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Abstract

The application of mixture-of-experts (MoE) is gaining pop-
ularity due to its ability to improve model’s performance. In
an MoE structure, the gate layer plays a significant role in
distinguishing and routing input features to different experts.
This enables each expert to specialize in processing their cor-
responding sub-tasks. However, the gate’s routing mechanism
also gives rise to narrow vision: the individual MoE’s expert
fails to use more samples in learning the allocated sub-task,
which in turn limits the MoE to further improve its gener-
alization ability. To effectively address this, we propose a
method called Mixture-of-Distilled-Expert (MoDE), which
applies moderate mutual distillation among experts to enable
each expert to pick up more features learned by other experts
and gain more accurate perceptions on their original allocated
sub-tasks. We conduct plenty experiments including tabular,
NLP and CV datasets, which shows MoDE’s effectiveness,
universality and robustness. Furthermore, we develop a paral-
lel study through innovatively constructing ”expert probing”,
to experimentally prove why MoDE works: moderate distill-
ing knowledge can improve each individual expert’s test per-
formances on their assigned tasks, leading to MoE’s overall
performance improvement.

Introduction
Datasets can be naturally divided into different subsets (such
as those from different subdomains or with distinct sub-
tasks) and attempting to learn these datasets with a single
model may meet difficulties in fitting and generalization
(Jacobs et al. 1991; Eigen, Ranzato, and Sutskever 2013;
Shazeer et al. 2017). To address this, the Mixture of Experts
(MoE) system has been proposed, which consists of several
different experts and a gating network as the router. MoE
have been applied in various domains, including multi-task
learning (Ma et al. 2018), NLP (Shazeer et al. 2017; Lep-
ikhin et al. 2020), and CV (Svetlana et al. 2022; Pham et al.
2021; Dosovitskiy et al. 2020; Riquelme et al. 2021) and
proven as a promising architecture. Many studies (Jacobs
et al. 1991; Eigen, Ranzato, and Sutskever 2013; Shazeer
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Figure 1: Narrow Vision. A and B represent two subsets
of the training samples, while E1/2 represent expert 1/2.
The normalized histogram schematically presents the ratio
of gradients on each expert in learning the same subset. The
narrow vision in MoE is indeed significant and MoDE al-
leviates it through distillation. As a result, it improves the
accuracy of individual experts on their dominating sample-
based task domain (referred as DS in the following section).

et al. 2017) have shown that in the MoE structure, each ex-
pert is specialized in processing a certain subset of samples.

The experts’ specialization comes from the fact that they
merely learn the limited sample features assigned by the gate
during the training process. Figure 1(a) shows that during
the training process of an MoE architecture (with totally two
experts), different subsets of the training samples partitioned
by the gate contribute their learning gradients in significantly
different levels: Sample A has a significant gradient to up-
date expert 1’s parameters, but has negligible impact on ex-
pert 2. Therefore, certain samples contribute to each expert’s
specialization. However, is the mechanism of allocating lim-
ited samples to each expert the best way to construct MoE?
Assigning limited samples to each expert in an MoE can lead
to a ”narrow vision” issue, where experts are not exposed
to enough diverse data to develop a comprehensive under-
standing of their respective sub-tasks, potentially impairing
the model’s generalization performance.

Can we appropriately address narrow vision in MoE,
while still maintaining each expert’s specialization to im-
prove the MoE’s overall generalization ability? To answer

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16067



this question, we propose a training methodology called
Mixture-of-Distilled-Experts (MoDE), which involves a
moderate level of mutual distillation among experts. For
each expert, the knowledge obtained from other experts,
which is derived from their allocated samples, may pro-
vide potentially useful features that are not present in the
limited samples allocated to that particular expert. Conse-
quently, this exchange of knowledge can enhance the ex-
pert’s perception of its sub-task and the MoE’s overall per-
formance. Figure 1 illustrates the mitigation of narrow vi-
sion in MoDE, as evidenced by the increased accuracy of the
expert’s allocated sub-task (referred as DS in the following
section). Moreover, plenty of experiments and analysis have
been conducted to illustrate the effectiveness and mecha-
nism of MoDE. Innovatively, we conduct a novel parallel
study utilizing ”expert probing” as an evaluation method to
approximate the performance of individual experts within
the MoE. We observe that excessive knowledge distillation
pushes the experts to present overly similar opinions, un-
dermining the experts’ specialization, which deviates from
the original motivation of introducing the MoE structure: en-
courage each expert to be specialized and do what they are
good at, resulting in the failure to improve MoE’s general-
ization ability. However, by employing an appropriate distil-
lation strength, each individual expert does not only main-
tain its specialization but also achieves improved test per-
formance in its allocated sub-task, consequently enhancing
the MoE model’s generalization ability. With plenty of ex-
periments on the datasets of tabular, NLP and CV, MoDE
proves its effectiveness, universality and robustness in solv-
ing narrow vision and provide us a valuable exploring space
to increase MoE’s generalization ability.

