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Abstract
Deep reinforcement learning (RL) has shown remarkable suc-
cess in specific offline decision-making scenarios, yet its
theoretical guarantees are still under development. Existing
works on offline RL theory primarily emphasize a few triv-
ial settings, such as linear MDP or general function approxi-
mation with strong assumptions and independent data, which
lack guidance for practical use. The coupling of deep learn-
ing and Bellman residuals makes this problem challenging,
in addition to the difficulty of data dependence. In this paper,
we establish a non-asymptotic estimation error of pessimistic
offline RL using general neural network approximation with
C-mixing data regarding the structure of networks, the dimen-
sion of datasets, and the concentrability of data coverage, un-
der mild assumptions. Our result shows that the estimation
error consists of two parts: the first converges to zero at a de-
sired rate on the sample size with partially controllable con-
centrability, and the second becomes negligible if the resid-
ual constraint is tight. This result demonstrates the explicit
efficiency of deep adversarial offline RL frameworks. We uti-
lize the empirical process tool for C-mixing sequences and
the neural network approximation theory for the Hölder class
to achieve this. We also develop methods to bound the Bell-
man estimation error caused by function approximation with
empirical Bellman constraint perturbations. Additionally, we
present a result that lessens the curse of dimensionality using
data with low intrinsic dimensionality and function classes
with low complexity. Our estimation provides valuable in-
sights into the development of deep offline RL and guidance
for algorithm model design.

1 Introduction
Online RL has demonstrated significant empirical success in
specific decision-making problems (Mnih et al. 2015; Silver
et al. 2016). However, numerous real-world environments
only allow limited interaction, presenting challenges in cost
(e.g., robotics) or safety (e.g., autonomous driving). There-
fore, offline RL was introduced as a paradigm that enables
learning decision-making problems from pre-collected data
without additional interaction (Lange, Gabel, and Riedmiller
2012; Levine et al. 2020). The primary objective of offline
RL is to leverage the available data to learn near-optimal
policies even when the data is insufficiently collected.
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Table 1: A comparison concerning assumptions related to
data coverage and approximation. F (Full), P (Partial).

Distribution shift is a significant challenge that offline RL
faces due to inconsistency between the data used for train-
ing and the data induced by the learned policy. One way to
overcome the distribution shift challenge is to enforce a pol-
icy constraint (Fujimoto, Meger, and Precup 2019; Kumar
et al. 2019). However, this approach can be overly conser-
vative and is highly dependent on the accuracy of estimat-
ing the behavior policy. To avoid overestimation and focus
on reliable data distribution, several studies (Kumar et al.
2020; Xie et al. 2021; Cheng et al. 2022) have modified the
Q-value function, enabling the selection of actions in a pes-
simistic manner. These two approaches are known as reg-
ularized policy-based and pessimistic value-based methods,
respectively. The efficacy of these methods has been verified
in complex offline RL environments (Fu et al. 2020).
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The empirical success of recent studies far surpasses the
theory for offline RL. Early works (Szepesvári and Munos
2005; Munos 2007; Antos, Szepesvári, and Munos 2007,
2008) assume data to be fully covered, which is unrealistic.
More recent studies have relaxed this assumption to partial
coverage, focusing mainly on tabular and linear function ap-
proximations (Jin, Yang, and Wang 2021; Chang et al. 2021;
Zhang et al. 2022; Nguyen-Tang et al. 2022b; Bai et al.
2022; Rashidinejad et al. 2021; Yin, Bai, and Wang 2021;
Shi et al. 2022b; Li et al. 2022). General function approxi-
mations have been investigated in Jiang and Huang (2020);
Uehara and Sun (2021); Zhan et al. (2022); Rashidinejad
et al. (2022); Zanette and Wainwright (2022); Xie et al.
(2021); Cheng et al. (2022), but they still rely on additional
assumptions such as finiteness and convexity. See Table 1
for a comparison to prior works. Practical applications adopt
deep neural network parameterization, which is highly non-
convex. Moreover, the approximation of policy function is
ignored even in the actor-critic framework (Xie et al. 2021;
Cheng et al. 2022). Another challenge for offline RL theory
is that data is sequentially dependent. In contrast, current
works assume offline data to be independent and identically
distributed (i.i.d.), leading to a statistical deviation not align-
ing with reality. In summary, existing offline RL theory faces
three main challenges: overly strong assumptions regarding
the value function, the inadequate inclusion of policy func-
tion approximation, and the neglect of data dependence.

This paper investigates the performance of a deep adver-
sarial offline RL framework that uses deep neural networks
to parameterize both the value and policy functions while
assuming the data to be dependent. Our result indicates the
estimation error consists of two parts: the first converges to
zero at a desired rate on the sample size, and the second
decreases if the residual constraint is tight. We demonstrate
that the estimation rate depends explicitly on the network
structure, the tightness of the Bellman constraint, and par-
tially controllable data coverage. However, the curse of di-
mensionality presents a challenge to the result, mainly when
data dimensions are enormous. To alleviate this, we propose
using low-dimensional data structures or low-complexity
target functions consistent with real-world scenarios.

This paper marks the first attempt to bridge the gap be-
tween theory and practice by providing an analysis of deep
pessimistic offline RL. Main contributions are as follows:

• We reassess offline RL methods and present an adversarial
framework that utilizes deep neural networks to parame-
terize both policy and value functions, where the offline
data is sequentially dependent with only partial coverage.

• We establish a non-asymptotic rate for the estimation er-
ror of deep adversarial offline RL regarding the width and
depth of networks, dataset dimensions, and the concentra-
bility of distribution shift. Our results are derived under
mild assumptions and explicitly illustrate how the choices
of neural network structure and algorithm setting influ-
ence the efficiency of deep offline RL.

