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Abstract

Decentralized learning has emerged as an alternative method
to the popular parameter-server framework which suffers from
high communication burden, single-point failure and scalabil-
ity issues due to the need of a central server. However, most
existing works focus on a single shared model for all workers
regardless of the data heterogeneity problem, rendering the re-
sulting model performing poorly on individual workers. In this
work, we propose a novel personalized decentralized learning
algorithm named DePRL via shared representations. Our al-
gorithm relies on ideas from representation learning theory to
learn a low-dimensional global representation collaboratively
among all workers in a fully decentralized manner, and a user-
specific low-dimensional local head leading to a personalized
solution for each worker. We show that DePRL achieves, for
the first time, a provable linear speedup for convergence with
general non-linear representations (i.e., the convergence rate is
improved linearly with respect to the number of workers). Ex-
perimental results support our theoretical findings showing the
superiority of our method in data heterogeneous environments.

Introduction
Fueled by the rise of machine learning applications in Inter-
net of Things, federated learning (FL) (McMahan et al. 2017;
Imteaj et al. 2022) has become an emerging paradigm that
allows a large number of workers to produce a global model
without sharing local data. The task of coordinating between
workers is fulfilled by a central server that aggregates models
received from workers at each round and broadcasts updated
models to them. However, this parameter-server (PS) based
scheme has a major drawback for the need of a central server
(Kairouz et al. 2019). In practice, the communication occurs
between the server and workers leads to a quite large com-
munication burden for the server (Lian et al. 2017), and the
server could face system failure or attacks, which may leak
users’ privacy or jeopardize the training process.

With this regard, consensus-based decentralized learning
has recently emerged as a promising method, where each
worker maintains a local copy of the model and embraces
peer-to-peer communication for faster convergence (Lian
et al. 2017, 2018). In decentralized learning, workers follow
a communication graph to reach a so-called consensus model.
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However, like conventional PS framework, one of the most
important challenges in decentralized learning is the issue of
data heterogeneity, where the data distribution among work-
ers may vary to a large extent. As a result, if all workers learn
a single shared model with parameter w, the resulting model
could perform poorly on many of individual workers. To this
end, personalized decentralized learning (Vanhaesebrouck,
Bellet, and Tommasi 2017; Dai et al. 2022) is important
for achieving personalized models for each worker i with
parameter wi instead of using a single shared model.

In this paper, we take a further step towards personalized
decentralized learning. In particular, we take advantage of
common representation among workers. This is inspired by
observations in centralized learning, which suggest that het-
erogeneous data distributed across tasks (e.g., image classifi-
cation) may share a common (low-dimensional) representa-
tion despite having different labels (Bengio, Courville, and
Vincent 2013; LeCun, Bengio, and Hinton 2015). To our best
knowledge, Collins et al. (2021) is the first to leverage this
insight to design personalized PS based scheme, while we
generalize it to decentralized setting. Specifically, we con-
sider the setting in which all workers’ model parameters share
a common map, coupled with a personalized map that fits
their local data. Formally, the parameter for worker i’s model
can be represented as wi = θθθi ◦ϕϕϕ, where ϕϕϕ : Rd → Rz is a
shared global representation1 which maps d-dimensional
data points to a lower space of size z, and θθθi : Rz → Y is
the worker specific local head which maps from the lower
dimensional subspace to the space of labels. Typically z ≪ d
and thus given any fixed representation ϕϕϕ, the worker specific
heads θθθi are easy to optimize locally. Though Collins et al.
(2021) provided a rigorous analysis with linear global repre-
sentation, the following important questions remain open:

Does there exist a personalized, fully decentralized
algorithm that can solve the optimization problem
minϕϕϕ∈Φ

1
N

∑N
i=1 minθθθi∈Θ Fi(θθθi ◦ϕϕϕ), where Fi(·) is the loss

function associated with worker i? Can we provide a conver-
gence analysis for such a personalized, decentralized algo-

1For abuse of notion, we use ϕϕϕ to denote both the global repre-
sentation model and its associated parameter, and {θθθi}Ni=1 to denote
both the local heads and its associated parameter. For simplicity, we
call ϕϕϕ the global representation and θθθi the local head of worker i
in the rest of the paper. The “◦” symbol denotes the composition
relation between the parameters θθθi and ϕϕϕ as in Collins et al. (2021).
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rithm under general non-linear representations?
In this paper, we provide affirmative answers to these ques-

tions. We propose a fully decentralized algorithm named
DePRL with alternating updates between global representa-
tion and local head parameters to solve the above optimiza-
tion. At each round, each worker performs one or more steps
of stochastic gradient descent to update its local head and
global representation from its side. Then each worker only
shares its updated global representation with a subset of work-
ers (neighbors) in the communication graph and computes
a weighted average (i.e., consensus component) of global
representations received from its neighbors. The updated lo-
cal head and global representation after consensus serve as
the initialization for the next round update. All workers in
DePRL collaborate to learn a common global representation,
while locally each worker learns its unique head.