Related Work
In our work, we apply mutual distillation to the MoE to
improve its generalization ability. The most recent related
works are introduced in the following subsections.

Mixture-of-Experts
MoE was first introduced by Jacob et al. (Jacobs et al. 1991)
to combine multiple experts, each trained on a different sub-
set of the data, to form a single powerful model. Eigen et
al. (Eigen, Ranzato, and Sutskever 2013) extends the MoE
to a layer in neural network, which consists of a set of ex-
perts (neural networks) and a trainable gate. The gate assigns
weights to the experts on a per-example basis, which enables
the MoE to output a weighted combination of the experts’
outputs. As for the gate routing mechanism, dense gate MoE
(DMoE) was firstly introduced, which assigns continuous
weight to employ all the experts for each input (Eigen, Ran-
zato, and Sutskever 2013; Ma et al. 2018; Jacobs et al. 1991;
Jordan and Jacobs 1994; Chen, Xu, and Chi 1999; Yuksel,
Wilson, and Gader 2012). Recently, the sparse gate MoE
(SMoE) have been proposed, to reduce the tremendous com-
putational cost because of the enormous parameters, through
activating partial experts or subsets of a network for each in-
put (Shazeer et al. 2017; Zuo et al. 2021; Lewis et al. 2021;
Fedus, Zoph, and Shazeer 2022).
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Figure 2: Overview of MoDE.

Although there are many studies on MoE’s gate routing
strategy, few works on exploring and utilizing the interac-
tions among individual experts, espeically narrow vision,
have been conducted. In this study, we discover that the mu-
tual distillation among the experts can facilitate the com-
munication of the knowledge acquired in their distinctive
feature learning process, and this exchange yields positive
effects on the MoE’s overall performance.

Knowledge Distillation
Knowledge Distillation (KD) is originally proposed by Hin-
ton et al. (Hinton, Vinyals, and Dean 2015) to transfer the
knowledge from a high-capacity teacher model to a compact
student model, aiming at a more efficient deployment of ma-
chine learning models on resource-constrained devices. In
(Hinton, Vinyals, and Dean 2015), a small model is trained
to directly match the output predictions of the teacher model,
while in recent years, many methods have been proposed
to excavate more information from the teacher, such as in-
termediate representations, additional attention information
(Zagoruyko and Komodakis 2016), relations of layers (Yim
et al. 2017) and mutual relations of data examples (Park et al.
2019). These methods have broadened the scope of knowl-
edge distillation beyond just directly learning the teacher
model’s output. Recent advancements in online KD (Guo
et al. 2020; Zhu, Gong et al. 2018; Kim et al. 2021; Wu
and Gong 2021) have enabled updates of the teacher and
student models simultaneously, significantly simplifying the
training process. Deep mutual learning (Zhang et al. 2018)
allows peer students to learn from each other by computing
cross-entropy loss between each pair of students. Zhu et al.
(Allen-Zhu and Li 2020) investigate the mechanism of en-
semble and knowledge distillation. Their work theoretically
proves that ”multi-view” data structure leads to ensembles
provably improving the test performance through learning
most of the features.

