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Abstract

In many important machine learning applications, the stan-
dard assumption of having a globally Lipschitz continuous
gradient may fail to hold. This paper delves into a more gen-
eral (L0, L1)-smoothness setting, which gains particular sig-
nificance within the realms of deep neural networks and dis-
tributionally robust optimization (DRO). We demonstrate the
significant advantage of trust region methods for stochastic
nonconvex optimization under such generalized smoothness
assumption. We show that first-order trust region methods can
recover the normalized and clipped stochastic gradient as spe-
cial cases and then provide a unified analysis to show their
convergence to first-order stationary conditions. Motivated by
the important application of DRO, we propose a generalized
high-order smoothness condition, under which second-order
trust region methods can achieve a complexity of O(ϵ−3.5)
for convergence to second-order stationary points. By in-
corporating variance reduction, the second-order trust region
method obtains an even better complexity ofO(ϵ−3), match-
ing the optimal bound for standard smooth optimization. To
our best knowledge, this is the first work to show conver-
gence beyond the first-order stationary condition for general-
ized smooth optimization. Preliminary experiments show that
our proposed algorithms perform favorably compared with
existing methods.

Introduction
We study the problem of minimizing a nonconvex function
F : Rn → R which is expressed as the expectation of a
stochastic function, i.e.,

min
x∈Rn

F (x) = Eξ[f(x; ξ)], (1)

where the random variable ξ is realized according to a dis-
tribution P . Over the years, substantial progress has been
made in studying functions that possess Lipschitzian gradi-
ents, commonly referred to as L-smoothness functions. No-
table contributions in this area can be found in (Ghadimi and
Lan 2013; Johnson and Zhang 2013; Fang et al. 2018; Car-
mon et al. 2019), among others.
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However, the assumption of Lipschitz smoothness may
not hold in many important applications. For instance, in
language models such as LSTM (Zhang et al. 2019) and
transformers (Crawshaw et al. 2022), the function smooth-
ness parameter can exhibit a strong correlation with the gra-
dient norm along the training trajectory. Beyond these chal-
lenges in the standard Empirical Risk Minimization (ERM)
framework, the L-smoothness condition could also eas-
ily fail in distributionally robust optimization (DRO) (De-
lage and Ye 2010; Duchi and Namkoong 2021; Levy et al.
2020a). DRO is particularly significant as it serves as a foun-
dational element for ethical algorithms (Kearns and Roth
2020) arising from accountability and fairness issues in ma-
chine learning (Fuster et al. 2022; Tang, Zhang, and Zhang
2023; Berk et al. 2021).

Motivated by this challenge, Zhang et al. (2019) intro-
duced first-order generalized smoothness, also known as
(L0, L1)-smoothness, where the Hessian norm is unbounded
but allowed to grow linearly with the gradient norm. This
condition can be further relaxed without the need of twice
differentiability. Specifically, the (L0, L1)-smoothness con-
dition (Zhang et al. 2020; Reisizadeh et al. 2023) is defined
as
∥∇F (x)−∇F (x′)∥ ≤ (L0 + L1∥∇F (x)∥) ∥x− x′∥ (2)

holds for any x, x′ ∈ Rn such that ∥x − x′∥ ≤ 1/L1, for
constants L0 > 0, L1 ≥ 0. Jin et al. (2021) showed that
(L0, L1)-smoothness (2) holds for a broad class of DRO ob-
jectives when expressed in the dual form. Due to the diffi-
culty in handling unbounded Lipschitz parameters, signif-
icant effort has been devoted to developing efficient algo-
rithms under (L0, L1)-smoothness (Crawshaw et al. 2022;
Reisizadeh et al. 2023; Wang et al. 2022). Typically, these
works focus on developing more stable stepsizes for stochas-
tic gradient descent through techniques like gradient clip-
ping and step size normalization.

Despite these recent progresses, existing research re-
mains limited to identifying approximate first-order station-
ary points (FOSP), which may be suboptimal in nonconvex
settings. This drawback prompts the central question ad-
dressed in this paper: Is it possible to develop an effective
method capable of achieving approximate second-order sta-
tionary points under the conditions of generalized smooth-
ness?
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In this paper, we firmly answer this question by propos-
ing an algorithmic framework based on classical trust region
methods (Sorensen 1982; Conn, Gould, and Toint 2000).
The crux of our method is to impose a trust region radius,
which also coincides with the mutual concept of the afore-
mentioned gradient-based methods. On one hand, this po-
sitions our method as a unifying analysis for gradient clip-
ping and normalized gradient (Zhang et al. 2019; Jin et al.
2021) in which combinations of them can be derived. On
the other hand, this framework naturally extends to finding
second-order solutions if granted second-order derivatives.
To our special interest, a second-order theory of general-
ized smoothness is proposed for DRO, which further em-
powers the complexity analysis of our framework. Our de-
velopments consist of four major steps:
• Firstly, we propose a unified trust region framework, under

which the first-order variant, FOTRGS, unifies NSGD and
clipped gradient methods with a weaker requirement of
variance condition.