Compared to conventional decentralized learning with a
single shared model (Lian et al. 2017, 2018; Assran et al.
2019), the updates of parameters of local head and global
representation in DePRL are strongly coupled due to their
intrinsic dependence and iterative update nature. This makes
existing convergence analysis for decentralized learning with
a single shared model not directly applicable to ours, and ne-
cessitates different proof techniques. One fundamental reason
is that, instead of learning only a single shared model, there
are multiple local heads that need to be handled in DePRL
and the updates of local heads are also strongly coupled with
global representation. We summarize our contributions:
• DePRL Algorithm. We propose for the first time a fully

decentralized algorithm named DePRLwhich leverages ideas
from representation learning theory to learn a global represen-
tation collaboratively among all workers, and a user-specific
local head leading to a personalized solution for each worker.
• Convergence Rate. To incorporate the impact of two

coupled parameters, we first introduce a new notion of ϵ-
approximation solution. Using this notion, to our best knowl-
edge, we provide the first convergence analysis of person-
alized decentralized learning with shared non-linear repre-
sentations. We show that the convergence rate of DePRL is
O( 1√

NK
), where N is the number of workers, and K is the

number of communication rounds which is sufficiently large.
This indicates that DePRL achieves a linear speedup for
convergence with respect to the number of workers. This is
the first linear speedup result for personalized decentralized
learning with shared representations, and is highly desirable
since it implies that one can efficiently leverage the massive
parallelism in large-scale decentralized systems. In addition,
interestingly, our results guarantee that all workers reach a
consensus on the shared global representation, while learn
a personalized local head. This reveals new insights on the
relationship between personalized decentralized model with
shared representations and its generalization to unseen work-
ers that have not participated in the training process, as we
numerically verify in experimental results.
• Evaluation. To examine the performance of DePRL

and verify our theoretical results, we conduct experiments
on different datasets with representative DNN models and
compare with a set of baselines. Our results show the superior
performance of DePRL in data heterogeneous environments.

System Model and Problem Formulation
Notation. Denote the number of workers and communication
rounds as N and K, respectively. We use calligraphy letterA
to denote a finite set with cardinality |A|, and [N ] to denote
the set of integers {1, · · · , N}. We use boldface to denote
matrices and vectors, and ∥ · ∥ to denote the l2-norm.

Consensus-based Decentralized Learning. Supervised
learning aims to learn a model with optimal parameter that
maps an input to an output by using examples from a training
data set D with each example being a pair of input xm and
the associated output ym. Due to increases in available data
and the complexity of statistical model, an efficient decen-
tralized algorithm is to offload the computation overhead to
N workers, which jointly determine the optimal parameters
through a decentralized coordination. This gives rise to the
minimization of the sum of functions local to each worker

min
w

f(w) :=
1

N

N∑
i=1

Fi(w), (1)

where Fi(w) = 1
|Di|

∑
(xm,ym)∈Di

ℓ(w,xm, ym), Di is
worker i’s local dataset, with ℓ(w,xm, ym) being model er-
ror on example (xm, ym) using model parameter w ∈ Rd×1.
The decentralized system can be modeled as a communi-
cation graph G = (N , E) with N = [N ] being the set of
workers and an edge (i, j) ∈ E indicates that workers i and
j can communicate with each other. We assume the graph
is strongly connected (Nedic and Ozdaglar 2009; Nedić, Ol-
shevsky, and Rabbat 2018), i.e., there exists at least one path
between any two arbitrary workers. Denote neighbors of
worker i as Ni = {j|(j, i) ∈ E} ∪ {i}. All workers perform
local updates synchronously and broadcast updated models to
their neighbors. Each worker then computes a weight average
(i.e., consensus component) of the received models from its
neighbors, which serves as the initialization for next round.

Personalization via Common Representation. Conven-
tional decentralized learning aims at learning a single shared
model parameter w that performs well on average across all
workers (Lian et al. 2017, 2018). However, this approach
may yield a solution that performs poorly in heterogeneous
settings where data distributions vary across workers. Indeed,
in the presence of data heterogeneity, the error functions Fi

will have different minimizers. This necessities the search for
more personalized solutions {wi}Ni=1 that can be learned in
a decentralized manner using workers’ local data.

To address this challenge, Collins et al. (2021) leveraged
representation learning theory into the PS setting. Formally,
the parameter for worker i’s model can be represented as
wi = θθθi ◦ ϕϕϕ, where ϕϕϕ : Rd → Rz is a shared global repre-
sentation which maps d-dimensional data points to a lower
space of size z, and θθθi : Rz → Y is the worker specific local
head which maps from the lower dimensional subspace to the
space of labels. See an illustrative example of Collins et al.
(2021) in Xiong et al. (2023a). We generalize this common
structure studied in Collins et al. (2021) to the decentralized
setting, with which, (1) can be reformulated as

min
ϕϕϕ∈Φ

min
θθθi∈Θ

f(ϕϕϕ, {θθθi}Ni=1) :=
1

N

N∑
i=1

Fi(θθθi ◦ϕϕϕ), (2)
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where Φ is the class of feasible representations and Θ is the
class of feasible heads. In our proposed decentralized learning
scheme, workers collaborate to learn global representation ϕϕϕ
using all workers’ data, while using their local information
to learn personalized local heads {θθθi}Ni=1. In other words,
worker i maintains a local estimate of global representation
ϕϕϕi(k) at each round k and broadcasts it to its neighbors in
Ni, while the local head θθθi(k) is only updated locally.