Preliminary
Mixture-of-Experts
Figure 2 (a) illustrates a general MoE layer, which can be
inserted into any neural network. The MoE layer accepts the
output vector x of the previous layer as input, and outputs a
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vector h to a successive layer. y is the output of the whole
model. The output of MoE layer can be formulated as:

h =
∑
i∈ψ

gi(x)ei(x), (1)

where ei(x) is the output of the ith expert belonging to the
expert set ψ, gi(x) indicates the weight on the ith expert
distributed by the gate. Then the gradient of h with respect
to the ith expert’s parameters can be written as below:

αh

αθi
= gi(x)

αei(x)

αθi
. (2)

It indicates that during the training process of each ex-
pert, the backpropagation not only depends on the gradient
of this expert w.r.t its parameters, but also the gate’s weight
distribution: a negligible distributed gate weight negligibly
updates this expert’s parameter using gradient descent.

As introduced in the previous section, MoE can be divided
into DMoE and SMoE. DMoE employs all the expertsN for
each input, and the gating network g(x) simply comes from
a linear transformation f(.) using a softmax layer:

g(x) = Softmax(f(x)), |ψ| = N. (3)

For SMoE, only a part of experts K are selected by the rout-
ing strategy. Considering that the routing strategy is not our
discussion’s topic, so we choose the Topk routing mecha-
nism in (Lepikhin et al. 2020; Fedus, Zoph, and Shazeer
2022; Riquelme et al. 2021) as the representative of SMoE,
following (Riquelme et al. 2021), g(x) can be written as:

g(x) = TopK(Softmax(f(x)) + ϵ), |ψ| = K,K ≪ N,
(4)

where ε ∼ N(0, 1
E2 ) is the Gaussian noise for exploration of

expert routing. WhenK ≪ N , most elements of g(x) would
be zero so that sparse conditional computation is achieved.

Various MoE structures applied in our experiments will
be discussed later.

Knowledge Distillation
Figure 2 (b) illustrates two kinds of knowledge distillation
methods. In traditional knowledge distillation, the knowl-
edge of distillation comes from the logit output of the model:

pi(zi, T ) =
exp(zi/T )∑k
i=0 exp(zi/T )

, (5)

LKD(p(t, T ), p(s, T )) =
∑k
i=0 − pi(ti, T )log(pi(si, T )),

(6)
Where T is the temperature coefficient used to control the

softening degree of output logit. p(t, T ) and p(s, T ) repre-
sents the soft output logit of the teacher model and student
model, respectively.

Moreover, some studies propose to utilize the features ex-
tracted from the teacher model’s layer as a guide for the out-
put of the student model’s middle layer. We also adopted
this approach as the distillation scheme. The L2 loss of the
embeddings from the hidden layer is defined as:

LKD(Wt,Ws) =
1

2
∥uh(x;Wt)− ug(x;Ws)∥2 . (7)

Wt is the weight of the first h layers of the teacher model,
Ws is the weight of the first g layers of the student model. u
is the output vector of the embedding.

Methodology
In our work, we propose a methodology called Mixture-
of-Distilled-Expert (MoDE), which applies mutual distilla-
tion among MoE’s experts to encourage each expert to learn
more effective features learned by other experts, to gain
more accurate perceptions on its learning samples, which in
turn increases the overall MoE model’s generalization abil-
ity. We start from an MoDE with 2 experts as a simple ex-
ample, then we extend it to more experts and sparse gate.

Mixture-of-Distilled-Experts
Our method establishes a loss function to encourage the
knowledge distillation among the experts, denoted as LKD.
Therefore, the overall loss function L is defined as:

L = Ltask + αLKD, (8)

where Ltask represents the loss function of the network it-
self, which is related to specific tasks, α is the distillation
strength and will be discussed in the following section.

When designing the distillation loss LKD, we have re-
placed the conventional teacher-student model with a col-
laborative learning approach, where each expert functions
as a peer student learning from one another. Moreover, we
expands the distillation approach from traditionally learn-
ing output predictions to intermediate representations. This
provides a wider range of potential applications for the pro-
posed MoDE layer, as it can now be easily integrated into
any neural network as an independent layer.

When the expert number in the MoE isK = 2, the knowl-
edge distillation loss LKD is defined as the squared mean er-
ror between the experts’ output e1 and e2. mean(·) operator
represents the mean for all dimensions of the vector:

LKD = mean((e1 − e2)
2
). (9)

When the MoE layer is located at the end of the network,
e1 and e2 correspond to the output predictions. While K >
2, to address the computational complexity, we apply the
average of K experts as a single teacher eavg to provide an
averaged learning experience and each expert only distills
from this single teacher:

LKD =
1

K

K∑
i=1

mean((ei − eavg)
2
), eavg =

1

K

K∑
i=1

ei.

