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Abstract

Efficiently modeling spatio-temporal (ST) physical processes
and observations presents a challenging problem for the deep
learning community. Many recent studies have concentrated
on meticulously reconciling various advantages, leading to
designed models that are neither simple nor practical. To ad-
dress this issue, this paper presents a systematic study on
existing shortcomings faced by off-the-shelf models, includ-
ing lack of local fidelity, poor prediction performance over
long time-steps, low scalability, and inefficiency. To system-
atically address the aforementioned problems, we propose
an EarthFarseer, a concise framework that combines paral-
lel local convolutions and global Fourier-based transformer
architectures, enabling dynamically capture the local-global
spatial interactions and dependencies. EarthFarseer also in-
corporates a multi-scale fully convolutional and Fourier ar-
chitectures to efficiently and effectively capture the tempo-
ral evolution. Our proposal demonstrates strong adaptabil-
ity across various tasks and datasets, with fast convergence
and better local fidelity in long time-steps predictions. Exten-
sive experiments and visualizations over eight human society
physical and natural physical datasets demonstrates the state-
of-the-art performance of EarthFarseer. We release our code
at https://github.com/easylearningscores/EarthFarseer.

Introduction
Modeling spatio-temporal (ST) physical dynamics involves
estimating states and physical parameters from a sequence
of observations (Benacerraf 1973; Newell 1980). Generally,
the understanding of a physical process is based on plenty of
physical laws, such as Newton’s second law (Pierson 1993)
and Conservation of energy law (Sharan et al. 1996; Egan
and Mahoney 1972). As tailor-made techniques, dynamical
systems, primarily rooted in diverse physical systems, have
been demonstrated to conform to most fundamental princi-
ples of real-world physical phenomena (Chmiela et al. 2017;
Greydanus, Dzamba, and Yosinski 2019), where such phe-
nomena can be mostly recognized by existing mathemati-
cal frameworks. To this end, the modeling of dynamic sys-
tems has increasingly become a generic approach that yields
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Figure 1: A natural phenomenon in which global and local evo-
lution are inconsistent. The hurricanes primarily exhibit clockwise
rotation while in certain localized areas, the presence of convection
results in the emergence of counterclockwise rotation.

numerous versatile techniques for various applications. It is
crucial in climate science for predicting environmental im-
pacts, in economics and finance for market analysis, in engi-
neering for system design, in public health for disease out-
break modeling, in neuroscience for understanding brain ac-
tivity, in robotics for AI development, and in logistics for
optimizing supply chains. (Hale and Koçak 2012; Humar
2012). Actually, such dynamic systems can naturally model
the time-varying evolution including both intricate natural
system like meterology dynamics (Wiggins, Wiggins, and
Golubitsky 2003; Humar 2012; Harish and Kumar 2016)
and complex society system of human mobility like traffic
evolutions (Ji et al. 2022; Chen et al. 2022a).

Since dynamical systems are intrinsically tied to phys-
ical processes, they theoretically adhere to the constraints
imposed by partial differential equations (PDEs). However,
modeling and figuring out the above-mentioned dynam-
ics with inherent physical theories is complicated and in-
tractable to resolve. Fortunately, due to the similar proper-
ties of both spatial dependencies and temporal evolution be-
tween a general physical process and spatio-temporal mod-
eling, we can opportunely attribute the physical process to a
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Figure 2: Left. We showcase the performance comparisons between our model and SOTA models across diverse domains. Middle. Conver-
gence of our model compared to other models across different datasets. Right. Our model demonstrates exceptional capability in addressing
long-time steps prediction problems.

spatio-temporal representation learning problem (Yang et al.
2022; Pathak et al. 2022).