DePRL Algorithm
In personalized decentralized learning, workers aim to learn
the global representationϕϕϕ collaboratively, while each worker
i aims to learn a unique local head θθθi locally. To achieve
this, we propose a stochastic gradient descent (SGD)-based
algorithm named DePRL that solves (2) in a fully decen-
tralized manner. Specially, DePRL alternates between three
steps among all workers at each communication round: (a)
local head update; (b) local representation update; and (c)
consensus-based global representation update.

Local Head Update. At round k, worker i makes τ local
stochastic gradient-based updates to solve for its optimal
local head θθθi(k) given the current global representationϕϕϕi(k)
on its local side. In other words, for s = 0, . . . , τ −1, worker
i updates its local head as

θθθi(k, s+ 1) = θθθi(k, s)− αgθθθ(ϕϕϕi(k), θθθi(k, s)), (3)

where α is the learning rate for local head and
gθθθ(ϕϕϕi(k), θθθi(k, s)) is a stochastic gradient of local head
θθθi(k, s) given the global representation ϕϕϕi(k) on its side:

gθθθ(ϕϕϕi(k), θθθi(k, s))

:=
1

|Ci(k, s)|
∑

(xm,ym)∈Ci(k,s)

∇θθθFi(ϕϕϕi(k), θθθi(k, s),xm, ym), (4)

where Ci(k, s) is a random subset of Di. We allow each
worker to perform τ steps local updates to find the optimal
local head based on its local data. For ease of presentation,
we denote θθθi(k + 1) := θθθi(k + 1, 0) = θθθi(k, τ − 1).

Local Representation Update. Once the updated local
heads θθθi(k+1) are obtained, each worker i executes one-step
local update on their representation parameters, i.e.,

ϕϕϕi(k + 1/2) = ϕϕϕi(k)− βgϕϕϕ(ϕϕϕi(k), θθθi(k + 1)), (5)

where β is the learning rate for global representation and
gϕϕϕ(ϕϕϕi(k), θθθi(k + 1)) is the stochastic gradient of global rep-
resentation ϕϕϕi(k) given the updated local head θθθi(k + 1):

gϕϕϕ(ϕϕϕi(k), θθθi(k + 1))

:=
1

|Ci(k)|
∑

(xm,ym)∈Ci(k)

∇ϕϕϕFi(ϕϕϕi(k), θθθi(k + 1),xm, ym). (6)

Consensus-based Global Representation Update. Each
worker i broadcasts its local representation update ϕϕϕi(k +
1/2) to its neighbors j ∈ Ni, and computes a weighted
average (i.e., consensus component) of local representation
updatesϕϕϕj(k+1/2) received from its neighbors j to produce
the next representation model ϕϕϕi(k + 1) on its side:

ϕϕϕi(k + 1) =
∑

j∈Ni

ϕϕϕj(k + 1/2)Pi,j , (7)

Algorithm 1: DePRL

1: Parameters: Learning rates α, β; update step number
for local head τ ; number of communication rounds K.

2: Initialize ϕϕϕ(0), θθθ1(0, 0), . . . , θθθN (0, 0).
3: for k = 0, 1, . . . ,K − 1 do
4: for i = 1, · · · , N do
5: for s = 0, . . . , τ − 1 do
6: θθθi(k, s+ 1)← θθθi(k, s)− αgθθθ(ϕϕϕi(k), θθθi(k, s));
7: end for
8: ϕϕϕi(k + 1/2)← ϕϕϕi(k)− βgϕϕϕ(ϕϕϕi(k), θθθi(k + 1));
9: ϕϕϕi(k + 1)←

∑
j∈Ni

ϕϕϕj(k + 1/2)Pi,j ;
10: Worker i initializes θθθi(k + 1, 0)← θθθi(k, τ − 1).
11: end for
12: end for

where P = (Pi,j) is a N×N non-negative consensus matrix.
DePRL alternates between (3), (5) and (7) at each round,

and the entire procedure is summarized in Algorithm 1. An
example of DePRL with 3 workers is illustrated in Figure 1.

Remark 1. We update parameters using SGD in (4) and (6);
however, DePRL can be easily incorporated with other meth-
ods such as gradient descent with momentum. Further, we
perform one-step update on global representation in (5) given
that we perform τ -step updates on local head in (3). However,
DePRL can be easily generalized to multi-step representation
update in (5). Finally, we note that our representation model
is inspired by Collins et al. (2021), which considered the PS
setting. The theoretical analysis in Collins et al. (2021) fo-
cused on showing that the learned representation converges
to a ground-truth under the assumption that the global rep-
resentation must be linear. In contrast, we consider a fully
decentralized framework and our convergence analysis for
DePRL is under the general non-linear representations. In
addition, we numerically evaluate the generalization perfor-
mance of DePRL under non-linear representations.

Convergence Analysis
In this section, we provide a rigorous analysis of the conver-
gence of DePRL in the decentralized setting with the general
non-linear representation model.