(10)

Extension to Sparse-Gated MoE
For SMoE, only the activated K experts will be involved in
the distillation process, and the method for calculating the
distillation loss is the same as in the previous subsection. It
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Dataset N #Dim #Classes
Isolet 7797 617 26

Mfeat-karhunen 2000 64 10
Mfeat-factors 2000 216 10

Optdigits 5620 64 10
Satimage 6430 36 6

First-order-theorem-proving 6118 52 6
Artificial-characters 10218 8 10

Table 1: Statistics of tabular datasets.

is important to note that in DMoE, the outputs ei and ej from
expert i and expert j include all samples, whereas in SMoE,
a sample only passes through a subset of the experts, and
only outputs from the same input can be mutually distilled.

Experiments
In this section, we answer the following questions through
plenty experiments and discussions:

• Does MoDE work universally?
• How and Why MoDE works?
• Is MoDE robust?

Datasets
Tabular Datasets 7 tabular benchmark data sets of classifi-
cation task from the OpenML1 are used. Table 1 is the basic
statistics of the data sets, whereN , #Dim and #Classes are
the number of samples, features and classes respectively.
Natural Language Datasets We evaluated our approach on
the task of translation, which is widely recognized in the
natural language processing. For the low-resource scenario,
we used datasets from the IWSLT competitions2, specifi-
cally the IWSLT14 English ↔ German (En ↔ De) and
IWSLT17 English ↔ Arabic (En ↔ Ar) translations.
The size of the IWSLT datasets are 175k and 241k forEn↔
De and En ↔ Ar, respectively. For the rich-resource sce-
nario, we used the WMT14 English ↔ German dataset,
which contains approximately 4.5M sentence pairs.
Computer Vision Datasets We apply a variety of datasets:
both MNIST (LeCun et al. 1998) and Fashion-MNIST
(Xiao, Rasul, and Vollgraf 2017) consist of 60,000/10,000
examples of size 28x28 pixels for the training/test set, as-
sociated with 10 classes. CIFAR10/100 (Krizhevsky, Hinton
et al. 2009) has a training set with 50,000 images of size
32x32 pixels belonging to 10/100 classes.

Models and Settings
Models To illustrate various MoE’s structures, Table 2
presents MoE’s variations and their corresponding data
types. It should be noted that T-DMoE, N-DMoE, and C-
DMoE represent three DMoE variations, with the basic
DNN structures, Transformer (Vaswani et al. 2017), and
Convolutional Neural Network (CNN) networks, respec-
tively applicable to tabular data, NLP data, and CV data.

1https://www.openml.org
2https://iwslt.org/

Name Baseline
Architecture Gate Type Data Type

T-DMoE DNN Dense Tabular Data
N-DMoE Transformer Dense NLP Data
C-DMoE CNN Dense CV Data
T-SMoE DNN Sparse Tabular Data

Table 2: MoE’s Architectures on Different Datasets.

In this study, Equation 3 is used for DMoE based on previ-
ous research (Eigen, Ranzato, and Sutskever 2013; Ma et al.
2018; Jacobs et al. 1991; Jordan and Jacobs 1994; Chen, Xu,
and Chi 1999), while the TopK routing mechanism (Equa-
tion 4) is applied for SMoE (Lepikhin et al. 2020; Fedus,
Zoph, and Shazeer 2022; Riquelme et al. 2021).

T-DMoE and T-SMoE share the same expert struc-
ture, with a 2-layer fully-connected (fc) neural network,
from input dim to 16 to 10 (equal to class number),
where the experts mixture occurs. We take the most pop-
ular Transformer network as the backbone architecture
for N-DMoE. For the WMT experiments, the transformer
vaswani wmt en de big setting is used. Each transformer

block consists of a self-attention layer, followed by a feed-
forward network and a ReLU non-linearity, namely, FFN.
To incorporate MoE models, we replace the FFN layer with
MoE models in the 1st encoder and decoder block. Imple-
mentation is developed on Fairseq 3.