• Secondly, we propose a second-order theory of general-
ized smoothness and variance condition. We show that
many divergence-based DRO problems with ψ-divergence
satisfy our proposed assumptions.

• Thirdly, under the unified framework, we propose
SOTRGS, namely, second-order trust region methods for
generalized smoothness, and prove that it can achieve a
second-order stationary point with O(ϵ−3.5) sample com-
plexity, which is better than first-order methods without
variance-reduction techniques.

• Finally, we employ variance reduction techniques and
propose SOTRGS-VR, demonstrating that identifying a
second-order stationary point can be achieved in an op-
timal complexity of O(ϵ−3).

A brief comparison of our methods and existing proposals
are presented in Table 1. To our best knowledge, both the
second-order generalized smoothness and convergence to
SOSP are novel. In addition to the theoretical contribution,
we conduct extensive experiments on DRO problems with
imbalanced datasets, which justify the empirical advantage
of our proposed methods.

Related Works
(L0, L1)-smoothness The concept of (L0, L1)-
smoothness was first introduced by Zhang et al. (2019) to
understand the superior performance of clipped algorithms
over traditional non-adaptive gradient methods in natural
language processing. Under the (L0, L1)-smoothness
setting, Zhang et al. (2019) shows that normalized and
clipped gradient methods converge to an ϵ-stationary
point of the nonconvex objective function with at most
O(ϵ−4) gradient samples. This initiative sparked a series
of follow-up studies, including Zhang et al. (2020); Qian
et al. (2021); Zhao, Xie, and Li (2021). Zhang et al. (2020)
proposes a general framework which combines momentum
acceleration with the clipped method. More recently, Rei-
sizadeh et al. (2023)applies the variance reduced techniques
to the clipped gradient method and improves the gradient
complexity to O(ϵ−3).

A parallel line of research has focused on analyzing al-
gorithms that go beyond the normalized and clipping gra-
dient methods in the (L0, L1)-smoothness setting. These
include studies by Wang et al. (2022); Li, Jadbabaie, and
Rakhlin (2023) on Adam, Crawshaw et al. (2022) on un-
clipped gradient methods, and more recently Sun, Karag-
ulyan, and Richtarik (2023) for (L0, L1)-smoothness in the
variational inference problems. Another vein of research has
sought to relaxed a heavy reliance on bounded variance as-
sumptions; see Faw et al. (2023); Wang et al. (2023) and the
references therein.

We are also aware of the works on even more general
smoothness conditions based on (L0, L1)-smoothness. Chen
et al. (2023) proposes a new notion of α-symmetric gener-
alized smoothness, which is roughly as general as (L0, L1)-
smoothness. Crawshaw et al. (2022) and Pan and Li (2023)
provide a coordinate-wise type of (L0, L1)-smoothness. Li
et al. (2023) showed that classic first-order methods such
as stochastic gradient and accelerated methods still have
convergence guarantee under a mild ℓ-smoothness condi-
tion, which allows the Hessian norm to be bounded by
a more general non-decreasing function ℓ(∥∇F (x)∥). De-
spite these advances, no previous work has contributed to
the second-order generalization of (L0, L1)-smoothness for
second-order stationary points.

Distributionally robust optimization Distributionally ro-
bust optimization (DRO) (Delage and Ye 2010), originally
designed for a middle ground between stochastic program-
ming (Shapiro, Dentcheva, and Ruszczyński 2014) and ro-
bust optimization (Ben-Tal, Ghaoui, and Nemirovski 2009),
has attracted great interest in machine learning research
communities in recent years for the purposes of distribution
shifts and algorithmic fairness (Levy et al. 2020b; Duchi
and Namkoong 2021). For ϕ-divergence penalized DRO,
Levy et al. (2020b) prove that it can be transformed into a
stochastic optimization problem after duality arguments. Jin
et al. (2021) later proves that it fits the settings (L0, L1)-
smoothness that opens the possibility of a better understand-
ing of first-order methods.

Trust region methods Trust region methods are renowned
for their ability to reliably find second-order stationary
points (Conn, Gould, and Toint 2000). For stochastic op-
timization, Shen et al. (2019) proposed a sample-efficient
stochastic trust region (STR) algorithm for finite-sum min-
imization problems and achieved O(

√
n/ϵ1.5) complexity

to find (ϵ,
√
ϵ)-SOSP. Other works (Curtis, Scheinberg, and

Shi 2019; Curtis and Shi 2020) tackled the fully stochastic
setting and proved they could achieve O(ϵ−3.5) complexity
to find (ϵ,

√
ϵ)-SOSP. Trust region methods are also widely

used in the real of policy optimization (Schulman et al. 2015;
Liu et al. 2023). However, despite these advances, none of
the previous studies have explored the properties of trust re-
gion methods under the generalized smoothness setting.