ϵ-Approximation Solution
We first introduce the notion of ϵ-approximation solution. We
denote ϕ̄ϕϕ(k) := 1

N

∑N
i=1ϕϕϕi(k) as the consensus global repre-

sentation, and the partial gradients of the global loss function
with respect to (w.r.t.) θθθ andϕϕϕ as∇θθθf(ϕ̄ϕϕ(k), {θθθi(k)}Ni=1) and
∇ϕϕϕf(ϕ̄ϕϕ(k), {θθθi(k + 1)}Ni=1), respectively, satisfying

∇θθθf(ϕ̄ϕϕ(k), {θθθi(k)}Ni=1) :=
1

N

N∑
i=1

∇θθθFi(ϕ̄ϕϕ(k),θθθi(k)),

∇ϕϕϕf(ϕ̄ϕϕ(k), {θθθi(k+1)}Ni=1) :=
1

N

N∑
i=1

∇ϕϕϕFi(ϕ̄ϕϕ(k), θθθi(k+1)),

(8)
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Figure 1: An illustrative example of DePRL for 3 workers with the communication graph being a ring (indicated by black dashed
lines). (a) At the beginning of each round k, each worker i = 1, 2, 3 has the local head θθθi(k) and the global representation ϕϕϕ(k)
on its side, which we denote as ϕϕϕi(k). (b) Local Head Update: With (θθθi(k),ϕϕϕi(k)), each worker i performs τ steps SGD to
obtain θθθi(k+1). Note that ϕϕϕi(k) remains unchanged at this step and the updated θθθi(k+1) depends on both θθθi(k) and ϕϕϕi(k). (c)
Local Representation Update: Each worker i then updates the global representation on its side by executing one-step SGD to
obtain ϕϕϕi(k + 1/2), which depends on both θθθi(k + 1) and ϕϕϕi(k). (d) Consensus-based Global Representation Update: Each
worker i sharesϕϕϕi(k+1/2) with its neighbors and then executes a consensus step to produce the next global representation model
ϕϕϕi(k + 1). We highlight the updated parameters in each step in red, and the shared parameters (only the global representation)
between workers in blue.

where we remark that in DePRL each worker i first updates
its local head θθθi(k) to θθθi(k + 1), and then updates global
representation ϕ̄ϕϕ(k) provided θθθi(k + 1), see Algorithm 1.

Then, we say that {{ϕϕϕi(k)}Ni=1, {θθθi(k)}Ni=1, ∀k} is an ϵ-
approximation solution to (2) if it satisfies

1

K

K∑
k=1

E[M(k)] ≤ ϵ, (9)

where

M(k) :=
∥∥∇ϕϕϕf(ϕ̄ϕϕ(k), {θθθi(k + 1)}Ni=1)

∥∥2︸ ︷︷ ︸
partial gradient w.r.t. ϕϕϕ of global loss function

+
ατ

β

∥∥∇θθθf(ϕ̄ϕϕ(k), {θθθi(k)}Ni=1)
∥∥2︸ ︷︷ ︸

partial gradient w.r.t. θθθ of global loss function

+
1

N

N∑
i=1

∥ϕϕϕi(k)− ϕ̄ϕϕ(k)∥2︸ ︷︷ ︸
consensus error of global representation ϕϕϕ

. (10)

The first two terms in (10) characterizes the performance
of DePRL and the third term measures the average error of
global representation from the perspective of each worker
i’s local representation update ϕϕϕi(k). Since DePRL itera-
tively updates the local head {θθθi(k)}Ni=1 and representation
{ϕϕϕi(k)}Ni=1 using different learning rates, i.e., τ -step updates
with a rate α and one-step update with a rate β, as shown
in (3) and (5), we consider weighted partial gradients w.r.t.
the global loss function in the first two terms. This is inspired
by finite-time analysis of two-timescale stochastic approxima-
tion (Borkar 2009). Finally, (10) does not explicitly include
the local head error due to two reasons. First, we consider
general non-convex loss functions, and the local optimum
{θθθ∗i }Ni=1 is often unknown. More importantly, the impact of
local head {θθθi}Ni=1 is evaluated by partial gradients of local
loss functions Fi, ∀i, which is implicitly incorporated in the
first two terms in (10), with definitions given in (8).

Remark 2. The ϵ-approximation solution defined in (9)
and (10) incorporates the impact of two coupled parame-
ters, while conventional decentralized learning frameworks
such as Lian et al. (2017); Assran et al. (2019); Xiong et al.
(2023b) only considered a single shared model. This makes
existing convergence analysis not directly applicable to ours
and necessitates different proof techniques. One fundamental
reason is that, instead of learning a single shared model,
there are multiple local heads strongly coupled with the
global representation that need to be handled in our setting.
Compared to the PS framework, only the gap between the
learned global representation ϕϕϕ and the global optimum ϕϕϕ∗

under a linear representation model is considered in Collins
et al. (2021). Finally, another line of work on decentralized
bilevel optimization (Liu et al. 2022; Qiu et al. 2022) involves
two coupled parameters under the assumption that inner pa-
rameters are strongly convex in outer parameters, and hence
differ from our model and definition in (10).

Assumptions
Assumption 1 (Doubly Stochastic Consensus Matrix). The
consensus matrix P = (Pi,j) is doubly stochastic, i.e.,∑N

j=1 Pi,j =
∑N

i=1 Pi,j = 1, ∀i ∈ [N ], j ∈ [N ].

Assumption 2 (L-Lipschitz Continuous Gradient). There
exists a constant L > 0, such that ∥∇ϕϕϕFi(ϕϕϕ,θθθ) −
∇ϕϕϕFi(ϕϕϕ

′, θθθ′)∥ ≤ L(∥ϕϕϕ−ϕϕϕ′∥+∥θθθ−θθθ′∥) and ∥∇θθθFi(ϕϕϕ,θθθ)−
∇θθθFi(ϕϕϕ

′, θθθ′)∥ ≤ L(∥ϕϕϕ−ϕϕϕ′∥+∥θθθ−θθθ′∥), ∀i ∈ [N ], ∀ϕϕϕ,ϕϕϕ′ ∈
Φ, θθθ,θθθ′ ∈ Θ.