The design of C-DMoE, modified from (Svetlana et al.
2022), utilizes a convolution neural network (CNN) fol-
lowed by a fc layer to output a 128-dimensional embedding,
where expert mixture occurs. Subsequently, the MoE layer’s
output h is transmitted through a fc layer with a dimension
of (128, class). In the case of MNIST and Fashion-MNIST,
a 2-layer CNN is utilized, whereas for CIFAR10 and CI-
FAR100, a ResNet18 (He et al. 2016) is used.
Settings In this work, the number of experts N in all T-
DMoE, N-DMoE and C-DMoE is set to 2, and the total num-
ber of experts N in T-SMoE is set to 10, while the number
of activated experts K = 2. The distillation factor α is set
to 0.01 or 0.1 in the tablular data sets, 1 in the NLP data sets
and 10 in the CV data sets. Experiments on each dataset are
repeated 10 times to calculate the mean and standard vari-
ance. All the experiments are conducted on NVIDIA A100
GPUs.

Does MoDE Work Universally?
To verify the effectiveness and universality of MoDE, plenty
of experiments has been conducted including the tabular,
NLP and CV datasets, where MoE has been widely applied.

Application to Tabular Datasets For each tabular data
set, we sample a random 60%, 20% and 20% of the sam-
ples as the training, validation and test set, respectively.

In Table 3, we present the comparison of various models
over 7 multi-category classification tasks. On each dataset,
base DMoE and SMoE structures present their advantages
over the single model who is identical to the individual ex-
pert’s architecture. Besides, it can be observed that MoDE

3https://github.com/facebookresearch/fairseq
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Dataset Single Dense-Gated MoE (DMoE) Sparse-Gated MoE (SMoE)
MoE MoDE MoE MoDE

Isolet 0.9228±0.0064 0.9305±0.0065 0.9450±0.0074 0.9426±0.0035 0.9546±0.0034
Mfeat-karhunen 0.9388±0.0103 0.9380±0.0136 0.9525±0.0079 0.9498±0.0126 0.9603±0.0086

Mfeat-factors 0.9617±0.0080 0.9660±0.0099 0.9735±0.0091 0.9662±0.0090 0.9745±0.0048
Optdigits 0.9658±0.0081 0.9712±0.0041 0.9758±0.0038 0.9760±0.0035 0.9798±0.0040
Satimage 0.8772±0.0090 0.8872±0.0097 0.8951±0.0102 0.8945±0.0094 0.8970±0.0085

First-order-theorem-proving 0.5202±0.0156 0.5269±0.0209 0.5366±0.0210 0.5429±0.01645 0.5611±0.01499
Artificial-characters 0.5994±0.0076 0.6296±0.0113 0.6425±0.0110 0.6619±0.01372 0.6658±0.01354

Table 3: Comparisons on the benchmark tabular datasets. Top-1 Accuracy is reported (Higher is better).

Dataset Single MoE MoDE
iwslt 14 de-en 34.60 34.88 35.14
iwslt 14 en-de 28.78 28.66 28.91
iwslt 17-ar-en 32.92 29.81 33.17
iwslt 17-en-ar 14.42 14.46 15.40
wmt14 en-de 27.9 29.10 29.48

Table 4: Comparisons on the benchmark NLP datasets.
BLEU is reported (Higher is better).

Dataset Single MoE MoDE
Mnist 0.9889 0.9886 0.9918

Fashion-M 0.8973 0.9057 0.9083
Cifar 10 0.9462 0.9444 0.9519

Cifar 100 0.7594 0.7545 0.7824

Table 5: Comparisons on the benchmark CV datasets. Top-1
Accuracy is reported (Higher is better).

with both gate types can give a significantly improved test
accuracy than the base models, on all the tabular datasets.

Application to Natural Language Datasets All pre-
processing steps follow the Fairseq (Ott et al. 2019) imple-
mentation. We calculate the BLEU scores on these tasks for
evaluation (Post 2018) and follow the work (Vaswani et al.
2017) for inference. It can be observed in Table 4 that our
MoDE model achieves a slight improvement in BLEU score
for both low-resource and rich-resource translation tasks, in-
dicating the effectiveness of our proposed method.