Variance reduction techniques Variance reduction tech-
niques are first applied to accelerate the convergence speed
of SGD for convex finite-sum optimization problems (John-
son and Zhang 2013; Zhang, Mahdavi, and Jin 2013; Wang
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Algorithm Smoothness Complexity Property
SGD (Ghadimi and Lan 2013) Lipschitz O(ϵ−4) FOSP

SPIDER (Fang et al. 2018) Lipschitz O(ϵ−3) FOSP
STR (Shen et al. 2019) Lipschitz O(ϵ−3.5) SOSP

SCR (Tripuraneni et al. 2018) Lipschitz O(ϵ−3.5) SOSP
ClippedSGD (Zhang et al. 2019) FO-Generalized Smooth O(ϵ−4) FOSP

Clipped+ (Zhang et al. 2020) FO-Generalized Smooth O(ϵ−4) FOSP
NSGD (Jin et al. 2021) FO-Generalized Smooth O(ϵ−4) FOSP

(L0, L1)-SPIDER (Reisizadeh et al. 2023) FO-Generalized Smooth O(ϵ−3) FOSP
FOTRGS FO-Generalized Smooth O(ϵ−4) FOSP

FOTRGS-VR FO-Generalized Smooth O(ϵ−3) FOSP
SOTRGS SO-Generalized Smooth O(ϵ−3.5) SOSP

SOTRGS-VR SO-Generalized Smooth O(ϵ−3) SOSP
Lower bound (Arjevani et al. 2020) Lipschitz Ω(ϵ−3) SOSP

Table 1: Comparison of related algorithms. FOSP: First-order stationary point; SOSP: Second-order stationary point

et al. 2013). As for the non-convex setting, Stochastic
variance-reduced gradient (SVRG) and Stochastically Con-
trolled Stochastic Gradient (SCSG) improves the conver-
gence rate to a first-order stationary point from O(ϵ−4) to
O(ϵ−10/3) (Allen-Zhu and Hazan 2016; Reddi et al. 2016;
Lei et al. 2017). Recently, several new variance reduction
techniques are able to achieve the optimal complexity rate
of O(ϵ−3) (Fang et al. 2018; Cutkosky and Orabona 2019;
Tran-Dinh et al. 2019; Liu, Nguyen, and Tran-Dinh 2020;
Li et al. 2021). In this paper, we use the techniques in Fang
et al. (2018) to construct the variance-reduced trust region
methods.

Preliminaries
Notations For a square matrixA ∈ Rn×n, we define norm
for matrix as ∥A∥ =

√
σM , where σM is the eigenvalue of

ATA with largest absolute value. For a vector v ∈ Rn, we
use ∥v∥ to express the standard Euclidean norm. ∥v∥A :=√
vTAv whereA is a positive-definite matrix. We assert that

objective function F is bounded below throughout the paper
and define F ∗ := infx F (x) > −∞, ∆F := F (x0)− F ∗.

We review preliminary characteristics of (L0, L1)-smooth
functions introduced in prior works. In the pioneer
work (Zhang et al. 2019), a function F is said to be (L0, L1)
smooth if there exist constants L0 > 0 and L1 ≥ 0 such that
for all x ∈ Rn,∥∥∇2F (x)

∥∥ ≤ L0 + L1∥∇F (x)∥. (3)

Note that the twice-differentiability assumption in this defi-
nition could be relaxed. Specifically, we adopt the (L0, L1)-
smoothness assumption as follows:
Assumption 1. ((L0, L1)-smoothness). A differentiable
function F is said to be (L0, L1)-smooth if there exist con-
stants L0 > 0, L1 ≥ 0 such that if ∥x− x′∥ ≤ 1/L1, then

∥∇F (x)−∇F (x′)∥ ≤ (L0 + L1∥∇F (x)∥) ∥x− x′∥.
If F is twice differentiable, Assumption 1 implies condi-

tion (3). Moreover, condition (3) implies Assumption 1 with
constants (2L0, 2L1) (see (Reisizadeh et al. 2023)). We then
state the required condition on the noise of the stochastic
gradient.

Assumption 2. ((G0, G1)-bounded gradient variance) The
stochastic gradient ∇f(·; ξ) is unbiased and (G0, G1)-
variance-bounded, that is,

Eξ[∇f(x; ξ)] = ∇F (x),
Eξ∥∇f(x; ξ)−∇F (x)∥2 ≤ G2

0 +G2
1∥∇F (x)∥2.