Intriguingly, the fascination of machine learning with
physical phenomena has significantly intensified in recent
years (Shi et al. 2015; Greydanus, Dzamba, and Yosinski
2019). Many research efforts have turned to video under-
standing (Chang et al. 2021; Gao et al. 2022b) and physical-
guided (Jia et al. 2021; Lu et al. 2021) deep learning to cap-
ture ST characteristics in a data-driven manner. These ap-
proaches usually design various spatial or temporal compo-
nents tailored for effectively characterizing a specific sce-
nario or a dedicated task. Although many ST frameworks
deliver higher accuracy than the simple ones, they inevitably
suffer from partial drawbacks (D) outlined below:
D1: Lack of local fidelity. Given the inconsistency and dis-
tinctive local-global dependencies in dynamic systems, ex-
isting modules usually focus on global regularity but fail to
preserve the local fidelity – local dynamics may differ from
global dynamics.
D2: Poor predictions over long time-steps. Complex and
continuous dynamic systems often exhibit intricate tempo-
ral correlations, leading to poor performance in long-term
predictions (Isomura and Toyoizumi 2021).
D3: Low scalability. The intricate and convoluted compo-
nent designs confine the model only capable to resolve spe-
cific tasks (e.g., super-resolution (Liang et al. 2019), flow
prediction (Pan et al. 2019b)), leading to limited scalability.
D4: Inefficiency. The well-designed but cumbersome ST
blocks not only contribute to the inefficient training (Wang
et al. 2023a, 2022a) process but also pose challenges to the
model deployment.
Consequently, the resultant models were neither simple nor
practical. Worse still, simultaneously overcoming the afore-
mentioned problems provides an obvious obstacle for exist-
ing models. This paper carefully examines and explores the
initial systematic study on the aforementioned questions. We
introduce a ST framework called EarthFarseer, which is un-
folded through the design a universal and Fourier-based ST

disentanglement solver, which is different from methods that
utilize Fourier operators exclusively in either the spatial or
temporal domain (Guibas et al. 2021a). The model overview
and contributions are outlined as below:

To highlight, our model exhibits strong adaptability to a
wide range of tasks, as well as different datasets encom-
passing natural physical and social dynamical systems. We
place significant emphasis on the fact that our model show-
cases consistent and reliable results across diverse datasets
through simple size scaling, thereby highlighting the inher-
ent scalability of our approach (left side of Fig 2).

For spatial correlations, we employ a parallel local con-
volution architecture and a global Fourier-based transformer
(FoTF) to extract both local and global information. Subse-
quently, we perform both down-sampling and up-sampling
to facilitate effective global-local information interaction
and enhance the local fidelity. In our implementation, the
fast Fourier transform (FFT) is exploited to transform the
patchified two-dimensional outputs from temporal to fre-
quency domain. Each frequency corresponds to a set of ten-
sor values in the spatial domain, so we can quickly perform
global perception. This guarantees an efficient model con-
vergence (evidence illustrated in the middle of Fig 2).

For temporal correlations, we design a temporal dynamic
evolution module, TeDev, which effectively captures the
continuous dynamic evolution within low-dimension space.
In comparison to traditional modeling of discrete static
frames (Walker, Razavi, and Oord 2021; Wang et al. 2022c),
our model undergoes a transformation from the continu-
ous time domain to the frequency domain through Fourier
transformation, better preserving the long-term dependence
of spatio-temporal data. Further, different from the prevail-
ing neural ordinary differential equation (ODE) algorithms
(Park et al. 2021), our model showcases the great promi-
nence in efficiency and long-term prediction tasks when
captures intricated dynamics of systems without differen-
tial equation based nonlinear features. Through the exploita-
tion of a low-parameter linear convolution projection, TeDev
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can effciently and accurately predict arbitrary future frames
(right side of Fig 2).

Related Work
Spatio-temporal prediction methods
can be roughly divided into CNN-based (Oh et al. 2015;
Mathieu, Couprie, and LeCun 2015; Tulyakov et al. 2018),
RNN-based (Wang et al. 2023b, 2022c), and other models
including the combinations (Weissenborn, Täckström, and
Uszkoreit 2019; Kumar et al. 2019) and transformer based
models (Dosovitskiy et al. 2020; Bai et al. 2022). While
there are several existing models based on graph neural net-
works (GNNs), their primary focus is on handling graph data
(Wang, Cao, and Philip 2020; Wang et al. 2022b), which go
out of the scope of our work.