Application to Computer Vision Datasets In Table 5,
the test accuracy of MoE and MoDE structures (dense
gate) have been compared over 4 classic computer vision
tasks. On each dataset, although base MoE structures fail to
present their advantages over the single model, MoDE can
still present a significantly improved test accuracy than both
the single model and the corresponding MoE base models.

Through the empirical results, it can be concluded that
MoDE proves its effectiveness in enhancing MoE’s general-
ization ability and universality on the tabular, NLP and CV
datasets, where MoE architecture has been widely applied.

How and Why MoDE Works?
In this subsection, a simplified parallel study has been
conducted to illustrate the mechanism and the benefits of
MoDE. We use the experiment of DMoE (with two experts)
on the Mfeat-karhunen dataset, whose comparison has been
demonstrated previously with other datasets.

Definition 1 When the gate allocates a sample to one ex-
pert with more weight (over 0.5 if there are totally two ex-
perts) than the other one, then this expert is this sample’s
dominating expert, DE. This sample is in this expert’s dom-
inating sample-based task domain, DS.

We propose a method called expert probing, in approxi-
mating each expert’s test performance in its DS.

Methodology: Expert Probing For each test sample t,
there exists a DE. By masking this DE’s allocated weight
to 1, the MoE’s prediction output can be compared against
t’s label. Then the test performance of the DE on this t can
be approximated. Therefore, this individual expert’s perfor-
mance on its DS can be evaluated.

Although this mandatory masked output is not exactly the
MoE structure’s opinion, to some extent, this expert prob-
ing method can reflect the ability of each individual expert.
Moreover, considering that in MoE/MoDE the gate routes a
sample to its DE with sloping weights (nearly 1) as shown
in Table 6 and masking the gate brings a negligible effect on
the MoE/MoDE’s performance, the proposed expert prob-
ing method can be regarded as a reliable methodology in
estimating each expert’s performance.

While analyzing the performance of gate routing, we de-
fine a statistic metric Recognition Accuracy .

Definition 2 For one sample, if there exists at least one ex-
pert who could correctly predict it (evaluated through expert
probing), recognition accuracy indicates the gate’s possi-
bility of correctly picking the expert as the DE.

Based on our observation on the test performance of each
individual expert, the gate’s recognition accuracy and their
effects on the overall MoE’s prediction performance, there
are generally two types of errors.

Definition 3 Type 1 Error indicates the scenario where
the sample cannot be predicted correctly by either individual
expert (evaluated through expert probing) and the overall
MoE architecture cannot thus predict the label correctly;

Definition 4 Type 2 Error indicates the scenario where
the sample can be predicted correctly by at least one indi-
vidual expert (evaluated through expert probing), however
the gate fails to recognize the sample correctly and select
the DE that cannot predict correctly.

It should be noted that the MoDE model significantly en-
hances the accuracy over the test dataset with totally 9 more
correctly predicted samples. Among them, 6 and 3 samples
belong to Type 1 Error and Type 2 Error observed in the
base MoE model, respectively, indicating that MoDE’s ben-
efits consists of multiple factors. Table 6 has been presented
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Metric MoE MoDE
a=0.01

MoDE
a=100

MoE’s Overall Performance 0.9450 0.9625 0.9450
MoE’s Overall Performance with Gate Masking 0.9400 0.9600 0.9425

Individual Expert’s Performance on its DS 0.9275 (Exp1) 0.9525 (Exp1) 0.9600 (Exp1)
0.9669 (Exp2) 0.9756 (Exp2) 0.9590 (Exp2)

Gate’s Average Inclination 0.9496 0.9661 0.9108
Gate’s Recognition Accuracy 0.9768(380/389) 0.9795(384/392) 1.000(377/377)

Expert Consistency 0.0150 0.6125 1.000

Table 6: How MoDE works? (analysis on Mfeat-karhunen dataset)

Dataset 2 Experts 4 Experts 8 Experts
MoE MoDE MoE MoDE MoE MoDE

Isolet 0.9305(0.0065) 0.9450(0.0074) 0.9352(0.0068) 0.9483(0.0059) 0.9410(0.0076) 0.9522(0.0046)
Mfeat-karhunen 0.9380(0.0136) 0.9525(0.0079) 0.9432(0.0109) 0.9543(0.0109) 0.9433(0.0096) 0.9602(0.0083)