Assumption 3 (Unbiased Local Gradient Estimator). The
local gradient estimators are unbiased, i.e., ∀ϕϕϕi,ϕϕϕ

′
i ∈

Φ, ∀θθθi, θθθ′i ∈ Θ, ∀i ∈ [N ], E[gϕϕϕ(ϕϕϕi, θθθi)] =
∇ϕϕϕFi(ϕϕϕi, θθθi), E[gθθθ(ϕϕϕi, θθθi)] = ∇θθθFi(ϕϕϕi, θθθi), with the expec-
tation being taken over the local data samples.

Assumption 4 (Bounded Variance). There exists a constant
σ > 0 such that the variance of each local gradient estima-
tor is bounded, i.e., ∀ϕϕϕi,ϕϕϕ

′
i ∈ Φ, ∀θθθi, θθθ′i ∈ Θ, ∀i ∈ [N ],

E[∥gϕϕϕ(ϕϕϕi, θθθi) − ∇ϕϕϕFi(ϕϕϕi, θθθi)∥2] ≤ σ2, E[∥gθθθ(ϕϕϕi, θθθi) −
∇θθθFi(ϕϕϕi, θθθi)∥2] ≤ σ2.
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Assumption 5 (Bounded Global Variability). There ex-
ists a constant ς > 0 such that the global variability
of the local partial gradients on ϕϕϕ of the loss function
∀θθθi ∈ Θ is bounded, i.e., 1

N

∑N
i=1 E[∥∇ϕϕϕFi(ϕϕϕ,θθθi) −

∇ϕϕϕf(ϕϕϕ, {θθθi}Ni=1)∥2] ≤ ς2.

Assumptions 1-5 are standard (Kairouz et al. 2019; Tang
et al. 2020; Yang, Fang, and Liu 2021), except the differ-
ence caused by two coupled parameters in our representation
learning model. We use a universal bound ς to quantify the
global variability of local partial gradients on global repre-
sentation ϕϕϕ in Assumption 5 due to the non-i.i.d. data among
workers, which is similar to the heterogeneity assumption in
conventional decentralized frameworks with a single global
parameter, where ∥∇wFi(w)−∇wf(w)∥2 ≤ ς2, ∀i ∈ [N ]
with ς = 0 meaning i.i.d. data across workers (Lian et al.
2017). Finally, it is worth noting that we do not require a
bounded gradient assumption, which is often used in dis-
tributed optimization analysis (Nedic and Ozdaglar 2009).

Convergence Analysis for DePRL
Theorem 1. Under Assumptions 1-5, with learning rates
α ≤ 1+36τ2

τL and β ≤ min
(
1/L,N/2, 1−q

3
√
2CLN

)
,

where C := 2(1+p−N )
1−pN , q := (1 − pN )1/N and p =

argminPi,j , ∀i, j, Pi,j > 0. Denote the optimal param-
eters of global representation and local heads as ϕϕϕ∗

and {θθθ∗i }Ni=1, respectively. The sequence of parameters
{{ϕϕϕi(k)}Ni=1, {θθθi(k)}Ni=1, ∀k} generated by DePRL satisfy

1

K

K−1∑
k=0

E[M(k)] ≤ 4f(ϕ̄ϕϕ(0),{θθθi(0)}Ni=1)−4f(ϕϕϕ∗,{θθθ∗i }Ni=1)

Kβ

+
2βL

N
σ2 +

12α3L2τ

β
(τ − 1)(6τ + 1)σ2 +

2α2τL

β
σ2

+
2β

3N

(
1+

1

L2

)
σ2+

2β

N

(
1+

1

L2

)
ς2. (11)

There are two terms on right hand side of (11): (i) a van-
ishing term 4f(ϕ̄ϕϕ(0),{θθθi(0)}N

i=1)−4f(ϕϕϕ∗,{θθθ∗
i }

N
i=1)

Kβ that goes to

zero as K increases; and (ii) a constant noise term 2βL
N σ2 +

12α3L2τ
β (τ − 1)(6τ +1)σ2 + 2α2τL

β σ2 + 2β
3N

(
1 + 1

L2

)
σ2 +

2β
N

(
1 + 1

L2

)
ς2 that depends on the problem instance and

is independent of K. The decay rate of the vanishing term
matches that of conventional decentralized learning frame-
works with a single shared model (Lian et al. 2017, 2018;
Assran et al. 2019). The constant noise term mainly comes
from the variance of stochastic partial gradients on consen-
sus global representation ϕ̄ϕϕ(k) and local head {θθθi(k)}Ni=1, as
well as the global variability due to the model heterogeneity
when bounding the consensus error of global representation,
i.e., ∥ϕ̄ϕϕ(k) − ϕϕϕi(k)∥2, ∀i ∈ [N ] at each round k. In partic-
ular, the noise term 12α3L2τ

β (τ − 1)(6τ + 1)σ2 + 2α2τL
β σ2

is caused by τ -step local head update, where the first part
measures the accumulated error between each intermedi-
ate update θθθi(k, s), ∀s ∈ {0, 1, . . . , τ − 1} and θθθi(k), i.e.,
E∥θθθi(k, s) − θθθi(k)∥2, and goes to zero when τ = 1 due to

the fact that θθθi(k, 0) = θθθi(k). To lower its impact, an inverse
relationship between the local head learning rate α and the
updated steps τ in each round is desired, i.e., α = O( 1τ ),
such that the error can be offset by a small α. This is consis-
tent with observations in the PS setting with non-IID datasets
across workers (Yang, Fang, and Liu 2021).