Video Prediction
has become a crucial research topic in the multimedia com-
munity, resulting in the proposal of numerous methods to
tackle this challenge. Early studies primarily focused on an-
alyzing spatio-temporal signals extracted from RGB frames
(Shi et al. 2015). Recently, there has been a growing in-
terest in integrating video prediction with external informa-
tion such as optical flow, semantic maps, and human posture
data (Liu et al. 2017; Pan et al. 2019a). However, in real-
world applications, accessing such external information may
not always be feasible (Wu et al. 2023; Anonymous 2023).
Moreover, the current solutions still exhibit suboptimal effi-
ciency and effectiveness when dealing with high-resolution
videos. In this study, we concentrate on modeling contin-
uous physical observations, which can sometimes be inter-
preted as a video prediction task.

Methodology
As depicted in Fig 3, EarthFarseer comprises three primary
components: the FoTF spatial module, the TeDev temporal
module, and a decoder. Going beyond ST components, we
highlight decoder ability to handle spatial scale expansion
and arbitrary length prediction in the temporal domain. we
will present the preliminaries and elaborate on the contribu-
tions of each of our modules towards achieving local fidelity,
model scalability, and SOTA performances.

Preliminaries
Dynamical systems describe how a system evolves from its
current state to future states. Specifically, with an environ-
ment space X and a state space S ⊂ X , they’re modeled by
a function F .

Xt+dt = F (Xt) , t = 0, dt, 2dt, 3dt, . . . (1)

where Xt ∈ S is the system’s current state at time t, which
can be further understood as a snapshot. Each snapshot con-
tains C color channels within a spatial resolution of H×W .
dt represents the time increment. F : S → S describes the
state evolution of the system from Xt to its successive state
Xt+dt. We consider the discrete time system, as any time-
continuous system can be discretized with an appropriate dt.

Spatial block FoTF
FoTF contains two branches, namely, the local CNN module
(LC block) and the global Fourier-based Transformer (GF),
which work in parallel to enhance global perception and lo-
cal fidelity. We model continuous physical observations as
image inputs with a batch size of B and a time length of T .
Then, the input dimension is [B, T,C,H,W ] and we feed
inputs into a Stem module, which includes a 1x1 successive
convolution for initial information extraction.

Local CNN Branch utilizes a CNN architecture to cap-
ture fine-grained features. Due to the strong inductive bias of
CNNs, we employ smaller convolutional kernels, i,e,, 3x3, to
enable the model with local perceptual capabilities. Specifi-
cally, LC is composed of Ne ConvNormRelu unit:

Zi+1
LC = LeakyRelu(GNorm(Conv2d(Zi

LC))) ∈ R[B×T,D,h,w],

1 ≤ i ≤ Ne

(2)
where GNorm and LeakyRelu denote group normaliza-
tion and leaky relu function, respectively. Zj+1

LC denotes out-
put from j-th LC block. Generally, LC block maps high-
dimensional inputs into relatively low-dimensional repre-
sentations (H > h,W > w), which will then be sent to
temporal evolution module.

Global Fourier-based Transformer runs in parallel with
the CNN branch, and in each stage, the size of the Trans-
former feature is consistent with the LC output feature. Let
Xt ∈ RH×W×C be an input observation at time t, the image
is first tokenized into L = HW/p2 non-overlapping patches
with p × p patch size. Each patch is projected to an embed-
ding z ∈ RD by adopting a linear layer. Then we can obtain
the tokenized image:

Zt = (z1t ; . . . ; z
L
t ) ∈ RL×D (3)

where (; . . . ; ) denotes row-wise stacking. For better un-
derstanding, we remove the subscript ”t” to illustrate sub-
sequent operations. To accommodate multiple batches and
time steps inputs, we patchify them into dimensions, i.e.,
[B × T, L,D] compatible with the Transformer architecture
as depicted above. Inspired by (Guibas et al. 2021b), we re-
place multi-head self-attention (MSA) based token mixing
with Fourier-based token mixing operator. Fourier transform
converts an image from the spatial to the spectral domain,
where each frequency corresponds to a set of spatial pixels.
Therefore, the Fourier filter can process an image globally,
rather than targeting a specific part like LC blocks. We con-
duct 2D real-valued fast Fourier transform (FFT) on patchi-
fied embedding ẐGF :

F(ẐGF ) = F [ẐGF (x)] =

∫ ∞

−∞
ẐGF (x)e

−2πikxdx (4)

where k represents frequency, and x represents the position
within the spectral sequence, ẐGF is updated to its spectral
domain representation with FFT. Similar to (Huang et al.
2023), we take advantage of the conjugate symmetric prop-
erty of the discrete Fourier transform and retain only half of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15908