• We mitigate the curse of dimensionality by utilizing low-
dimensional data structures or low-complexity target func-
tions, providing an idealized guarantee for real-world data.

Technical Contribution. Our technical challenge stems
from multiple practical considerations, which we clarify
from four distinct perspectives. (1) Confining adversarial
terms presents a non-trivial task, particularly when opti-
mized within different constrained sets. We introduce an
operator perturbation analysis, which holds under Lp norm
with distribution shifts. (2) Part of generalization errors is
rooted in constraints rather than explicit functions. We lever-
age a generalized version of performance difference to dis-
entangle them from constraints. (3) Due to dependent data,
parameterized value and policy functions, the induced space
is complex. We tackle this by using uniform covering num-
bers (focusing on samples, not the entire class), ghost point
analysis, and an extended Bernstein inequality. (4) We al-
leviate the curse of dimensionality with two considerations.
Firstly, Minkowski dimension can measure the dimension-
ality of highly irregular sets like fractals, where we employ
Whitney’s extension theorem to establish a novel bound.
Secondly, our work is the first theoretical attempt to con-
sider low complexity in RL, where we develop perturbation
and recursion analysis with additional connecting layers.

2 Related Works

Offline RL. Recent advances in offline RL can be catego-
rized into two groups. The first group, called policy-based
regularization, involves directly constraining the learned
policy to be similar to the behavior policy (Fujimoto, Meger,
and Precup 2019; Laroche, Trichelair, and Des Combes
2019; Kumar et al. 2019; Siegel et al. 2020). However, these
methods suffer from two issues: (a) they may be overly con-
servative, similar to behavior cloning, and (b) estimating the
behavior policy can be challenging. Instead of directly con-
straining the policy, the second group modifies the learning
objective to avoid overestimating the value function (Ku-
mar et al. 2020; Liu et al. 2020; Jin, Yang, and Wang 2021;
Kostrikov, Nair, and Levine 2021; Uehara and Sun 2021; Xie
et al. 2021; Cheng et al. 2022; Rigter, Lacerda, and Hawes
2022; Bhardwaj et al. 2023). For instance, Kumar et al.
(2020) and Kostrikov, Nair, and Levine (2021) utilize a con-
servative approach to optimize the lower bound of the value
function, ensuring safe improvement. On the other hand, Xie
et al. (2021); Cheng et al. (2022) introduce a bilevel scheme
to emphasize Bellman-consistent pessimism, while Rigter,
Lacerda, and Hawes (2022); Bhardwaj et al. (2023) employ
an adversarial MDP model to minimize policy performance.

Although recent methods in offline RL have demonstrated
impressive empirical results, theoretical foundations are not
well understood. Early studies of offline RL theory are
analyzed with strong assumptions, such as full data cov-
erage (Szepesvári and Munos 2005; Munos 2007; Antos,
Szepesvári, and Munos 2007, 2008; Farahmand, Szepesvári,
and Munos 2010; Scherrer 2014; Liu et al. 2019; Chen and
Jiang 2019; Jiang 2019; Wang et al. 2019; Feng, Li, and Liu
2019; Liao et al. 2022; Zhang et al. 2020; Uehara, Huang,
and Jiang 2020; Xie and Jiang 2021). Recent analyses re-
lax this assumption to partial coverage. Rashidinejad et al.
(2021); Yin, Bai, and Wang (2021); Shi et al. (2022b); Li
et al. (2022) have studied the tabular MDP, while Jin, Yang,
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Work Method Curse of Dim?

Nguyen-Tang et al. (2022a) OPE/OPL Exist

Ji et al. (2023) OPE Riemannian M

This work Adversarial Minkowski Dim
Low Complexity

Table 2: A comparison of works with NN approximation.
OPE/OPL (off-policy evaluation/learning), M (Manifold).

and Wang (2021); Chang et al. (2021); Zhang et al. (2022);
Nguyen-Tang et al. (2022b); Bai et al. (2022) explored the
linear MDP. General function approximation has been stud-
ied in (Jiang and Huang 2020; Uehara and Sun 2021; Zhan
et al. 2022; Rashidinejad et al. 2022; Zanette and Wain-
wright 2022; Xie et al. 2021; Cheng et al. 2022). Specif-
ically, Jiang and Huang (2020) assume the value function
class to be compact and explore the convex hull. Zhan et al.
(2022) assume the value function to be strongly convex,
while Uehara, Huang, and Jiang (2020); Rashidinejad et al.
(2022); Zanette and Wainwright (2022); Xie et al. (2021)
and Cheng et al. (2022) assume the function class to be fi-
nite. However, both value and policy functions are noncon-
vex and infinite in reality, which is the main concern of this
study. Furthermore, most of theoretical works are analyzed
in the i.i.d. setting, which does not reflect data dependence.

Approximation and Generalization in Deep Learning.
Extensive research has examined the estimation error of
deep learning (DL) and how it guides the training process.
This error typically comprises two components: approxi-
mation, which evaluates the expressive power of deep neu-
ral networks for specific general functions, and generaliza-
tion, which measures the deviation between finite data sam-
ples and the expectation. The approximation theory of deep
learning has been studied for continuous functions (Shen,
Yang, and Zhang 2019; Yarotsky 2021; Shen, Yang, and
Zhang 2021) and smooth functions (Yarotsky 2017, 2018;
Suzuki 2018; Lu et al. 2021; Suzuki and Nitanda 2021;
Jiao, Wang, and Yang 2023). Meanwhile, the generaliza-
tion theory of deep learning has been extensively explored
in the context of i.i.d. data (Anthony and Bartlett 1999;
Schmidt-Hieber 2020; Nakada and Imaizumi 2020; Bauer
and Kohler 2019; Farrell, Liang, and Misra 2021; Jiao et al.
2023). For dependent data, statistical techniques have been
the focus of research in Yu (1994); Antos, Szepesvári, and
Munos (2008); Hang and Steinwart (2017); Steinwart, Hush,
and Scovel (2009); Mohri and Rostamizadeh (2008, 2010);
Ralaivola and Amini (2015); Roy, Balasubramanian, and Er-
dogdu (2021). This paper presents the first analysis in the
context of pessimistic offline RL problems with dependent
data and deep neural network approximation.