Note that (G0, G1)-bounded variance is more gen-
eral than the standard bounded variance assumption
Eξ∥∇f(x; ξ) − ∇F (x)∥2 ≤ σ2. We extend standard as-
sumptions to Assumption 2 following Faw et al. (2023). In
addition, one can verify that DRO satisfies Assumption 1
and 2; for details, see Section .

Let S be the batch of samples. We define the batch
stochastic component function by

f(x;S) := 1

|S|
∑
ξ∈S

f(x; ξ).

Our goal is to find first-order and second-order stationary
points defined as follows.
Definition 1. We say that x is a first-order approximate sta-
tionary point (ϵ-FOSP) of F (·) if

∥∇F (x)∥ ≤ c1 · ϵ.
We say that x is a second-order approximate stationary point
((ϵ,

√
ϵ)-SOSP) of F (·) if

∥∇F (x)∥ ≤ c1 · ϵ, λmin(∇2F (x)) ≥ −c2 ·
√
ϵ

for some positive constants c1, c2 > 0.

DRO Instead of assuming a known underlying probability
distribution, DRO minimizes the worst-case loss over a set
of distributions Q around the original distribution P . This
can be formally stated as the following problem (Delage and
Ye 2010; Rahimian and Mehrotra 2019; Shapiro 2017):

min
x∈Rn

Ψ(x) := sup
Q∈U(P )

Eξ∼Q[ℓ(x; ξ)],

Here, ξ is some random sample and ℓ(x, ξ) stands for the
stochastic loss function. The uncertainty set U(P ) with re-
spect to certain distance measure d is defined as U(P ) :=
{Q : d(Q,P ) ≤ r}.
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Another popular and equivalent formulation of DRO is
to add a regularization term rather than imposing the un-
certainty set constraints, which leads to the penalized DRO
form:

min
x∈Rn

Ψ(x) := sup
Q

{Eξ∼Q[ℓ(x; ξ)]− λd(Q,P )} , (4)

where λ > 0 is the prespecified regularization weight. In
this paper, we adopt the widely used ψ-divergence (Shapiro
2017). The ψ-divergence between Q and P is defined as
dψ(Q,P ) :=

∫
ψ
(

dQ
dP

)
dP , where ψ is a valid diver-

gence function, namely, ψ is non-negative, and it satisfies
ψ(1) = 0 and ψ(t) = +∞ for all t < 0. The conjugate
function ψ∗ is defined as ψ∗(t) := sups∈R(st− ψ(s)).

Methodology
In this section, we first propose a unified trust region frame-
work for generalized smoothness. Then, by specifying a
scaling matrix, we give a general first-order trust region al-
gorithm that covers normalized gradient and clipped gradi-
ent methods. Moreover, we devote ourselves to a second-
order theory of smoothness based on which a second-order
trust region method is introduced. We also extend our frame-
work to include variance-reduced versions for both first-
order and second-order trust region methods. Lastly, we dis-
cuss inexact second-order variants to facilitate scalable im-
plementations. For the sake of brevity, we have relegated all
proofs of the theoretical results to the appendix.

A Unified Trust Region Framework for
Generalized Smoothness
We now introduce our unified trust region framework for
generalized smoothness, as described in Algorithm 1. In
each iteration, the framework involves solving the following
constrained quadratic subproblem

min
d∈Rn

mt(d) := F (xt) + gTt d+
1

2
dTBtd

s.t. ∥d∥ ≤ ∆t,
(5)

It is important to note that the square matrix Bt is not pre-
determined in this abstract framework. By making differ-
ent choices for Bt, we can develop more specific first- and
second-order methods under this unified framework. For ex-
ample, both normalized gradient and clipped gradient can
be viewed as a special case with a certain choice of Bt.
As our analysis will demonstrate, when only first-order in-
formation is available, the trust-region algorithm guarantees
convergence as long as Bt has a bounded norm. Further-
more, leveraging second-order information can enhance our
convergence towards high-order optimality conditions.

For generality, we first provide some important proper-
ties about the solution of subproblem (5). By the optimality
condition of subproblem(Conn, Gould, and Toint (2000), the
vector dt+1 is the global solution to problem 5 if and only if
there exists a Lagrange multiplier λt such that (dt+1, λt) is
the solution to the following equations:

(Bt+λI)d+gt = 0, λ(∆t−∥d∥) = 0, (Bt+λI) ⪰ 0 (6)

Algorithm 1: The trust region framework
1: Given T , error ϵ
2: for t = 0, 1, . . . , T − 1 do
3: Draw samples S1 and compute gt = ∇f(xt;S1)
4: (if needed) Draw samples S2 and compute Ht =

∇2f(xt;S2)
5: Compute step dt+1 by solving the subproblem (5)
6: Update: xt+1 ← xt + dt+1

7: end for

Lemma 1 (Model reduction). For any matrix variable Bt,
at the t-th iteration, let dt+1 and λt be the optimal primal
and dual solution of (6). We have the following amount of
decrease on mt

mt(dt+1)−mt(0) ≤ −1

2
λt∥dt+1∥2.