Temporal 
ProjectionMSFC

Fourier-based 
Computing Unit Norm

Spatial block FoTF Temporal block TeDev

MSFC component

GF 
blocks

LC 
blocks

GF 
blocks

LC 
blocks

LC 
blocks

GF 
blocks

Stem

Up

1 x 1 Conv Down

1 x 1 Conv

…

Patchify

N
orm MLP

…

[Patches]

D
ePatchify

N
orm

[Patches]

…

Fourier-based Computing Unit

FFT IFFT

Fourier Domain

√

Spatial 
Decoder

Fourier 
domain

Spatial 
domain

Input 

Physical 
observations skip connection

skip connection

Details of global Fourier (GF) component(a) (b) (c)

Iterative stacking
Scalability of resolution

....
Temporal long-term prediction

skip connection skip connection

Multi-Scale Fully Convolutional Module
1 x 1 

Conv2d

Fourier-based Computing Unit

Stage 1

Time steps

3 x 3 
Conv2d

7 x 7 
Conv2d

11 x 11 
Conv2d

Norm

Stage 2

Time steps

skip connection

Parallel 

Output

Future
predictions

3 x 3 
ConvTranspose2d

LeakyReLu

1 x 1 Conv2d

Norm

ReLu

[B, T, C, H, W]

[B×T, L, D]

[B×T, D, h, w]

[B, T, C, H, W]

[B×T,  L, D]

[B, T×c, h, w] [B, T, c, h, w]

Decoder

Decoder details 

[B, T, C, H, W]

Patchify

Stream morph 

Up & 
Linear

Linear

Removing skip-connection 
simplifies understanding.

Figure 3: The upper half of the image presents an overview of the model, where Fig (a), (b), and (c) respectively showcase the details of the
spatial module, temporal module, and decoding module.

the values for efficiency. After the Fourier transformation,
we apply a linear transformation using a MLP. The purpose
of this linear transformation is to map the frequency domain
representation into a linear space, ensuring that the output
has the same dimensionality as the input:

F(ẐGF )← MLP(F(ẐGF )) (5)

We replace MSA with MLP, which can significantly re-
duce the computational complexity from N2d + 3Nd2 to
quasi-linear Nd2/k + Nd logN . Here N refers to the se-
quence size (equal to the product of the height (h) and width
(w) of the spatial grid.) and parameter d represents the chan-
nel size. Here m corresponds to the number of blocks used
in GF component. The outputs from the MLP are then sent
to an Inverse FFT (IFFT) module:

ẐGF (x) = F−1
k[F (k)](x) =

∫ ∞

−∞
F+(k)e2πikxdk (6)

In this context, ẐGF (x) represents the output obtained af-
ter the IFFT, F+(k) denotes the result of the linear trans-
formation. The primary objective of GF model is to trans-
form the input in the spectral domain, map it to an output
of the same dimensionality, and then revert it back to the
time domain through the IFFT. This modul demonstrate the
capability to effectively approximate global, long-range de-
pendencies in higher resolution signals, all while avoiding
the need for excessively deep architectures. We place model
implement details in Appendix E.

Global-local interactions. We iteratively interact global
GF and local LC modules multiple times to achieve informa-
tion fusion. Concretely, we employ conv2d layer for upsam-
pling (Up) and transposeconv2d for downsampling (Down),
both with a kernel size of 3, stride of 1, and maintaining

the same dimensions (The upper half of Fig 3). In the fi-
nal spatial block, we upsample the last GF output (with di-
mensions [B × T, L,D]) and map it to the dimensions of
[B, T × c, h, w] using a linear layer.