Additional Related Works. Recently, two studies have
offered theoretical insights into deep offline reinforcement
learning. Nguyen-Tang et al. (2022a) analyze the sample
complexity associated with offline policy evaluation and op-
timization using a deep ReLU neural network approxima-
tion. However, their findings are afflicted by the curse of
dimensionality and necessitate complete data coverage. Ji

et al. (2023) investigate the estimation error of the fitted
Q-evaluation method employing convolutional neural net-
works. They introduce a novel concentrability metric and
mitigate the curse of dimensionality by conceptualizing the
data space as a low-dimensional Riemannian manifold.

While these two studies concentrate on the variant of the
fitted Q-iteration under i.i.d. setting, our work focuses on
the pessimistic approach with sequentially dependent data,
necessitating a more intricate analysis due to the inclusion
of uncertainty quantifiers and adversarial strategies. Further-
more, we address the curse of dimensionality by utilizing a
general measure of dimensionality and target functions pos-
sessing low complexity. See Table 2 for a clear comparison.

In addition, several recent works consider RL allowing
time-dependence (Zou, Xu, and Liang 2019; Kallus and Ue-
hara 2022; Shi et al. 2022a), and developing pessimistic-type
algorithms (Lyu et al. 2022; Zhou et al. 2023). However,
these works focus on less practical assumptions or empirical
performance, which are quite different from our concerns.

3 Preliminaries
Reinforcement Learning

Markov Decision Processes (MDPs). This work consid-
ers a discounted MDP, defined with a tuple (S,A, P,R, γ),
where S is the set of states, A is the set of actions, and
γ ∈ (0, 1) is the discount factor. P : S × A → ∆(S) is
the Markov transition kernel, and R : S ×A → ∆(R) is the
immediate reward. Given a specific pair (s, a) ∈ S × A,
P (·|s, a) refers to the probability distribution of the next
state, and R(·|s, a) refers to the probability distribution of
the immediate reward. For regularity, the reward is assumed
to be bounded by Rmax, and the MDP starts at the initial
state s0. A policy π : S → ∆(A) is used to decide which
action to take, and accordingly, a sequence is obtained as

at ∼ π(·|st), rt ∼ R(·|st, at), st+1 ∼ P (·|st, at).

RL aims to find the optimal policy π∗ maximizing the
value function V π(s), the expected cumulative discounted
reward starting from s, i.e., V π(s) = E [

∑∞
t=0 γ

trt|s0 = s].
Similarly, we define the action-value function Qπ(s, a) =
E [

∑∞
t=0 γ

trt|s0 = s, a0 = a] starting from s, taking action
a and then following policy π. The boundedness of rewards
guarantees V π(s) and Qπ(s, a) are both in [0, Rmax/(1 −
γ)]. We define the Bellman operator as follows:

T πQ(s, a) = E[R(s, a)] + γPπQ(s, a),

where PπQ(s, a) :=
∫
P (ds′|s, a)π(da′|s)Q(s′, a′). It has

been proven that the Bellman operator is contractive con-
cerning the sup-norm (Sutton and Barto 2018), i.e.,

∥T πQ1 − T πQ2∥∞ ≤ γ∥Q1 −Q2∥∞

for any two action-value functions Q1 and Q2. This prop-
erty guarantees the existence of a fixed pointQπ with respect
to T π , which induces the value iteration algorithm.

Offline RL. Offline RL aims to learn an optimal policy us-
ing a given dataset without interacting with the environment.
The fixed dataset D consists of tuples s, a, r, s′ with s and a
sampled from the state-action distribution of a behavior pol-
icy µ, r and s′ induced by the environment. For any policy
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π, we define the marginal state-action occupancy measure as
ρπ . We also denote µ = ρµ, with a slight abuse of notation.
Definition 3.1 (Concentrability Coefficient). Let µ be the
behavior policy and π be a comparator policy; define the
density ratio based concentrability coefficient as follows:

C(π;µ) := sup
(s,a)

ρπ(s, a)

µ(s, a)
.

This definition of concentrability is widely used in literature
(Szepesvári and Munos 2005; Munos 2007; Chen and Jiang
2019; Xie and Jiang 2020), and Chen and Jiang (2019) also
offer rich practical insights, indicating the presence of low
concentrability. The definition of the concentrability coeffi-
cient varies in a few kinds of literature, such as full coverage
in (Szepesvári and Munos 2005), Bellman residual-based
perspective in (Xie et al. 2021; Cheng et al. 2022), and χ2-
divergence in (Ji et al. 2023). Our result could potentially be
extended to a tighter metric, e.g., Bellman residual-based,
involving the separation of on/off support parts. Nonethe-
less, this distinction does not fall within the primary scope
of our study. For a comprehensive review of concentrability,
refer to Uehara and Sun (2021) and the references therein.

This work assumes only partial coverage within several
particular policies, which we will explain in Section 4. We
extensively utilize C(Π;µ) := supπ∈Π C(π;µ) to represent
the concentrability of a set of policies with respect to µ.

Feed-Forward Deep Neural Networks
In this work, our primary focus is on the multi-layer feed-
forward neural network (FNN) activated by the rectified lin-
ear unit (ReLU) function σ(x) = max{0, x} with x ∈ Rd:

f0(x) = x,

fℓ(x) = σ (Wℓfℓ−1(x) + bℓ) , ℓ = 1, . . . , L− 1,

f(x) = fL(x) =WLfL−1(x) + bL.