Corollary 1. Let α = 1
τ
√
K

and β =
√
N/K. The con-

vergence rate of DePRL is O
(

1√
NK

+ 1
K

√
N

+ 1
τ
√
NK

)
,

when the total number of communication rounds K satisfies
K ≥ max

(
18C2L2N3

(1−q)2 , (2L2+2)2

NL4 , NL2
)
.

Since 1
K

√
N

and 1
τ
√
NK

are dominated by 1√
NK

, DePRL
with two coupled parameters achieves a linear speedup for
convergence, i.e., we can proportionally decrease K as N
increases while keeping the same convergence rate. This is
the first linear speedup result for personalized decentralized
learning with shared representations, and is highly desirable
since it implies that one can efficiently leverage the massive
parallelism in large-scale decentralized systems. An interest-
ing point is that our result also indicates that the number of
local updates τ does not hurt the convergence with a proper
learning rate choice for α as observed in PS setting (Yang,
Fang, and Liu 2021). Need to mention that local SGD steps
usually slow down the convergence around O( τ

K ) even for
strongly convex objectives as shown in Li et al. (2020).

Intuitions and Proof Sketch
We now highlight the key ideas and challenges behind the
convergence proof of DePRL with two coupled parameters.
Given the definition of ϵ-approximation solution defined
in (9) and (10), we characterize the descending property of
the global loss function as

E[f(ϕ̄ϕϕ(k + 1), {θθθi(k + 1)}Ni=1)]− E[f(ϕ̄ϕϕ(k), {θθθi(k)}Ni=1)]

≤ 1

N

N∑
i=1

E
〈
∇ϕϕϕFi(ϕ̄ϕϕ(k), θθθi(k + 1)), ϕ̄ϕϕ(k + 1)−ϕ̄ϕϕ(k)

〉
︸ ︷︷ ︸

C1

+
1

N

N∑
i=1

L

2
E[∥ϕ̄ϕϕ(k + 1)−ϕ̄ϕϕ(k)∥2]︸ ︷︷ ︸

C2

+
1

N

N∑
i=1

E
〈
∇θθθFi(ϕ̄ϕϕ(k), θθθi(k)), θθθi(k + 1)−θθθi(k)

〉
︸ ︷︷ ︸

C3

+
1

N

N∑
i=1

L

2
E[∥θθθi(k + 1)−θθθi(k)∥2]︸ ︷︷ ︸

C4

, (12)

by following the Lipschitz assumption. Bounding C1, C2, C3

and C4 leads to all key components in M(k) defined in (10),
including the partial gradients on ϕ̄ϕϕ(k) and {θθθi(k)}Ni=1 of the
global loss function, the error of gradient estimation, and the
average consensus error of the global representation.
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Dataset
(Model) π

Ring Random FC
D-PSGD DisPFL DePRL D-PSGD DisPFL DePRL D-PSGD DisPFL DePRL

CIFAR-100
(ResNet-18)

0.1 25.18±0.4 46.09±0.2 60.72±0.2 30.27±0.5 47.77±0.3 61.51±0.5 33.04±0.7 47.96±0.3 62.40±0.7

0.3 26.51±0.4 37.92±0.3 49.82±0.4 31.71±0.3 39.91±0.5 50.49±0.7 34.93±0.7 40.37±0.5 51.51±0.5

0.5 26.90±0.3 35.33±0.4 45.89±0.4 32.05±0.4 37.39±0.3 46.68±0.4 35.22±0.6 37.86±0.3 47.63±0.3

CIFAR-10
(VGG-11)

0.1 53.91±0.2 86.38±0.3 89.57±0.2 57.69±0.2 89.01±0.2 91.03±0.1 58.90±0.1 89.19±0.3 91.33±0.2

0.3 59.17±0.2 73.48±0.3 76.41±0.3 64.12±0.4 77.36±0.4 79.60±0.2 65.82±0.3 78.52±0.5 79.84±0.4

0.5 60.45±0.4 68.83±0.2 72.51±0.2 65.48±0.2 73.30±0.4 74.80±0.2 67.30±0.3 74.50±0.3 75.04±0.2

Fashion
MNIST

(AlexNet)

0.1 77.45±0.2 95.74±0.2 96.66±0.2 84.74±0.2 96.59±0.3 97.16±0.2 87.24±0.3 96.76±0.3 97.36±0.2

0.3 81.95±0.5 91.52±0.3 92.81±0.2 87.76±0.3 93.47±0.3 94.81±0.2 89.80±0.5 93.50±0.2 95.03±0.2

0.5 84.63±0.2 89.49±0.2 91.36±0.3 88.93±0.5 91.99±0.3 93.55±0.2 90.38±0.4 92.13±0.2 93.87±0.3

HARBox
(DNN)

0.1 54.90±0.7 90.96±0.1 92.07±0.1 57.59±0.6 91.36±0.3 92.49±0.1 58.23±0.3 91.47±0.1 93.46±0.1

0.3 55.41±0.7 80.02±0.2 80.85±0.1 57.97±0.7 80.35±0.2 81.30±0.2 58.93±0.7 82.14±0.2 83.55±0.2

0.5 56.66±0.7 74.47±0.1 75.84±0.1 58.59±0.7 74.72±0.3 76.22±0.2 59.17±0.7 77.61±0.3 78.74±0.2

Table 1: Average test accuracy with different communication graphs and data heterogeneities.