Temporal block TeDev
Fig 3(b) illustrates the stream morph operator converting the
discrete ST sequence into a continuous stream, processed
through the MSFC module and Fourier-based unit for hidden
feature extraction. This operator merges channel and time
dimensions to transform discrete temporal dynamics into a
continuous, irregular shape. The MSFC module leverages
a multi-scale fully convolutional architecture with different
kernel sizes for broad and detailed feature extraction—larger
kernels capture global patterns, while smaller ones focus on
local details. TeDev also includes an FFT/IFFT module (see
Eq 4 ∼ 6) for transforming signals between time and fre-
quency domains, enhancing signal analysis. TeDev effec-
tively captures information across multiple time scales, en-
suring temporal detail preservation in spatiotemporal predic-
tions through its integrated approach.

z
j+1

=
∑

k∈{1,3,7,11}

Conv2dk×k

(
Conv2d1×1

(
h
j
))

,

z
j+1

= F−1
(MLP(F(z

j+1
))) ∈ R[B,T,c,h,w]

, Ne ≤ j ≤ Ne + Nt

(7)

Nt temporal blocks take the encoded hidden representation
zj of the spatial encoder as input and obtain the hidden fea-
ture zj+1 for the next time step. The feature is then pro-
cessed by FFT/IFFT transform. In summary, TeDev’s tem-
poral evolution module comprehensively acquires features
across scales from a continuously evolving time stack. It
combines the output features of convolutional layers with
diverse kernel sizes and performs spectral operations to en-
sure dimensional consistency.
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Decoder
Our decoder consists of two stages, i.e., spatial and tempo-
ral decoders, which allows for adaptation to different reso-
lutions and flexible future time-step predictions.

Spatial Decoder employs Nd blocks to effectually recon-
struct the latent features into an output of the desired size,
which may assume any resolution. To be specific, it employs
ConvTranspose2d for upsampling the encoded features to
the target resolution, followed by the utilization of Tanh as
the activation function to obtain the output. The layer com-
bination form is explicated as follows:

zd+1 = Tanh(ConvTranspose2d(zd)) ∈ R[B,T,C,H,W ],

Ne +Nt < d ≤ Ne +Nt +Nd

(8)

Temporal Projection In order to flexibly predict fu-
ture lengths, we utilize the ConvNormRelu unit to expand
the time channel. Specifically, we concatenate the time
and channel dimensions of the decoded features zd+1 ∈
R[B,T,C,H,W ] obtained in the first stage, resulting in a ten-
sor of size T × C, which is then mapped to K × C, where
K is the desired target length, which can theoretically be
any value. Subsequently, we perform a dimensional transfor-
mation on the resulting feature map to obtain the predicted
target dimension zd+2 ∈ R[B,K,C,H,W ]. The formal calcu-
lation process is as follows:

zd+2 = Relu(Norm(Conv2d(zd+1))) ∈ R[B,K,C,H,W ] (9)

Through the aforementioned spatio-temporal decoding
module, we can output the results to specific resolutions and
durations according to the requirements of specific predic-
tion tasks, thus accommodating a wider range of needs.

Dataset N tr N te (C,H,W ) Il Ol Interval
MovingMNIST 9000 1000 (1, 64, 64) 10 10 –
TaxiBJ+ 3555 445 (2, 128, 128) 12 12 30 mins
KTH 108717 4086 (1, 128, 128) 10 20 –
SEVIR 4158 500 (1, 384, 384) 10 10 5 mins
RainNet 6000 1500 (1, 208, 333) 10 10 1 hour
PD 2000 500 (3, 128, 128) 6 6 5 seconds
RD 2000 500 (3, 128, 128) 2 2 1 second
2DSWE 4000 1000 (1, 128, 128) 50 50 –

Table 1: Dataset statistics. N tr and N te denote the number of
instances in the training and test sets. The lengths of the input and
prediction sequences are Il and Ol, respectively.

Experiments
In this section, we empirically demonstrate the superiority of
our framework on seven datasets, including two human so-
cial dynamics system (TaxiBJ+, KTH (Schuldt, Laptev, and
Caputo 2004)), five natural Scene dynamical systems (SE-
VIR (Veillette, Samsi, and Mattioli 2020), RainNet (Chen
et al. 2022b), Pollutant-Diffusion (PD), Reaction-Diffusion)
and 2D shallow water Equations (2DSWE) (Takamoto et al.
2022), and a synthetic systems (MovingMNIST (Srivastava,

Mansimov, and Salakhudinov 2015)). In the subsequent sec-
tion, we will provide a detailed introduction to the dataset
and baseline, along with the corresponding experimental set-
tings and results.