Here Wℓ ∈ Rnℓ×nℓ−1 , n0 = d and bℓ ∈ Rnℓ are the weight
parameters of the ℓ layer. The activation function σ is ap-
plied entry-wise. A network with width W and depth L
means W = max{nℓ, ℓ = 0, . . . , L},L = L − 1. That is,
the maximum width of the hidden layers does not exceed W ,
and the number of the hidden layers does not exceed L. The
weight parameters consist of Wℓ, bℓ, ℓ = 0, . . . , L, and we
denote the total number of parameters as P . For simplicity,
we may use NN to denote ReLU FNNs in this work.

Notations in this paper are summarized in Appendix A.

4 Main Results
Adversarial Offline RL
Adversarial offline RL has been extensively studied in liter-
ature (Kumar et al. 2020; Xie et al. 2021; Cheng et al. 2022;
Rigter, Lacerda, and Hawes 2022; Bhardwaj et al. 2023). We
formulate the framework with relative pessimism (Cheng
et al. 2022) as a maximization-minimization problem:

π̂∗ ∈ argmax
π∈Π

min
f∈Fπ,ϵ

µ

Lµ(π, f), (1)

with Lµ(π, f) := Eµ[f(s, π) − f(s, a)], Fπ,ϵ
µ := {f ∈

F | Eµ(π, f) ≤ ϵ} with Eµ(π, f) := ∥f − T πf∥22,µ. Here,

F is the set of functions f : S × A → [0, Vmax] and Π is
the policy function class. Practically, this constrained pes-
simism framework is implemented by adversarial regular-
ized algorithms as introduced in Bhardwaj et al. (2023), to
approximately address a specific sub-question. These algo-
rithms have exhibited competent performance across diverse
offline scenarios owing to the robust improvement over un-
certainty. In this study, we focus on the essential max-min
problem, leaving the algorithm analysis as future directions.

The population-level problem (1) is intractable because
the oracle distribution is not accessible. To solve the opti-
mization problem (1), we propose an empirical scheme that
can be used for computation with neural network approxi-
mation. First, we define an estimated Bellman error:

ED(π, f) :=ED
[
(f(s, a)− r − γf(s′, π))2

]
− min

f ′∈F
ED

[
(f ′(s, a)− r − γf(s′, π))

]
,

which is shown to be an unbiased estimation of Eµ(π, f) in
Antos, Szepesvári, and Munos (2008). Consider Πθ as the
set of parameterized policies {πθ | θ ∈ Θ ⊆ Rd}. Actions
are selected based on the likelihood derived from the proba-
bility density function (PDF) of the policy distribution. This
PDF is approximated through a ReLU FNN in NN1. Impor-
tantly, the approximation need not strictly adhere to being a
specific density. This flexibility arises from the possibility
of drawing samples directly from the density, for instance,
using kernel density estimation (Rosenblatt 1956b). The fol-
lowing equation gives the computation scheme we consider:

π̂ = argmax
π∈Πθ

min
f∈NN2∩Fπ,ϵ

D

LD(π, f) (2)

where LD(π, f) := ED[f(s, π)−f(s, a)], Fπ,ϵ
D := {f ∈

F | ED(π, f) ≤ ϵ}, and NN2 refer to a ReLU FNN used
to approximate the value function. To simplify the theo-
retical analysis, we also use Rµ(π, f),RD(π, f) to denote
−Lµ(π, f) and −LD(π, f), respectively. Thus, problems
(1) and (2) can be reformulated as minimax problems:

π̂∗ ∈ argmin
π∈Πθ

max
f∈Fπ,ϵ

µ

Rµ(π, f), (3)

π̂ ∈ argmin
π∈Πθ

max
f∈NN2∩Fπ,ϵ

D

RD(π, f). (4)

There exists a gap between π̂ and the exact solution π̂∗, due
to finite sampling and imperfect approximation. We aim to
explicitly measure this gap concerning the network structure
and data sampling, which guides the training process. We
want to emphasize that the analysis of this problem is quite
challenging due to the coupling of network approximation
and the empirical constraint of the Bellman error.

Technical Assumptions
In DL and RL theory, several mild assumptions are com-
monly utilized. We define the Hölder function class and C-
mixing process (Maume-Deschamps 2006) as follows.
Definition 4.1 (Hölder Smooth Function Class). For ζ =
s + r with s ∈ N+ and 0 < r ≤ 1, the Hölder smooth
function class Hζ is defined as

Hζ =
{
f : [0, 1]d → R

∣∣∣ max
∥α∥1≤s

∥∂αf∥∞ ≤ B,

max
∥α∥1=s

sup
x ̸=y

|∂αf(x)− ∂αf(y)|
∥x− y∥r∞

≤ B
}
.
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Definition 4.2 (C-mixing process). Let (Ω,A, µ) be a prob-
ability space, (Z,B) be a measurable space, and Z :=
(Zi)i≥0 be a Z-valued stationary process on Ω. For any
n ≥ 0, we define the C-mixing coefficients as

ψC(Z, n) := sup{cor(Y, h ◦ Zk+n) :

k ≥ 0, Y ∈ BL1(Ak
0 ,µ), h ∈ BC(Z)},

where cor(·, ·) denotes the correlation of two random vari-
ables, i.e., cor(X,Y ) = E[XY ]−E[X]E[Y ] ifX,Y,XY ∈
L1(Ω,A, µ). Ak