As aforementioned, instead of learning a single shared
model as in conventional decentralized learning frameworks
(Lian et al. 2017, 2018), DePRL needs to handle multiple
local heads that are strongly coupled with the global represen-
tation, which necessitates different proof techniques. Below,
we highlight several key differences: 1) Coupled model pa-
rameters. The updates of local heads {θθθi}Ni=1 and global
representations {ϕϕϕi}Ni=1 are strongly coupled, which makes
bounding C1 and C3 challenging. In particular, the update
of consensus global representation ϕ̄ϕϕ(k) depends on local
heads {θθθi(k + 1)}Ni=1 in C1, and the update of local heads
{θθθi(k)}Ni=1 depends on the consensus global representation
ϕ̄ϕϕ(k) in C3. Since the loss function is evaluated on consensus
global representation ϕ̄ϕϕ(k), we show that bounding C1 and
C3 can be reduced to bound the consensus error of global
representation ∥ϕϕϕi(k)− ϕ̄ϕϕ(k)∥2. Specifically, the bound on
consensus error allows us to control the terms involving the
local partial gradients and local updates in the drift of the
global loss function as shown in (12), which also serves as a
bridge to track the update of ϕ̄ϕϕ(k + 1)− ϕ̄ϕϕ(k + 1) in C2 and
θθθi(k + 1)− θθθi(k) in C4. 2) Consensus error. Based on (5),
(6) and (7), the average consensus error E∥ϕϕϕi(k) − ϕ̄ϕϕ(k)∥2
depends on both the consensus matrix P, and the local partial
gradient on ϕϕϕ, i.e., gϕϕϕ(ϕϕϕi(k), θθθi(k + 1)), which is correlated
with local heads {θθθi(k)}Ni=1. We address these impacts by
leveraging Assumption 5. 3) Two learning rates. We lever-
age a weight term in (10) to capture the different learning
rates for {θθθi(k)}Ni=1 and {ϕϕϕi(k)}Ni=1. This weight benefits
for characterizing the desired learning rate for convergence.

Experiments
We experimentally evaluate the performance of DePRL . Fur-
ther details about experiments, hyperparameters, and addi-
tional results are provided in Xiong et al. (2023a).

Datasets and Models. We use (i) three image classifica-
tion datasets: CIFAR-100, CIFAR-10 (Krizhevsky, Hinton
et al. 2009) and Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017); and (ii) a human activity recognition dataset: HARBox
(Ouyang et al. 2021). We simulate non-IID scenario by con-
sidering a heterogeneous data partition for which the number
of data points and class proportions are unbalanced Wang
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Figure 2: Learning curves of different baselines using ResNet-
18 on non-IID partitioned CIFAR-100 with different hetero-
geneities when the communication graph is “Random”.

et al. (2020a,b). In particular, we simulate a heterogeneous
partition into N workers by sampling pi ∼ DirN (π), where
π is the parameter of Dirichlet distribution. We use ResNet-
18 (He et al. 2016) for CIFAR-100, VGG-11 (Simonyan
and Zisserman 2015) for CIFAR-10, AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) for Fashion-MNIST, and a fully
connected DNN (Li et al. 2021a, 2022). As in Collins et al.
(2021), we treat the head as the weights and biases as the
final fully-connected layer in each of the models.

Baselines. For decentralized setting, we take the com-
monly used D-PSGD (Lian et al. 2017) and DisPFL (Dai
et al. 2022), a personalized method with a single shared
model. PS based baselines include FedAvg (McMahan et al.
2017), FedRep (Collins et al. 2021), Ditto (Li et al. 2021b)
and FedRoD (Chen and Chao 2022). We implement all al-
gorithms in PyTorch (Paszke et al. 2017) on Python 3 with
three NVIDIA RTX A6000 GPUs.

Communication Graph. Based on our model and theoret-
ical analysis, we randomly generate a connected communi-
cation graph (“Random” for short) for decentralized settings.
We also experiment on two representative communication
graph including “Ring” and “fully connected (FC)”. Further,
since communications occur between the central server and
workers in PS based setting, for a fair comparison (from the
perspective of total communications), we only compare de-
centralized baselines with PS based baselines under “Ring”.
Due to space constraints, we relegate the comparisons with
PS based methods to Xiong et al. (2023a).
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Dataset
(Model) π

Ring Random FC
D-PSGD DisPFL DePRL D-PSGD DisPFL DePRL D-PSGD DisPFL DePRL

CIFAR-100
(ResNet-18)

0.1 38.64±0.1 34.67±0.2 53.58±0.3 49.81±0.2 42.93±0.2 53.78±0.2 51.32±0.2 47.50±0.1 54.16±0.2