Mfeat-factors 0.9660(0.0099) 0.9735(0.0091) 0.9620(0.0057) 0.9742(0.0040) 0.9617(0.0060) 0.9755(0.0058)
Optdigits 0.9712(0.0041) 0.9758(0.0038) 0.9711(0.0025) 0.9762(0.0042) 0.9737(0.0060) 0.9781(0.0043)
Satimage 0.8872(0.0097) 0.8951(0.0102) 0.8925(0.0117) 0.8950(0.0093) 0.8990(0.0079) 0.9005(0.0088)

1st-order-theorem 0.5269(0.0209) 0.5366(0.0210) 0.5315(0.0193) 0.5388(0.0158) 0.5370(0.0151) 0.5450(0.0163)
Artificial-characters 0.6296(0.0113) 0.6425(0.0110) 0.6477(0.0079) 0.6568(0.0163) 0.6540(0.0167) 0.6644(0.0110)

Table 7: MoDE’s robustness w.r.t more individual experts.

to briefly illustrate each expert’s and the gate’s performance.

The Expert Performs Better in Its DS. During the train-
ing process of an MoE model, the cross-entropy loss via gra-
dient descent from random initialization will put a relatively
large punishment while the gate allocates a relatively large
weight on an expert who however drags the MoE’s overall
output away from the true label. The gate can thus learn and
distinguish the coming samples according to their features
and route them to the appropriate experts. Benefiting from
this, each expert sees a different subset of training samples
and thus obtains its advantage over these samples through
training, compared with other experts, which leads to a vir-
tuous coupling effect with the gate’s routing mechanism.

Figure 3 shows that each expert of the base MoE obtains
its DS after training: one expert is specific in the samples
generally labeled with overall 7 categories and the other one
is specific in the remaining 3 categories. Through Expert
Probing, the base MoE’s individual experts achieve the ac-
curacy of 0.9275 and 0.9669 in their DS, respectively. In
MoDE with appropriate distillation strength (α = 0.01), each
expert does not only maintain its specialization but also sig-
nificantly raises its accuracy in its DS (through Expert Prob-
ing) to 0.9525 and 0.9756, respectively.

As mentioned, 6 Type 1 Error samples from the base
MoE’s individual experts are classified correctly by at least
one expert in MoDE and thus predicted accurately by the
overall MoDE model. Moreover, it should be necessarily
noted that each of these 6 samples belongs to its correct DE’s
original DS, according to the labels. In other words, with
moderate mutual knowledge distillation, each expert main-
tains its specialization in its DS with increased performance.

The Gate Knows the Experts Better. Table 6 shows that
in the base MoE model, the gate’s recognition accuracy
reaches 0.9769. As for MoDE (α = 0.01), it raises to 0.9796.

Moreover, it can be found in Table 6 that the gate allo-

cates its weights between the experts with enhanced inclina-
tion |g1 − g2| towards each sample, averaging from 0.9496
to 0.9661, which means the gate tends to choose the appro-
priate expert to handle the current sample more confidently.
Due to the enhancement of the gate’s recognition accuracy
in MoDE, 3 Type 2 Error samples in the base MoE model
can be correctly routed to the correct DE by the gate.

Why Does MoDE Work? As observed in Figure 3, the
gate distinguishes the samples’ features that implicitly cor-
respond to the labels and then make the routing decision dur-
ing training. As a result, each expert meets and learns certain
features preferred by the gate, towards understanding its DS.

As introduced and proved in Zhu’s work (Allen-Zhu and
Li 2020), each DS consists of ”multi-view” data structure,
where multiple features exist and can be used to classify
them correctly and ”single-view” data structure, where par-
tial features for the correct labels are missing. During the
training process, each expert picks up partial features corre-
sponding to its DS, where most multi-view data and merely
partial single-view data can be classified correctly and then
contribute negligibly, because of the nature of the cross-
entropy loss gradient. Due to insufficient amount of left sam-
ples, the expert just memorizes instead of learning the re-
maining single-view training data that the learned features
cannot classify correctly. As a result, the individual expert
cannot achieve the testing performance as good as training.