0 is the σ-algebra generated by (Z0, . . . , Zk)
and C(Z) is the bounded function space {f : Z → R |
∥f∥∞ + ∥f∥ <∞} where ∥ · ∥ is a semi-norm.
Additionally, if we have ψC(Z, n) ≤ dn for all n > 0, where
(dn)n≥0 is a strictly positive sequence converging to 0, then
Z is said to be C-mixing with rate (dn)n≥0. If (dn)n≥0 is of
the form dn = c exp(−bnη) for b > 0, c ≥ 0, and η > 0,
then Z is called geometrically C-mixing.
Assumption 4.1 (Smoothness). Without loss of generality,
we assume zi := {si, ai} ∈ [0, 1]d. Density functions of
policies in Π and value functions in F are Hölder smooth.
Assumption 4.2 (Completeness). For any π ∈ Πθ and f ∈
NN2, we have T πf ∈ F .
Assumption 4.1 is a generalization of Lipschitz continuity. It
is commonly used in theory and efficient in capturing real-
world features (Fan et al. 2020). Assumption 4.2 holds when
rewards and values belong to smooth function classes (Fan
et al. 2020). Moreover, Chen and Jiang (2019); Wang, Fos-
ter, and Kakade (2021) verify that completeness is indis-
pensable even in simple scenarios. While Assumption 4.1
emphasizes the smoothness, it may not sufficiently guaran-
tee the completeness stated in Assumption 4.2.
Assumption 4.3 (Mixing). We assume the batch data
{st, at, rt}t≥0 satisfies the definition of strictly stationary
geometrically C-mixing process with parameters b, c, η > 0.
Assumption 4.3 describes the mixing rate for the batch data
sequence and indicates that the future weakly depends on
the past. This property of weak dependence is general, en-
compassing ϕ-mixing (Ibragimov 1962) as a particular case
and overlapping with α-mixing (Rosenblatt 1956a). The
quantitative distinctions between α-mixing and C-mixing
are examined in Hang et al. (2016). Experiments (Solowjow
et al. 2020) illustrate that mixing captures the autocorrela-
tion speed of dynamical systems, including Markov chains
as a specific case, which characterizes the essential nature
of data dependence. We notice that several studies focus on
episodic MDPs (Jin, Yang, and Wang 2021), but within a
linear setting rather than a universal characterization.

Loss Consistency
Recalling the problem (3), we denote the risk of π as

R̃µ(π, ϵ) = max
f∈Fπ,ϵ

µ

Rµ(π, f). (5)

Our first main theorem presents an upper bound for the ex-
cess risk, R̃µ(π̂, ϵ) − R̃µ(π̂

∗, ϵ), which quantitatively mea-
sures the difference between π̂ and π̂∗, and demonstrates the
efficacy of the adversarial offline RL framework (1).

Theorem 4.1. Under Assumptions 4.1,4.2 and 4.3, let π̂
and π̂∗ be defined in (3). Then, for NN1, NN2 with width
W = O(ds+1|D|

d
2d+4ζ∗ ) and depth L = O(log(|D|)), the

following non-asymptotic error bound holds

E[R̃µ(π̂, ϵ)− R̃µ(π̂
∗, ϵ)]

≤ C1Rmaxd
s+(ζ∨1)/2|D|

−ζ∗
d+2ζ∗ log(|D|)2+

1
η + C2

√
ϵ,

where ζ∗ = ζ(1 ∧ ζ), C1 is a constant depending on
s,B, C(π̂;µ), C(π̂∗

δ ;µ) and C2 is a constant depending on
C(π̂;µ), C(π̂∗

δ ;µ).
A small constantC1 is achieved when both π̂ and π̂∗

δ demon-
strate effective controllability concerning the behavior pol-
icy µ. Specifically, π̂∗

δ represents a δ-neighborhood of π̂∗ in
terms of their densities, with δ being the approximation er-
ror. In other words, our assumption pertains to the partial
controllability of data coverage related to π̂ and a small area
around π̂∗. Nevertheless, when concentrability is poor, C1

might be very large, aligning with the unfavorable empirical
results under challenging distribution shifts (Levine et al.,
2020). A larger value of ζ indicates a faster order, implying
that estimating a smoother target is more manageable. The

non-asymptotic bound O(|D|
−ζ∗

d+2ζ∗ ) is afflicted by the curse
of dimensionality, a concern we tackle in the next section.

Under mild conditions, the optimal rate in nonparametric
regression is Cd|D|−2ζ/(2ζ+d) (Stone 1982), which aligns
with ours. Moreover, our prefactor is polynomial in d instead
of exponential (Shen, Yang, and Zhang 2019). These results
are tight and new in RL. The optimality is also extensively
discussed in Suzuki (2018); Suzuki and Nitanda (2021).

The hyperparameter ϵ in the second term corresponds to
the Bellman constraint, as introduced in (3), which is re-
stricted by the expressive capacity of the value function
class, but may still be small. Its prefactor is also related to the
concentrability of π̂ and π̂∗

δ . The constraint ϵ significantly
influences the training process, as it balances the accuracy
and uncertainty aspects of the acquired value function. Note
that ϵ should be at least larger than the gap between the
value function space and the corresponding Bellman map-
ping space, but still dominated by the first term in the bound.

This explicit bound has no unknown parameters involved,
including the width and depth of the network, providing
informative guidance for training adversarial offline RL.
By selecting suitable width and depth for neural networks,
the estimation error exhibits an exponential decrease as the
number of data samples increases. This result matches the
empirical observation of network approximation (Montufar
et al. 2014) and generalization (Novak et al. 2018).

Circumvent the Curse of Dimensionality
Theorem 4.1 indicates a curse of dimensionality when the
data dimension is large. According to the “no free lunch”
theorem (Wolpert 1996), any method regardless of data or
model conditions is susceptible to this challenge. To miti-
gate this, we aim to alleviate the curse of dimensionality by
utilizing a priori information under two scenarios:
• Data structure with low Minkowski dimension.
• Target function combined of low-complexity elements.
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Low-Dimensional Data Structure. We start with the
definitions of covering numbers (Vershynin 2018) and
Minkowski dimension (Bishop and Peres 2017).
Definition 4.3 (Covering Number). Let dist be a metric,
ϵ > 0 and K ⊂ Rn. A subset N ⊂ K is an ϵ-net of K if

∀x ∈ K, ∃x0 ∈ N : dist(x, x0) ≤ ϵ.