Experiment setting
Dataset Description We conduct extensive experiments
on eight datasets, including two human social dynamics sys-
tem (II, III), five natural scene datasets (IV, V, VI, VII, VIII)
and a synthetic datasets (I) in Tab 1, for verifying the gen-
eralization ability and effectiveness of our algorithm. See
dataset details in Appendix C and D.

Baselines for Comparison We compare EarthFarseer
with the following baselines that belong to three categories:
B1. Video Prediction Models: We select ConvLSTM (Shi
et al. 2015), PredRNN-v2 (Wang et al. 2022c), E3D-
LSTM (Wang et al. 2019) and SimVP-v2 (Tan et al. 2022)
as some of the most representative and advanced RNN ar-
chitecture models in recent years.
B2. Spatio-temporal Series Modeling: We conduct exper-
iments on advanced Transformer architecture models, in-
cluding Vision Transformer (Dosovitskiy et al. 2020), Swin
Transformer (Liu et al. 2021), Rainformer (Bai et al. 2022)
and Earthformer (Gao et al. 2022a).
B3.Physics-guided Neural Networks: We use modeling
methods that incorporate PDE or ODE in the model
as baseline models for comparison, including Ad-fusion
model, PhyDnet (Guen and Thome 2020), Vid-ODE (Park
et al. 2021), PDE-STD (Donà et al. 2020), and Fourcast-
Net (Pathak et al. 2022), and FourcastNet represents a mete-
orological modeling model in the neural operator field.

Evaluation Metrics We train our model with mean
squared error (MSE) metric. We further use MSE, mean
absolute error (MAE), and mean absolute percentage error
(MAPE) as common evaluation metrics. Additionally, for
the SEVIR dataset, we add the CSI index (Ayzel, Scheffer,
and Heistermann 2020) as a core metric for comparison. We
place the metrics descriptions in Appendix B.

Implementation Details We implement our model us-
ing PyTorch framework and leverage the four A100-PCIE-
40GB as computing support. In our paper, we gener-
ate model configurations (ours-Ti/S/B) by adjusting ST
block numbers equal to 6,12,24. Concretely, tiny (Ti), small
(S) and Base (B) models have 6, 12 and 24 ST Blocks, re-
spectively. Specifically, ST block can be divided into three
sub-blocks, namely spatial encoder FoTF, temporal block
TeDev and decoder block.

Main Results
In this subsection, we thoroughly investigate the scalabil-
ity and effectiveness of EarthFarseer on various datasets.
We conduct a comprehensive comparison of our proposal
with video prediction, spatio-temporal series, and physical-
guided models, for ST tasks on the social dynamics sys-
tem, synthetic, and natural scene datasets (Tab 2). We sum-
marize our observations (obs) as follows: Obs 1. Earth-
Farseer consistently outperforms existing methods under
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Datasets Metrics
Models

ConvLSTM PredRNN-v2 E3D-LSTM SimVP VIT SwinT Rainformer Earthformer PhyDnet Vid-ODE PDE-STD FourcastNet Ours

MSE 103.3 56.8 41.3 15.1 62.1 54.4 85.8 41.8 24.4 22.9 23.1 60.3 14.9
MovingMNIST MAE 182.9 126.1 86.4 49.8 134.9 111.7 189.2 92.8 70.3 69.2 68.2 129.8 33.2

MAE 5.5 4.3 4.1 3.0 3.4 3.2 - - - - 4.2 3.9 3.7 - - 2.1
TaxiBJ+ MAPE 0.621 0.469 0.422 0.307 0.362 0.306 - - - - 0.459 0.413 0.342 - - 0.243

MSE 126.2 51.2 86.2 40.9 57.4 52.1 77.3 48.2 66.9 49.8 65.7 102.1 31.8
KTH MAE 128.3 50.6 85.6 43.4 59.2 55.3 79.3 52.3 68.7 50.1 65.9 104.9 32.9

MSE 3.8 3.9 4.2 3.4 4.4 4.3 4.0 3.7 4.8 4.5 4.4 4.6 2.8
SEVIR CSI-M × 100 41.9 40.8 40.4 45.9 37.1 38.2 36.6 44.2 39.4 34.2 36.2 33.1 47.1

