Yuan et al. 2022), a post-training quantization
framework specifically designed for quantizing transformer
models. PTQ4ViT currently achieves state-of-the-art results
among all transformer quantization algorithms at 6-bit. The
comparative results are presented in Table 2. Interestingly,
PTMQ is not limited to CNN models but can also achieve
multi-bit quantization on transformer architectures. Specif-
ically, with the bit-width set to 4 and 5, PTMQ achieves a
0.3% to 0.5% average accuracy increase over PTQ4ViT for
ViT-S and ViT-B models. PTMQ demonstrates even greater

improvements of 2.5% to 1.4% on DeiT-S and DeiT-B mod-
els. Remarkably, even for bit-widths ranging from 6 to 8,
PTMQ maintains comparable performance to PTQ4ViT.

Results of Mixed Precision. To validate the mixed preci-
sion search algorithm, we plot the Pareto frontier with differ-
ent bit-width configurations. Additionally, we compare the
sensitivities of 4-bit and 6-bit quantization using uniform-
precision and mixed-precision methods on ResNet-18, as
shown in Figure 3. This algorithm efficiently produces the
frontier for ResNet-18 within a few minutes.

In addition, We test the potential of mixed precision to fur-

1https://github.com/hahnyuan/PTQ4ViT
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Figure 4: Comparison with HAWQ-V3, OMPQ, unified and mixed precision on PTMQ.

ther push the scalability of PTMQ, and choose ResNet-18/50
and RegNetX-600MF to validate the efficacy of our pro-
posed approach. Experimental results show that mixed pre-
cision is superior to uniform precision, as shown in Figure 4.
Specifically, 4-bit mixed quantization based on PTMQ im-
proves the accuracy by 2% compared to uniform quantiza-
tion on ResNet-18. Compared with SOTA’s mixed-precision
quantization method, PTMQ exceeds HAWQ-V3 (Yao et al.
2021) by 1.08% at 4.2MP and coincides with the results of
OMPQ (Ma et al. 2023) on ResNet-18.

Ablation Studies
The Effectiveness of PTMQ Framework. We com-
pare different types of PTQ-based multi-bit-width opti-
mization methods, including Direct-Quantization (D-Q) and
Progressive-Quantization (P-Q). D-Q optimizes rounding
values only for one bit-width; P-Q considers two optimiza-
tion strategies: gradually increasing the bit-width (from the
lowest to the highest) or decreasing the bit-width (from
the highest to the lowest) during the optimization process.
To ensure the fairness of the experiment, we all use the
QDrop (Wei et al. 2022) quantization method. Table 3 shows
the results of ResNet-18 using different strategies. D-Q is
not suitable for adaptive bit-width switching. P-Q shows bet-
ter performance as the bit-width increases. However, there is
strong competition between different bit-widths, especially
from low- to high-bit optimization. In contrast, models op-
timized with PTMQ significantly improve the average bit-
width accuracy, with an average accuracy improvement of
4.49% compared to the high- to low-bit P-D method. This
validates the effectiveness of our PTMQ method.

The Effectiveness of Multi-bit Feature Mixer. To further
investigate the effectiveness of the proposed Multi-bit Fea-
ture Mixer, we performed an ablation study on ResNet-18
using different input feature compositions. The goal is to
comprehend the role of each component within the Multi-
bit Feature Mixer, as illustrated in Figure 2a. As shown in
Figure 5, clearly indicate that both Case 1 and Case 2 ex-
hibit lower performance compared to Case 3 fusion method.

Method W3A3 W4A4 W5A5 Avg

D-Q
Only 3-bit 66.10% 39.24% 63.06% 56.13%

Only 4-bit 3.32% 69.54% 65.56% 46.14%

P-Q
L −→ H 13.71% 39.38% 57.16% 36.75%

H −→ L 59.59% 62.59% 65.82% 62.67%

PTMQ 64.92% 67.57% 69.00% 67.16%

Table 3: Ablation studies for PTMQ, Direct-Quantization
and Progressive-Quantization for ResNet-18 on ImageNet.

Case 1 shows superior performance to Case 2 when it comes
to low-bit quantization (e.g., 3- and 4-bit), suggesting that
randomly dropping quantized activations can enhance per-
formance in the presence of low-bit constraints. However,
both Case 1 and Case 2 are surpassed by Case 3, highlight-
ing the robustness and effectiveness of fusing features from
different bit-widths within multi-bit groups.

Figure 5: Ablation studies results of MFM and GD-Loss.
We validate Top-1 accuracy for ResNet-18 at 3-,4- and 5-
bit. The results of MFM are presented by a bar chart and the
ablation results of GD-Loss are presented by the line.
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The Effectiveness of GD-Loss. We investigate the effect
of GD-Loss during reconstruction with PTMQ for ResNet-
18. As shown in Figure 5, Case 2 (with GD-Loss) consis-
tently outperforms Case 1 (without GD-Loss). Specifically,
for 3-bit and 5-bit quantization, Case 2 achieves accuracy
improvements of up to 3% and 1%, respectively. These re-
sults prove that GD-Loss effectively alleviates competition
phenomena under different bit-widths, thereby enhancing
the robustness of PTMQ. Especially in scenarios involving
low-bit quantization, combining soft features obtained from
high-bit groups can provide better regularization effects for
the low-bit reconstruction.

Conclusion
This paper proposes PTMQ, which is the first attempt at effi-
cient multi-bit quantization on the PTQ approach. This novel
framework effectively resolves the time-consuming train-
ing issues in previous methods for multi-bit quantization.
By combining features of different bit-widths using MFM
and incorporating the GD-Loss strategy in the reconstruction
process, PTMQ achieves performance comparable to state-
of-the-art PTQ methods. Furthermore, 100× speed-up is at-
tainable in terms of training time compared to recent works
on multi-bit quantization.
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