The smallest cardinality of an ϵ-net of K is called the cov-
ering number of K, denoted by N (K,dist, ϵ).
Definition 4.4 (Minkowski Dimension). Let dist be a met-
ric, ϵ > 0 and K be a subset of Rn, i.e., K ⊂ Rn. We define
the upper and lower Minkowski dimensions as

dimM(K) = lim sup
ϵ→0

logN (K,dist, ϵ)

− log(ϵ)
,

dimM(K) = lim inf
ϵ→0

logN (K,dist, ϵ)

− log(ϵ)
.

Furthermore, if dimM(K) = dimM(K), this value is
called the Minkowski dimension and denoted by dimM(K).

Obviously, N (K,dist, ϵ) = ϵ−dimM(K)+o(1). This indi-
cates that the Minkowski dimension measures the decay rate
in covering numbers as ϵ tends towards 0.
Remark 4.1. For any manifold, its Minkowski dimension
is equivalent to its dimension. Although the high ambient
dimensions of real-world data are quite large, such as those
in MNIST (LeCun et al. 1998), CIFAR (Krizhevsky 2009),
ImageNet (Deng et al. 2009), the intrinsic dimensions have
been estimated to be relatively low (Recanatesi et al. 2019;
Pope et al. 2021). Hence, it is reasonable to assume that the
data has a low-dimensional structure, indicating that it is
supported by a space with a small Minkowski dimension.
Theorem 4.2. Suppose that the support of S × A is K ⊂
[0, 1]d, and its Minkowski dimension satisfies dimM(K) ≪
d. Assuming Assumptions 4.1,4.2 and 4.3 hold, we define
π̂ and π̂∗ as in (3). Then, for NN1 and NN2 with width

W = O(ds+1
K |D|

dK
2dK+4ζ∗ ) and depth L = O(log(|D|)), we

can establish a non-asymptotic error bound:

E[R̃µ(π̂, ϵ)− R̃µ(π̂
∗, ϵ)]

≤ C1Rmax

(1− λ)ζ/2

√
dd

s+(ζ∨1+1)/2
K |D|

−ζ∗
dK+2ζ∗ log(|D|)2+

1
η + C2

√
ϵ,

where 0 < λ < 1, dK = O(dimM(K)/λ2), ζ∗ = ζ(1∧ζ),
C1 is a constant depending on s,B, C(π̂;µ), C(π̂∗

δ ;µ) and
C2 is a constant depending on C(π̂;µ), C(π̂∗

δ ;µ).
When d is large, this upper bound is less susceptible to the
curse of dimensionality compared to the bound in Theorem
4.1, since the intrinsic dimension dimM(K) ≪ d. Addition-
ally, the width of neural networks has a smaller order than
that in Theorem 4.1. These comparisons indicate a signifi-
cant improvement in alleviating the curse of dimensionality.

Low-Complexity Target Function. We further consider a
function f combining k functions as:

f = Gk ◦Gk−1 ◦ · · · ◦G1, (6)

where Gi : Rli−1 → Rli is defined by Gi(x) =
[gi1(W

i
1x), . . . , g

i
li
(W i

li
x)]⊤, with W i

j ∈ Rdi×li−1 being a
matrix and gij : Rdi → R being a function.

For instance, a naive additive model (Stone 1985) is given
by f(x) = g11(x1, x2)+g

1
2(x3, x4)+· · ·+g12d−1(x2d−1, x2d)

with x = (x1, . . . , x2d)
⊤ ∈ R2d . In this case, it indicates

l0 = 2d, d1 = 2, l1 = 2d−1, d2 = 2d−1 and l2 = 1. Without
loss of generality, we assume that the component functions
gij are Hölder smooth with respect to the coefficient ζi.
Remark 4.2. The low-complexity structure described in (6)
is common in various models. Besides the additive model,
similar structures can also be observed in other statistical
inference models, e.g., the single index model (Hardle, Hall,
and Ichimura 1993), the projection pursuit model (Fried-
man and Stuetzle 1981). Moreover, recent research (Chen,
Wang, and Yang 2023) has shown that operators associated
with well-known PDEs, including the Poisson, parabolic,
and Burgers equation, exhibit this structure or its variants.
These operators have the potential to represent natural im-
ages for RL tasks such as CT scans (Shen et al. 2022).
Theorem 4.3. Suppose the policy and value functions sat-
isfy the condition in (6). Assuming Assumptions 4.1,4.2
and 4.3 hold. Then for NN1, NN2 with width W =

O(ds+1
∗ |D|

d∗
2d∗+4ζ∗ ) and depth L = O(log(|D|)), we can

establish a non-asymptotic error bound

E[R̃µ(π̂, ϵ)− R̃µ(π̂
∗, ϵ)]

≤ C1Rmaxd
s+(ζ∨1)/2
∗ |D|

−ζ∗
d∗+2ζ∗ log(|D|)2+

1
η + C2

√
ϵ,

where ζ∗ = mini(ζi
∏k

l=i+1(ζ
l∧1))(1∧ζ), d∗ = maxi di,

C1 is a constant depending on B, ζ, s, k, C(π̂;µ), C(π̂∗
δ ;µ)

and C2 is a constant depending on C(π̂;µ), C(π̂∗
δ ;µ).

In Theorem 4.3, the expression for ζ∗ differs from that in
Theorems 4.1 and 4.2, as it is determined by the product of
Hölder coefficients of each component function gij . A higher
degree of smoothness in each component implies a tighter
bound. The definition d∗ = maxi di indicates a significant
reduction in the curse of dimensionality since di is consis-
tently much smaller than d. The changes in ζ∗ and d∗ also
result in a reduced order for the width of the neural network.