RMSE 0.688 0.636 0.613 0.533 0.472 0.458 0.533 0.444 0.533 0.469 0.463 0.454 0.437
RainNet MSE 0.472 0.405 0.376 0.284 0.223 0.210 0.284 0.197 0.282 0.220 0.215 0.206 0.191

MSE 10.9 9.6 10.1 5.4 8.7 8.4 8.6 7.2 6.9 4.8 3.7 5.1 2.2
PD MAE 100.3 95.4 100.2 50.9 81.2 79.5 80.9 73.4 68.7 47.6 38.9 52.4 21.8

MSE × 10 21.2 20.9 18.2 9.5 13.2 12.1 9.7 11.4 10.8 9.8 9.8 10.2 9.4
RD MAE 52.7 50.1 42.6 17.8 27.3 25.9 43.2 45.9 22.6 20.7 20.3 21.9 16.8

MSE × 100 11.2 8.9 6.4 3.1 8.1 7.6 7.8 7.4 4.9 4.5 4.3 5.2 2.6
2DSWE MAE 54.3 53.1 30.2 17.2 52.7 50.3 51.4 49.2 20.1 19.8 19.5 21.7 10.5

Avg Ranking 6.2 3.5 4.3 3.3 3.3 3.5 5.2 4.7 5.3 4.6 5.2 4.8 1.7

Table 2: Model comparison with the state-of-the-arts over different evaluation metrics. We report the mean results from three runs. Given the
distinct characteristics of various datasets, we present different dimensions across different rows to account for their unique properties.

the same experimental settings over all datasets, verifying
the superiority of our ST blocks via global-local modeling
component and temporal Fourier design. Obs 2. Our model
scales well to large datasets and performs well. For instance,
on SEVIR dataset (64.83GB with resolution 384×384), we
surpass the SOTA (Earthformer) 0.0287 on CSI-M metric,
which demonstrates the scalability of our proposal. Obs
3. On certain physical datasets that PDE information, such
as 2DSWE, physics-guided models like PDE-STD and Four-
castNet outperform primarily video prediction models (ex-
cept SimVP) and ST models, yielding superior results. Our
model adeptly captures the underlying principles of PDEs,
exhibiting a lower MAE index ranging from 0.5 to 5.2 com-
pared to existing video prediction/PDE-based models.

Model Analysis
Q1: Scalability analysis In our implementation, we can
quickly expand the model size by stacking blocks layers. As
shown in Tab 2, we further explore the scalability of the tem-
poral and spatial module. As meteorological exhibit highly
nonlinear and chaotic characteristics, we selected the SE-
VIR to analyze the scalability of temporal component. We
conduct experiments by selecting 2 ∼ 14 TeDev blocks lay-
ers, under settings with batch size as 16, training epochs as
300, and learning rate as 0.01 (Adam optimizer). The visual-
ization results are presented quantitatively in the Fig 5. With
the increase of the number of TeDev Blocks, we can observe
a gradual decrease in the MSE index, and we can easily find
that loacl details are becoming clearer as time module grad-
ually increases. This phenomenon once again demonstrates
the size scalability of our model.

We also conduct super-resolution experiments to further
illustrate the scalability issues. In TaxiBJ+, we downsample
the training data to 32 × 32 pixels to forecast future devel-
opments at 128 × 128 pixels over 12 steps. We discovered
that the MAE was only 2.28 (MAPE=0.247). Compared to
certain non-super-resolution prediction models, our results

were significantly superior. This further demonstrates our
model’s capability in predicting spatial tasks across different
resolutions (Fig 15&16 for the visualization and training).

Q2: Efficiency analysis Due to the inherent complexity
of solving PDEs, we select the 2DSWE dataset with PDE
property as the benchmark for validating the efficiency of
our model. As shown in Fig 5, we can list observation: Obs
1. EarthFarseer presents a lower training error during the
whole training process. Obs 2. Our model can achieve bet-
ter convergence in faster training time. Specifically, we can
save nearly 3/4 of the training time compared to VideoODE,
which further verify the efficiency of EarthFarseer.