First-Order Trust Region Methods
We first consider the first-order trust region method for gen-
eralized smoothness, FOTRGS, where only gradient infor-
mation is used in Algorithm 1. We show that as long as ∥Bt∥
is uniformly bounded by a constant, by setting proper pa-
rameters, Algorithm 1 is able to return an ϵ-FOSP.

Theorem 1 (Sample complexity of FOTRGS). Suppose As-
sumption 1 - 2 hold. Let Bt be a matrix with bounded norm
i.e. there exists a constant β such that ∥Bt∥ ≤ β. By set-

ting ϵ ≤ min
{

4L0G0+16βG0

L1G0+2L0G1+8βG1
, 4L0+16β

L1

}
, ∆t = ∆ =

(4L0+16β)−1ϵ, |S1| = 64G2
0ϵ

−2, T = 32∆F (L0+4β)ϵ−2

in Algorithm 1, we have E∥∇F (xt̄)∥ ≤ ϵ, where t̄ is sam-
pled from {0, 1, . . . , T −1} uniformly at random. Moreover,
the sample complexity of finding an ϵ-FOSP is bounded by

O
(
∆F (L0 + β)G2

0

ϵ4

)
.

When fixing Bt as specific constants, we are able to rep-
resent the normalized and clipped gradient method in this
framework. To be specific, if we set Bt = 0, then we are
able to cover the normalized gradient descent method in trust
region framework.

Corollary 1 (Equivalence to the normalized method). Sup-
pose Assumption 1 - 2 hold. Let Bt = 0 in Algorithm 1, then
the solution of the subproblem (5) is

dt+1 =
∆t

∥gt∥
· (−gt).

By setting ϵ ≤ min
{

4L0G0

L1G0+2L0G1
, 4L0

L1

}
, ∆t = ∆ =

(4L0)
−1ϵ, |S1| = 64G2

0ϵ
−2, T = 32∆FL0ϵ

−2, we have
E∥∇F (xt̄)∥ ≤ ϵ, where t̄ is sampled from {0, 1, ..., T − 1}
uniformly at random. Moreover, the sample complexity of
finding an ϵ-FOSP is bounded by O

(
∆FL0G

2
0

ϵ4

)
.

By setting Bt = ρI , we are also able to represent the
clipped method in this unified framework.
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Corollary 2 (Equivalence to the clipped method). Suppose
Assumption 1 - 2 hold. Let Bt = ρI in Algorithm 1, then the
solution of the subproblem (5) is

dt+1 = min

{
∆t

∥gt∥
,
1

ρ

}
· (−gt).

By setting ϵ ≤ min
{

4L0G0+16ρG0

L1G0+2L0G1+8ρG1
, 4L0 + 16ρL−1

1

}
,

∆t = ∆ = (4L0 + 16ρ)−1ϵ, |S1| = 64G2
0ϵ

−2, T =
32∆F (L0+4ρ)ϵ−2 in Algorithm 1, we have E∥∇F (xt̄)∥ ≤
ϵ, where t̄ is sampled from {0, 1, . . . , T − 1} uniformly at
random. Moreover, the sample complexity of finding an ϵ-
FOSP is bounded by O

(
∆F (L0+ρ)G

2
0

ϵ4

)
.

A few remarks are in order. First, it’s worth noting that
our proposed first-order trust-region method offers greater
flexibility in step size compared to normalized and clipped
gradient methods, as we can choose different Bt values in
each iteration. Exploring more choices for Bt remains an
interesting direction for future research. Second, our com-
plexity results closely align with some recent work. For in-
stance, the prior work (Reisizadeh et al. 2023) has analyzed
the convergence rate of the clipped method. Under similar
assumptions, an ϵ-FOSP can be found by the clipped method
with O(ϵ−4) gradient samples. A key distinction between
our analysis and prior work lies in the variance bound re-
quirements on stochastic gradients. Specifically, while Rei-
sizadeh et al. (2023) requires a uniform variance bound
Eξ∥∇f(x; ξ) − ∇F (x)∥2 ≤ σ2, we allow for a variance
bound related to the gradient norm of the current point, as
stated in Assumption 2. This makes our analysis more gen-
eral and extends its applicability to the DRO setting.