Our results can be extended to anisotropic Besov spaces
(Suzuki 2018; Suzuki and Nitanda 2021), which aligns with
our motivation related to low-complexity structure.

5 Proof Sketch
This section provides a proof sketch for Theorem 4.1. The
complete proof is available in Appendix B.

Useful Lemmas
Lemma 5.1. Let R̃µ(π, ϵ) be defined in (5), and let π̂, π̂∗ be
defined in (3). For any admissible policy ϕ ∈ Πθ, we have:

R̃µ(π̂, ϵ)− R̃µ(π̂
∗, ϵ)

≤ 2 sup
ϕ∈Πθ

|R̃D(ϕ, ϵ)− R̃µ(ϕ, ϵ)|︸ ︷︷ ︸
(A)

+2 sup
ϕ∈Πθ

|R̂µ(ϕ, ϵ)− R̃D(ϕ, ϵ)|︸ ︷︷ ︸
(B)

+
inf

ϕ∈Πθ

((
R̂µ(π̂, ϵ)− R̂D(π̂, ϵ)

)
+

(
R̂D(ϕ, ϵ)− R̂µ(ϕ, ϵ)

)
+

(
R̃µ(ϕ, ϵ)− R̃µ(π̂

∗, ϵ)
))

︸ ︷︷ ︸
(C)
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where R̃D(π, ϵ) = maxf∈NN2∩Fπ,ϵ
µ

Rµ(π, f), R̂µ(π, ϵ) =

maxf∈NN2∩Fπ,ϵ
µ

RD(π, f) and R̂D(π, ϵ) =

maxf∈NN2∩Fπ,ϵ
D

RD(π, f).
The upper bound for the excess risk has three components.
The first term (A) and the second term (B) capture the ap-
proximation error and generalization error, respectively. The
third term (C), known as the Bellman estimation error, com-
bines both the approximation and generalization error cou-
pled with the Bellman residual about on/off-support data.
This lemma provides a decomposition of the excess risk,
forming the foundation for further derivation. We now in-
troduce lemmas corresponding to each part.

Lemma 5.2 (Bounding (A)). Let R̃D(π, ϵ), R̃µ(π, ϵ) be de-
fined in Lemma 5.1. Under Assumption 4.1, for NN2 with
width 38(s + 1)23dds+1N⌈log2(8N)⌉ and depth 21(s +
1)2M⌈log2(8M)⌉+ 2d , it holds for any M,N ∈ N+:
sup
ϕ∈Πθ

|R̃D(ϕ, ϵ)−R̃µ(ϕ, ϵ)| ≤ 38B(s+1)2ds+(ζ∨1)/2(NM)−2ζ/d

Lemma 5.2 provides an approximation error between ReLU
FNN and Hölder functions, exhibiting a polynomial depen-
dency on the input data dimension d.

Lemma 5.3 (Bounding (B)). Let R̂µ(π, ϵ) and R̃D(π, ϵ) be
defined as in Lemma 5.1. Under Assumption 4.3, if the size
of the dataset |D| satisfies

|D| ≥ n0 := max
{
min

{
m ≥ 3 :

m2 ≥ 808c,
m

(logm)2/η

}
, e3/b

}
,

where b, c, η are parameters in Assumption 4.3, the follow-
ing holds for any ϕ ∈ Πθ

E sup
ϕ∈Πθ

|R̂µ(ϕ, ϵ)− R̃D(ϕ, ϵ)|

≤ O
(
Rmax

√
PL log(P)

(
log |D|

) 2+η
2η√

|D|

)
.

Lemma 5.3 provides a bound on the generalization error for
C-mixing data. We employ a uniform covering, to enable the
measure of the infinite neural network class.
Lemma 5.4 (Bouding (C)). Let R̂µ(π, ϵ), R̂D(π, ϵ),
R̂µ(π, ϵ) be defined in Lemma 5.1, and let π̂, π̂∗ be defined
in (3). If the size of the dataset |D| satisfies the requirement
in Lemma 5.3, we have

inf
ϕ∈Πθ

((
R̂µ(π̂, ϵ)− R̂D(π̂, ϵ)

)
+

(
R̂D(ϕ, ϵ)− R̂µ(ϕ, ϵ)

)
+

(
R̃µ(ϕ, ϵ)− R̃µ(π̂

∗, ϵ)
))

≤ CC(π̂;µ),C(π̂∗
δ
;µ)

√
ϵ+ CB,C(π̂∗

δ
;µ)δ

1∧ζ

+ CC(π̂;µ),C(π̂∗
δ
;µ)O

(
Rmax

√
PL log(P)

(
log |D|

) 2+η
2η√

|D|

)
.

The Bellman estimation consists of two terms: Bellman ap-
proximation and generalization. We bound these two terms
together for consistency since a shared policy ϕ is consid-
ered an infimum. The first term on the RHS is related to
the Bellman residual constraint, while the second and third
terms correspond to generalization and approximation. The
coefficients are similar to those discussed in Theorem 4.1.

Main Proof
Proof of Theorem 4.1. Combining the bounds in Lemma 5.2,
5.3, 5.4 into the decomposition in Lemma 5.1 yields

E[R̃µ(π̂, ϵ)− R̃µ(π̂
∗, ϵ)]

≤ Cs,B,C(π̂∗
δ
;µ)d

s+(ζ∨1)/2(NM)−2ζ(1∧ζ)/d + CC(π̂;µ),C(π̂∗
δ
;µ)

√
ϵ

+ CC(π̂;µ),C(π̂∗
δ
;µ)

(
Rmax

√
PL log(P)

(
log |D|

) 2+η
2η√

|D|

)
.