0.3 27.75±0.2 24.89±0.1 44.62±0.2 42.27±0.1 34.05±0.1 44.79±0.1 43.42±0.2 39.20±0.1 45.48±0.2

0.5 26.15±0.2 22.93±0.1 42.27±0.2 39.25±0.1 31.11±0.2 42.65±0.2 41.20±0.1 37.26±0.1 42.68±0.1

CIFAR-10
(VGG-11)

0.1 73.81±0.2 70.85±0.3 75.93±0.2 74.78±0.3 73.62±0.5 80.22±0.2 75.39±0.3 73.71±0.2 80.48±0.2

0.3 57.34±0.3 51.89±0.4 59.01±0.4 58.86±0.2 57.08±0.3 65.60±0.3 59.68±0.2 57.18±0.4 65.67±0.3

0.5 50.92±0.2 47.36±0.2 52.72±0.2 52.51±0.3 49.75±0.3 63.04±0.2 53.67±0.2 49.81±0.2 63.29±0.3

Fashion
MNIST

(AlexNet)

0.1 84.76±0.3 83.72±0.3 87.34±0.2 85.37±0.4 85.44±0.3 88.48±0.2 86.48±0.3 85.65±0.3 88.86±0.2

0.3 74.84±0.3 73.07±0.2 78.29±0.3 78.54±0.3 76.92±0.2 80.74±0.2 79.16±0.2 77.69±0.2 80.84±0.2

0.5 67.54±0.3 65.64±0.4 71.14±0.3 71.97±0.2 70.31±0.2 77.37±0.3 72.57±0.4 70.61±0.2 77.52±0.2

HARBox
(DNN)

0.1 51.07±0.7 50.58±0.6 55.97±0.3 51.23±0.7 51.12±0.7 56.39±0.5 51.84±0.7 51.21±0.6 57.70±0.3

0.3 49.50±0.3 48.97±0.3 55.86±0.3 49.81±0.3 49.49±0.4 56.11±0.3 51.53±0.5 49.55±0.5 56.39±0.3

0.5 48.24±0.3 48.32±0.3 52.42±0.3 48.28±0.3 48.47±0.2 52.46±0.3 48.82±0.2 48.49±0.2 52.59±0.3

Table 2: Generalization performance in terms of test accuracy.
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Figure 3: Similarities between workers on (a) data distribu-
tions; (b) local heads; and (c) global representation.

Configurations. All results are averaged over four random
seeds. The final accuracy is calculated through the average of
each worker’s local test accuracy. The total worker number
is 128, and the epoch number for local head update is 2. An
ablation study is conducted in Xiong et al. (2023a).

Testing Accuracy. We show the final test accuracy for all
considered algorithms under various settings in Table 1, and
report the learning curve in Figure 2. First, the state-of-the-art
D-PSGD performs worse in non-IID settings due to the fact
that it targets on learning a single model without encourag-
ing personalization. Second, though DisPFL is incorporated
with personalization, and significantly improves the perfor-
mance of D-PSGD, DePRL always outperforms DisPFL. In
particular, DePRL achieves a remarkable performance im-
provement on non-IID partitioned CIFAR-100. Compared to
CIFAR-10, the data heterogeneity across workers are further
increased due to the larger number of classes, and hence calls
for personalization of local models. This observation makes
our representation learning augmented personalized model in
DePRL even pronounced compared to learning a single full-
dimensional model in these baseline methods. Finally, the
superior performance of DePRL over D-PSGD and DisPFL
is consistent and robust over all communication graphs.

Learned Local Head and Global Representation. To
further advocate the benefits of DePRL for producing person-
alized models via leveraging representation learning theory,
we report the distance between learned local heads, global
representation and task similarities. We measure the simi-
larities by cos-similarity between data distributions, learned
local heads, and learned global representation across workers.
As shown in Figure 3 on non-IID partitioned CIFAR-100,
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Figure 4: Speedup with different number of workers.

DePRL is able to accommodate the heterogeneities among
workers not only with the learned local heads in alignment
with local data distribution, but also with the same global
representation. This further validates our theoretical analysis.

Speedup. We validate our main theoretical result that
DePRL achieves a linear speedup of convergence. This often
means that the convergence time (measures how quickly the
gradient norm converges to zero) should be linear in the num-
ber of workers. Specifically, we measure the convergence
time of different algorithms, and compute their speedup with
respect to that of a centralized setting as in D-PSGD (Lian
et al. 2017). From Figure 4, we observe that the speedup
(convergence time) is almost linearly increasing (decreasing)
as the number of workers increases.

Generalization to New Workers. We evaluate the effec-
tiveness of global representation learned by DePRL when
generalizes it to new workers. Specifically, when training
all considered models using different datasets with α = 0.3,
all initial 128 workers collaboratively learn a corresponding
global representation ϕϕϕ. Then we encounter 64 new workers
and partition the datasets across these new workers, which
lead to significantly different datasets across workers com-
pared to all initial workers. Each new worker i leverages the
learned global representation by initial workers, and perform
multiple local steps to learn its local head θθθi. We then evalu-
ate the test accuracy as above across these 64 new workers.
As shown in Table 2, DePRL significantly outperforms all
baselines in the generalization performance across all com-
munication graphs and varying levels of heterogeneity.
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