A Second-Order Theory of Generalized
Smoothness
This subsection introduces a generalized second-order
smoothness condition, drawing inspiration from the
(L0, L1)-smoothness concept. Subsequently, we demon-
strate that DRO is a significant application that aligns with
this newly proposed second-order condition.
Assumption 3 (Second-order generalized smoothness and
variance condition). F is twice-differentiable and satisfies
that there exist constants δ > 0, M0 > 0 and M1 ≥ 0 such
that if ∥x− x′∥ ≤ δ, then

∥∇2F (x)−∇2F (x′)∥ ≤ (M0 +M1∥∇F (x)∥)∥x− x′∥.
Moreover, the stochastic Hessian is unbiased and (K0,K1)
variance-bounded, that is,

Eξ[∇2f(x; ξ)] = ∇2F (x),

Eξ∥∇2f(x; ξ)−∇2F (x)∥2 ≤ K2
0 +K2

1∥∇F (x)∥2.
Similar to the (L0, L1)-smoothness, we can interpret the

proposed second-order generalized smoothness from the
perspective of the boundness of higher-order derivatives.
Further discussion of this condition can be found in the ap-
pendix. We claim that Penalized DRO (4) satisfies this as-
sumption. The original formulation involves a max opera-
tion over distributions, which makes optimization challeng-
ing. By duality arguments (see details in Levy et al. (2020b,

Section A.1.2)), we can write (4) equivalently as

Ψ(x) = min
η∈R

L(x, η) := λEξ∼Pψ∗
(
ℓ(x; ξ)− η

λ

)
+ η.

(7)
This suggests that to minimize the DRO objective, one can
perform a joint minimization of L(x, η) over (x, η) ∈ Rn+1.
Crucially, it is sufficient to find an (ϵ,

√
ϵ)-SOSP of Ψ(x)

by optimizing L(x, η) instead. To establish this relationship
more formally, we build the connection between the gradient
and Hessian of Ψ(x) and those of L(x, η) as follows.

Theorem 2. Under mild assumptons for ℓ and ψ∗, if some
(x, η) is a (ϵ,

√
ϵ)-SOSP for L(x, η), then x is also a (ϵ,

√
ϵ)-

SOSP for Ψ(x).

The following theorem analyzes the smoothness and vari-
ance properties of L(x, η), which motivates us to propose
our second-order generalized smoothness and variance con-
ditions.

Theorem 3. Under mild assumptons for ℓ and ψ∗, the ob-
jective L(x, η), serving as F , satisfies Assumption 1, 2 and
3.

Second-Order Trust Region Methods
We propose SOTRGS by setting Bt = Ht in Algorithm 1.
We first present a result on bounding the variance of Hessian.

Lemma 2 (Variance bounds on Hessian estimators). Sup-
pose that Assumption 3 holds in Algorithm 1, if we set
|S2| = 22 log(n)ϵ−1, then

Et
[
∥Ht −∇2F (xt)∥2

]
≤ (K2

0 +K2
1∥∇F (xt)∥2)ϵ,

where Et denotes the expectation conditioned on all the ran-
domness before the t-th iteration.

Next, we provide the convergence result of the second-
order trust region method in the generalized smoothness set-
ting.

Theorem 4 (Sample complexity of SOTRGS). Suppose As-
sumptions 1, 2 and 3 hold. Let ∆t = ∆ =

√
ϵ, by setting

Bt = Ht, ϵ < min
{

3
5M1+18G1+12K1

, 1
L2

1

}
, |S1| = ϵ−2,

|S2| = 22 log(n)ϵ−1, T = O(ϵ−3/2) in Algorithm 1, we
have

E[∥∇F (xt̄+1)∥] ≤ O(ϵ),E[λmin(∇2F (xt̄+1))] ≥ −O(
√
ϵ),

where t̄ is sampled from {0, 1, . . . , T − 1} uniformly at ran-
dom. Moreover, the sample complexity of finding an (ϵ,

√
ϵ)-

SOSP is bounded by

O
(
∆F

ϵ7/2
+

∆F

ϵ5/2

)
.

To our best knowledge, this is the first work to show con-
vergence achieving the second-order stationary points for
generalized smooth optimization, and its sample complexity
is better than first-order methods without variance reduction
techniques.
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Variance Reduction
We now turn our attention to the variance-reduced variants
of the trust-region method. Arjevani et al. (2020) shows that
for any L, σ > 0, there exists a function F of the form
(1) satisfying σ2 bounded variance and expected Lipschitz
smoothness with stochastic gradients ∇f(·; ξ) such that

Eξ[∇f(x; ξ)] = ∇F (x), Eξ∥∇f(x; ξ)−∇F (x)∥2 ≤ σ2,

and

Eξ
[
∥∇f(x; ξ)−∇f(x′; ξ)∥2

]1/2 ≤ L∥x− x′∥,
for which finding an ϵ-stationary solution requires
Ω
(
σϵ−3 + σ2ϵ−2