This bound indicates that as M and N grow large, the first
term decreases while the second term increases. Thus we
balance them by selecting appropriate M and N to obtain

ds+(ζ∨1)/2(NM)−2ζ(1∧ζ)/d ≈
√

PL log(P)

(
log |D|

) 2+η
2η√

|D|
.

The number of parameters P , the width W and the depth L
of the network satisfy the inequality:

P ≤ W(d+ 1) + (W2 +W)(L − 1) +W + 1 ≤ 2W2L.

The approximation bound is established with width W =
38(s + 1)23dds+1N⌈log2(8N)⌉ and depth L = 21(s +
1)2M⌈log2(8M)⌉ + 2d, yielding the number of parame-
ters P ≤ O((s+1)6d2s+2N2⌈log2(8N)⌉2M⌈log2(8M)⌉).
By setting N = O(|D|

d
2d+4ζ∗ ) and M = O(log(|D|)),

we can further bound W = O(ds+1|D|
d

2d+4ζ∗ ),L =

O(log(|D|)),P = O(d2s+2|D|
d

d+2ζ∗ log(|D|)).

E[R̃µ(π̂, ϵ)− R̃µ(π̂
∗, ϵ)]

≤ Cs,B,C(π̂∗
δ
;µ)d

s+(ζ∨1)/2|D|
−ζ∗

d+2ζ∗ log(|D|) + CC(π̂;µ),C(π̂∗
δ
;µ)

√
ϵ

+ CC(π̂;µ),C(π̂∗
δ
;µ)Rmaxd

s+1|D|
−ζ∗

d+2ζ∗ log(|D|)2+
1
η

= C1Rmaxd
s+(ζ∨1)/2|D|

−ζ∗
d+2ζ∗ log(|D|)2+

1
η + C2

√
ϵ,

where ζ∗ = ζ(1∧ζ),C1 depends on s,B, C(π̂;µ), C(π̂∗
δ ;µ),

and C2 depends on C(π̂;µ) and C(π̂∗
δ ;µ).

6 Conclusion
This paper examines the estimation error within a deep
adversarial offline RL framework under mild assumptions.
Both policy and value functions are parameterized using
deep neural networks, with data assumed to exhibit depen-
dence and partial coverage. The excess risk is decomposed
into three components: generalization, approximation, and
Bellman estimation error. We bound these errors by adapt-
ing tools from empirical processes and approximation the-
ory to address intricate Bellman constraints. This derived
bound explicitly reveals the interplay between network ar-
chitecture, dataset dimensionality, sample size, and the con-
centrability of distributional shifts in influencing the estima-
tion error. Additionally, we provide two conditions to allevi-
ate the curse of dimensionality. Our work is the first attempt
to establish a non-asymptotic estimation error for deep ad-
versarial offline RL problems.
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Szepesvári, C.; and Munos, R. 2005. Finite time bounds for
sampling based fitted value iteration. In ICML.
Uehara, M.; Huang, J.; and Jiang, N. 2020. Minimax weight
and q-function learning for off-policy evaluation. In ICML.
Uehara, M.; and Sun, W. 2021. Pessimistic model-based
offline reinforcement learning under partial coverage. arXiv
preprint arXiv:2107.06226.
Vershynin, R. 2018. High-dimensional probability: An in-
troduction with applications in data science, volume 47.
Cambridge university press.
Wang, L.; Cai, Q.; Yang, Z.; and Wang, Z. 2019. Neural pol-
icy gradient methods: Global optimality and rates of conver-
gence. arXiv preprint arXiv:1909.01150.
Wang, R.; Foster, D.; and Kakade, S. M. 2021. What are the
statistical limits of offline RL with linear function approxi-
mation? In ICLR.
Wolpert, D. H. 1996. The lack of a priori distinctions be-
tween learning algorithms. Neural computation.
Xie, T.; Cheng, C.-A.; Jiang, N.; Mineiro, P.; and Agarwal,
A. 2021. Bellman-consistent pessimism for offline rein-
forcement learning. In NeurIPS.
Xie, T.; and Jiang, N. 2020. Q* approximation schemes for
batch reinforcement learning: A theoretical comparison. In
UAI.
Xie, T.; and Jiang, N. 2021. Batch value-function approxi-
mation with only realizability. In ICML.
Yarotsky, D. 2017. Error bounds for approximations with
deep ReLU networks. Neural Networks.
Yarotsky, D. 2018. Optimal approximation of continuous
functions by very deep ReLU networks. In COLT.
Yarotsky, D. 2021. Elementary superexpressive activations.
In ICML.
Yin, M.; Bai, Y.; and Wang, Y.-X. 2021. Near-optimal of-
fline reinforcement learning via double variance reduction.
In NeurIPS.

Yu, B. 1994. Rates of convergence for empirical processes
of stationary mixing sequences. The Annals of Probability.
Zanette, A.; and Wainwright, M. J. 2022. Bellman residual
orthogonalization for offline reinforcement learning. arXiv
preprint arXiv:2203.12786.
Zhan, W.; Huang, B.; Huang, A.; Jiang, N.; and Lee, J. 2022.
Offline reinforcement learning with realizability and single-
policy concentrability. In COLT.
Zhang, J.; Koppel, A.; Bedi, A. S.; Szepesvari, C.; and
Wang, M. 2020. Variational policy gradient method for re-
inforcement learning with general utilities. In NeurIPS.
Zhang, X.; Chen, Y.; Zhu, X.; and Sun, W. 2022. Corruption-
robust offline reinforcement learning. In AISTATS.
Zhou, Y.; Qi, Z.; Shi, C.; and Li, L. 2023. Optimizing Pes-
simism in Dynamic Treatment Regimes: A Bayesian Learn-
ing Approach. In AISTATS.
Zou, S.; Xu, T.; and Liang, Y. 2019. Finite-sample analysis
for sarsa with linear function approximation. In NeurIPS.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15877