By applying the moderate mutual knowledge distillation
to match other experts’ output, the training individual expert
is prompted to pay attention to other neglected features con-
tained in the remaining single-view samples, although it has
already perfectly classified the training data. Therefore, each
individual expert presents improved test performance.

Will the Experts Degenerate into the Same Network?
There is a concern regarding whether MoDE forces the ex-
perts to be similar and deviates the original motivation of in-
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(a) MoE (b) MoDE 			𝛼 = 0.01 (c) MoDE 			𝛼 = 100

Figure 3: Task Domain Distribution of MoE, MoDE (α=0.01), MoDE (α=100).

troducing MoE: encourage each expert to be specialized and
do what they are good at. To explore this, an overly heavy
knowledge distillation strength (α = 100) is placed to force
both experts to express the exact opinion towards each sam-
ple. Figure 3 shows that there is a significant shift in these
individual experts’ DS and both experts presents the totally
same opinion towards each sample (consistency equals to 1)
as shown in Table 6. Although the gate’s recognition accu-
racy is raised to 1, MoDE fails to achieve a higher test accu-
racy, because each individual expert fails to maintain its DS
and gains better test performance in it. While with a moder-
ate knowledge distillation strength (for example, α = 0.01),
although the individual experts’ consistency is 0.6125, much
higher that of base MoE (0.015), both experts still maintains
their corresponding DS, which means each individual expert
is still specialized. Furthermore, each expert also gains bet-
ter perception in its DS as shown in Table 6. As a result, with
improved gate’s recognition accuracy, MoDE with moder-
ate knowledge distillation strength shows its superior gener-
alization. Further discussions about the knowledge distilla-
tion strength are presented in the next subsection.

Ablation Study
More Individual Experts Employed by MoDE Table 7
selects tabular datasets as the benchmark to analyze the ef-
fect of the expert’s amount and shows that both MoE and
MoDE benefit from the increasing expert’s amount with im-
proved test performance. Moreover, the MoDE still main-
tains a higher accuracy than the base MoE employing the
same number of experts, which means the mechanism of
mutual knowledge distillation among experts works, regard-
less of the number of sub-networks employed.

Distillation Strength To investigate the effect of the dis-
tillation strength α, we run experiments on the tabular
dataset (Isolet and Mfeat-karhunen, considering the distil-
lation strength’s scope consistency), which can be found in
Figure 4. α equivalent to zero stands for the test performance
of the base MoE model. As α keeps increasing and sur-
passes a certain point, it tends to push the experts to express
overly similar opinions that have been discussed previously
and fails to improve the MoE’s test accuracy. The relatively
wide range that the appropriate distillation strength α lays
in maintains MoDE’s advantage over the base MoE model
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Figure 4: MoDE w.r.t the distillation strength α.

and presents its robustness to provide us a valuable explor-
ing space in increasing MoE’s generalization ability.

Conclusions
In this work, we introduce narrow vision, where each indi-
vidual MoE’s expert fails to use more samples in learning the
allocated sub-task and thus limits the overall MoE’s gener-
alization. To address this, we propose Mixture-of-Distilled-
Expert (MoDE), which applies moderate mutual distillation
among the experts to encourage them to gain more accurate
perceptions on their corresponding distributed tasks.

Through ”expert probing”, an innovative evaluation
method proposed by us, we find that excessive distilla-
tion pushes the experts to presents overly similar opinions,
which deviates the original motivation of MoE’s structure
and thus fails to improve its generalization ability. However,
with moderate distillation strength, each individual expert
does not only maintain its specialization in its DS but also
gains improved test performance along with the gate, where
an analysis has been experimentally and analytically con-
ducted. Moreover, this moderate distillation strength lays in
a relatively wide range, presenting the robustness.

With plenty of experiments on the datasets of tabular,
NLP and CV, MoDE proves its effectiveness, universality
and robustness in solving narrow vision and provide us a
valuable exploring space in increasing MoE’s generaliza-
tion. In our future work, we plan to implement our proposed
methodology in the most recent industrial scenarios, such as
Large Language Model.
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