)
stochastic gradient queries. Since

our generalized smoothness is more general than its re-
quirements, the lower bound can be directly applied to
our settings. To close the optimality gap, we employ a
variance reduction technique (Fang et al. 2018) to con-
struct an improved gradient estimator gt. Specifically, if
mod(t, q) = 0, then we take

gt = ∇f(xt;S1);

otherwise, we compute gt based on the value of gt−1

gt = ∇f(xt;S3)−∇f(xt−1;S3) + gt−1,

where S1,S3 and q are parameters to be determined. The ab-
stract variance-reduced trust region framework is presented
in Algorithm 2. As it is the standard assumption in variance-
reduced optimization (Fang et al. 2018), we impose the fol-
lowing averaged smoothness condition of F and its compo-
nents.
Assumption 4. In the stochastic setting, it holds that

E∥∇f(x, ξ)−∇f(x′, ξ)∥ ≤ (L0 +L1∥∇F (x)∥)∥x− x′∥.
Next, we develop the sample complexity of both first-

order and second-order variance reduced methods.

First-order methods We apply the above gradient estima-
tor and propose a variance-reduced first-order trust region
method, FOTRGS-VR. We give the upper bound of sample
complexity for finding an ϵ-FOSP in the following theorem.
Theorem 5. Suppose Assumption 1, 2 and 4 hold. Let Bt
be a positive semi-definite matrix with bounded norm i.e.
there exists a constant β such that ∥Bt∥ ≤ β. By setting

ϵ ≤ min
{
G2

1

2L2
1
, 1
L1

}
, ∆t = ∆ = ϵ, |S1| = ϵ−2, |S3| = ϵ−1,

q = (8G1ϵ)
−1, T = O(ϵ−2), then we have E∥∇F (xt̄)∥ ≤

O(ϵ), where t̄ is sampled from {0, 1, . . . , T − 1} uniformly
at random. Moreover, the total complexity of finding an ϵ-
FOSP is bounded by

O
(
∆F

ϵ3

)
.

Second-order methods To reduce the second-order oracle
complexity, we apply the same idea to both the gradient and
Hessian estimator in the second-order trust region method.
Similar to the analysis of the first-order variance-reduced
trust region method, the following theorem gives the upper
bound of sample complexity for finding an (ϵ,

√
ϵ)-SOSP.

Theorem 6 (Sample complexity of SOTRGS-VR). Sup-
pose Assumption 1, 2, 3 and 4 hold. Let Bt be the Hes-
sian estimator as shown in Algorithm 2. By setting ϵ ≤
min

{
G4

1

4L4
1
, 1
36G2

1
, 1
L2

1

}
, ∆t = ∆ =

√
ϵ, |S1| = ϵ−2, |S2| =

22 log(n)ϵ−1, |S3| = ϵ−3/2, T = O(ϵ−3/2), then we have
E∥∇F (xt̄+1)∥ ≤ ϵ, E[λmin(∇2F (xt̄+1))] ≥ −O(

√
ϵ),

where t̄ is sampled from {0, 1, . . . , T − 1} uniformly at ran-
dom. Moreover, the total complexity of finding an (ϵ,

√
ϵ)-

SOSP is bounded by

O
(
∆F

ϵ3
+

∆F

ϵ5/2

)
.

Algorithm 2: Variance-reduced trust region method
1: Given T , error ϵ
2: for t = 0, 1, . . . , T − 1 do
3: if mod(t, q) = 0 then
4: Draw samples S1 and compute gt = ∇f(xt;S1)
5: else
6: Draw samples S3 and compute gt = gt−1 +

∇f(xt;S3)−∇f(xt−1;S3)
7: end if
8: (if needed) Draw samples S2 and compute Ht =

∇2f(xt;S2)
9: Compute step dt+1 by solving the subproblem (5)

10: Update: xt+1 ← xt + dt+1

11: end for

Inexactness and Scalability
For large-scale machine learning problems, exactly solving
the second-order trust region subproblem (5) can be compu-
tationally prohibitive. To mitigate this, we can relax the need
for exact Hessian calculations and subproblem solutions by
allowing for inexact approximations. In the sequel, we as-
sume ∇̃2F (x) is the approximation of ∇2F (x). At each xt
we adopt a low-dimensional subspace with orthonormal ba-
sis Vt ∈ Rn×k for k ≪ n, and compute second-order deriva-
tives in the subspace. Inspired by the work of Cartis, Gould,
and Toint (2011); Zhang et al. (2022), we propose the fol-
lowing regularity assumption on inexactness in Hessian ap-
proximation.
Assumption 5. For certain constants C0, C1 > 0, there ex-
ists a Vt whose columns form an orthonormal basis such
that
∥(∇2F (xt)− ∇̃2F (xt))dt+1∥ ≤ (C0 +C1∥∇F (xt)∥)∥dt+1∥2,

where ∇̃2F (x) := VtV
T
t ∇2F (x)VtV

T
t is the projected

Hessian in the column space of Vt.
Setting Bt = H̃t := VtV

T
t HtVtV

T
t and then using the

auxiliary variable y = V Tt x
t, Algorithm 1 only needs to

solve an approximate trust-region subproblem with a much
lower dimension. Theoretically, our new assumption can be
satisfied in various ways (Xu, Roosta, and Mahoney 2020;
Cartis, Gould, and Toint 2022). We leave the details in the
Appendix.