Q3: Predicting future frames with flexible lengths
EarthFarseer can address the issues of accumulated error and
delay effects in RNN-based models for predicting frames
of arbitrary length. With a two-stage design, our approach
restores the feature map to the input dimension, effectively
preserving spatial feature information. Additionally, it uti-
lizes a linear projection layer to expand the time channel, al-
lowing for convenient adjustment of the output frame length.
Evaluation on TaxiBJ+, PD and 2DSWE datasets reveals
that EarthFarseer exhibits remarkable quantitative perfor-
mance in experiments involving 10 → 30, 10 → 60 and
50 → 50 frames. We also showcase the 20 → 80 frames
results on 2DSWE with different backbones, EarthFarseer
outperforms baseline models the large margins, highlight-
ing EarthFarseer’s exceptional flexibility and prediction ac-
curacy. These findings position EarthFarseer as a promising
method in ST domains.

Q4: Local fidelity analysis We proceed to consider an-
other issue, i.e., local fidelity problem. We choose TaxiBJ+,
SEVIR and MovingMNIST dataset as validation datasets.
As shown in Fig 7, our findings indicate that EarthFarseer
effectively maintains local details while preserving the over-
all global context, particularly in the case of local outliers.
This ability allows for the achievement of high fidelity in
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(a) (b) (c) (d)
Figure 4: Model performance on 2DSWE dataset with different baselines. We measure the time it takes for the model to reach optimal
performance by conducting fair executions across all frameworks on a Tesla V100-40GB.
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7
The local 

details are clearer

Figure 5: Model performance on SEVIR dataset with different
number of temporal layers.

Ground-
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Predicti
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Inflows: The historical 12 frames → the future 12 frames, and show even frames.

Outflows: The historical 12 frames → the future 12 frames, and show even frames.

Figure 6: Visualization of inflow and outflow prediction results on
the TaxiBJ+ dataset.

preserving local information. These results substantiate the
local awareness exhibited by our model.

Ablation Study
In this part, we further explore the effectiveness of each in-
dividual component. In our settings, A denotes remove local
convolutional component and D represents replace decoder
with linear convolutional decoder. As shown in Tab 3, our
ablation experiments demonstrate that removing any mod-
ule from our model leads to varying degrees of performance
degradation. Both the local constraint (LC) and global con-
straint (FoTF) contribute to the model’s performance on the
spatial modules. For example, on the TaxiBJ+ dataset, re-
moving the LC module leads to a decrease of 0.7 in the MAE
metric, and removing the FoTF module leads to a decrease
of 0.3. Our TeDev module outperforms the models using
ViT and SwinT as a replacement for TeDev on the Mov-

Ground-
truth

Predictions

Figure 7: Visualizations of our framework on TaxiBJ+, SEVIR and
MovingMNIST datasets, from which we can find that our model
can preserve the local fidelity very well.

ingMNIST and PD datasets. This suggests that our TeDev
module is more suitable for tasks involving temporal infor-
mation than using Transformer models.

Method MovingMNIST TaxiBJ+ RD
(A) Ours w/o LC 19.7 2.8 14.1
(B) Ours w/o FoTF 16.6 2.4 17.2
(C) Ours w/o TeDev 22.1 3.1 17.8
(D) Ours w/o Decoder 15.9 2.2 10.2
(E) Ours TeDev→ ViT 23.5 3.5 16.2
(F) Ours TeDev→ SwinT 21.3 3.2 14.3
Ours (Full model) 14.9 2.1 9.4

Table 3: Results of ablation experiments for different model struc-
tures on MovingMNIST, TaxiBJ+, and PD datasets. model effects
were evaluated using MSE metrics for MovingMNIST and PD
datasets and MAE metrics for TaxiBJ+ dataset.

Conclusion
This paper addresses the limitations of existing models that
arise from the meticulous reconciliation of various advan-
tages. We conducted a systematic study on the shortcom-
ings faced by such models, including low scalability, inef-
ficiency, poor long output predictions, and lack of local fi-
delity. We propose a scalable framework that combines spa-
tial local-global information extraction module and tempo-
ral dynamic evolution module. EarthFarseer demonstrates
strong adaptability across various tasks and datasets, exhibit-
ing fast convergence and high local fidelity in long-distance
prediction tasks. Through extensive experiments and visual-
izations conducted on eight physical datasets, we showcase
the SOTA performance of our proposal. All in all, our Earth-
farseer achieves excellent performance.
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