The following theorem provides the performance bound
of the inexact version of the second-order trust region
method.
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Theorem 7. Suppose Assumptions 1, 2, 3 and 5 hold.
Let Bt = VtV

T
t HtVtV

T
t . In Algorithm 1, let ϵ <

min
{

3
5M1+18G1+24K1+6C1

, 1
L2

1

}
, ∆t = ∆ =

√
ϵ, |S1| =

ϵ−2, |S2| = 22 log(n)ϵ−1, T = O(ϵ−3/2), then we have

E[∥∇F (xt̄+1)∥] ≤ O(ϵ), E[λmin(∇2F̃ (xt̄+1))] ≥ −O(
√
ϵ),

where t̄ is sampled from {0, 1, . . . , T − 1} uniformly at ran-
dom.

Experiments
We perform three sets of experiments in machine learning
with a focus on DRO to justify our analysis. Due to space
limitation, we only present a brief description and the tuned
methods with the best performance for SGD, FOTRGS, and
SOTRGS; complete details are left in the Appendix.

Basic Settings
We focus on classification tasks with imbalanced distribu-
tions arising from applications with heterogeneous (but of-
ten latent) subpopulations. Since in standard datasets like
MNIST, Fashion MNIST and CIFAR-10, the population ra-
tios (number of images per class) are the same, we create a
perturbed dataset that inherits a disparity (Hashimoto et al.
2018) by choosing only a subset of training samples for each
one of the categories. Since all these datasets consist of 10
categories, we fix them at a uniform set of levels without loss
of generality. In all the tests, the worst class only takes a pro-
portion of 0.254 from the samples; after preprocessing, we
only use 33, 260 out of the original 50, 000 training samples.

We adopt penalized DRO for classification tasks with two
specific divergence functions satisfying Assumption 3: the
smoothed χ2 and smoothed CVaR. To fairly compare the
algorithms, we perform a grid search over the parameters.
The complete description is left in the Appendix, and code
is available at https://github.com/bzhangcw/pydrsom-dro.

Experiment Results
The results show the trust region methods are efficient in
DRO with second-order generalized smoothness in training
efficiency and test accuracy, especially for minority classes.
In all our experiments, we do not differentiate between
smoothed and the original divergence functions and may
use them interchangeably. Figure (1a) and (1b) present the
training curves of SGD, first-order (FOTRGS) and second-
order (SOTRGS) trust region methods and also their cor-
responding variance-reduced variants on MNIST and Fash-
ion MNIST datasets, respectively. The normalized SGD out-
performs standard SGD as a representative of the FOTRGS
family. Furthermore, it is clear that SOTRGS accelerates the
rate of convergence and can be more robust. We leave test
results in the Appendix.

Table (2a) and (2b) presents the test accuracy of different
methods. It is clear that the trust region methods have an
advantage in preserving fairness for minority classes while
also achieving the best overall average performance.
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FOTRGS-VR

SGD

0 200 400
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(a) MNIST with χ2
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Figure 1: Training curves with different smoothed DRO loss
on imbalanced MNIST and Fashion-MNIST datasets. We re-
port the per-step losses by aggregating every 20 iteration.
Shaded areas indicate the range of variability across 5 repe-
titions.

Worst Category Overall Accuracy

SOTRGS 0.681 0.889
SOTRGS-VR 0.678 0.887
FOTRGS 0.705 0.898
FOTRGS-VR 0.701 0.895

SGD 0.629 0.894

(a) Imbalanced CIFAR10 with χ2 loss.

Worst Category Overall Accuracy

SOTRGS 0.616 0.896
SOTRGS-VR 0.611 0.889
FOTRGS 0.615 0.899
FOTRGS-VR 0.605 0.892

SGD 0.607 0.888

(b) Imbalanced CIFAR10 with CVaR loss

Table 2: Test accuracy on imbalanced CIFAR10. Besides
overall test accuracy, we also present the worst-performing
class indicated as the “worst category”.

Discussion
This work opens up several intriguing avenues for future ex-
ploration, while the question that we are interested in doing
next is whether machine learning problems, beyond DRO,
exhibit properties of second-order generalized smoothness.
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