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Abstract

Distributed optimization in resource constrained devices de-
mands both communication efficiency and fast convergence
rates. Newton-type methods are getting preferable due to
their superior convergence rates compared to the first-order
methods. In this paper, we study a new problem in regard
to the second-order distributed optimization over unreliable
networks. The working devices are power-limited or operate
in unfavorable wireless channels, experiencing packet losses
during their uplink transmission to the server. Our scenario is
very common in real-world and leads to instability of classi-
cal distributed optimization methods especially the second-
order methods because of their sensitivity to the impreci-
sion of local Hessian matrices. To achieve robustness to high
packet loss, communication efficiency and fast convergence
rates, we propose a novel distributed second-order method,
called RED-New (Packet loss Resilient Distributed Approx-
imate Newton). Each iteration of RED-New comprises two
rounds of light-weight and lossy transmissions, in which the
server aggregates the local information with a new developed
scaling strategy. We prove the linear-quadratic convergence
rate of RED-New. Experimental results demonstrate its ad-
vantage over first-order and second-order baselines, and its
tolerance to packet loss rate ranging from 5% to 40%.

Introduction
Distributed optimization has gained prominence in machine
learning due to its significant role in improving the efficiency
of model training (Boyd 2011; Li et al. 2014; McMahan
et al. 2017; Li et al. 2020). A typical distributed optimization
(interchangeable with distributed machine learning (DML))
problem is expressed in the form

min
w∈Rd

f (w) :=
1

m

m∑
i=1

fi (w), (1)

where d denotes the dimension of the model w, m is the
number of distributed nodes, fi (w) is the local smooth loss
function related to i-th client, and f (w) is the global empir-
ical risk to minimize.

A range of optimization algorithms are available to solve
a DML problem. Among them, first-order methods and
second-order methods are prevalently utilized (Konečný
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et al. 2017; Mitra et al. 2021; Lee et al. 2017; Li et al. 2020;
Ding et al. 2022; Mishchenko et al. 2022). However, the
main drawback of the first-order distributed methods is their
slow convergence rate which leads to large amount of com-
munication rounds. Compared to this, the second-order al-
gorithms, by computing the local curvature of the objective
function, always outperform first-order methods in terms
of convergence rate (Nesterov and Polyak 2006; Nesterov
2007) and have been adapted to operate within a distributed
framework to speed up the training process.

Implementing the Newton method within a distributed ar-
chitecture encounters two primary obstacles as following:

• Insufficient algorithm robustness: The Newton method
requires calculating the inverse of the Hessian. When
dealing with an ill-conditioned Hessian matrix, even mi-
nor errors in the calculation or transmission of the Hes-
sian matrix can lead to large deviation in the inverse,
thereby impacting the convergence of the distributed al-
gorithm.

• Inefficient communication per-round: In each round
of the distributed Newton method, local Hessian matrix
needs to be transmitted with the data volume of O(d2),
which may offset the communication efficiency brought
by fast convergence.

Previous literature on distributed second-order Newton
methods primarily focus on addressing the second chal-
lenge (Shamir, Srebro, and Zhang 2014; Smith et al. 2018;
Islamov, Qian, and Richtarik 2021; Elgabli et al. 2022; Liu
et al. 2023). However, a critical aspect often overlooked is
the assumption that the distributed training system operates
within a reliable and stable network environment. In cross-
device distributed scenarios, participants in the training can
range from mobile phones to IoT (Internet of Things) nodes.
These devices, susceptible to signal changes or power is-
sues, often face unreliable parameter transmission, leading
to parameter loss or misdirection (Chen et al. 2018). In dis-
tributed algorithms, packet loss due to unreliable networks
can divert the algorithm’s iterative direction from the theo-
retical descent path. In severe cases, it can prevent the al-
gorithm from convergence altogether (Peris, Marquina, and
Candela 2011; Peters and Wilkinson 1979). Given upon this,
it is a natural and crucial question to us: Can we design a dis-
tributed Newton method which is robust and communication
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efficient under unrealiable network condition?
We resolve this question by proposing a Packet loss

Resilient Distributed Approximate Newton method RED-
New. The algorithm transmits inexact approximate direc-
tions instead of full Hessian matrices, which effectively re-
duces the communication scale from O(d2) to O(d) and en-
hances the update’s resilience to packet loss. This is geared
towards fulfilling the demands of practical applications of
DML systems. Our main contributions in this paper are as
follows:

• We consider the challenge of unreliable network when
applying the second-order distributed optimization,
which is a common concern in the real-world distributed
machine learning systems.

• We propose RED-New, which is the first second-order
method that can achieve both communication efficiency
and resilience to packet loss. We prove a linear quadratic
rate which is faster than first-order methods in the local
region.

• Our experiments demonstrates the advantage of RED-
New over second-order and first-order baselines on var-
ious packet loss and datasets, validating the theoretical
results.

The remainder of this paper is structured as follows: Sec-
tion 2 delves into existing works aimed at solving the two
aforementioned challenges. Our RED-New algorithm is de-
tailed in Section 3, with its theoretical convergence bound
clarified in Section 4. Section 5 showcases experimental
results to demonstrate the efficacy and efficiency of our
method. Finally, Section 6 concludes the paper.

Related Work
In this section, we will conduct an in-depth review of re-
lated works to identify our unique contributions within this
context.

Distributed Second-order Methods
In classic distributed Newton method, each round of up-
dating begins with clients computing local gradients and
second-order partial derivatives of the objective function,
also known as Hessian matrices, which are then transmit-
ted to a central node. This node aggregates these parameters
to calculate the Newton direction, which is the product of
the inverse of global Hessian matrix and the global gradient.
Following this, it updates the global model and dispatches
this updated model back down to the individual clients. The
update rule for the classic Newton method in DML is out-
lined in (2), where wt signifies the model at the t-th itera-
tion (Beck 2014). While this method lessen the total com-
munication rounds, it also introduces a substantial number
of transmitted bits during each iteration, as it involves send-
ing local gradients, local Hessian matrices, and the globally
updated model.

wt+1 = wt −

(
m∑
i=1

∇2fi (wt)

)−1 m∑
i=1

∇fi (wt). (2)

Research such as FedNL (Safaryan et al. 2022; Islamov,
Qian, and Richtarik 2021) has proposed solutions to the is-
sue of large data volume transmission in distributed second-
order methods. They have extended compressors used in
first-order methods to the second-order context, discovering
that using contractive compressors like Top-k and Rank-r
can be more communication efficient than unbiased com-
pressors like random sparsification and quantization. How-
ever, these methods still transmit data at an O(d2) scale.
Other works such as FedNew and Cocoa (Elgabli et al.
2022; Smith et al. 2018) has developed a two-layer method
that cuts the transmitted volume to O(d). The outer layer
transforms the global update direction of the second-order
Newton method into a distributed constrained quadratic
problem. The inner layer then uses distributed first-order
methods to solve the problem on clients, thus obtaining an
approximate update direction. While this brings the updated
direction closer to the standard Newton direction, it also in-
troduces an extra iteration calculation process. Alternatively,
methods like GIANT (Wang et al. 2018), DINGO (Crane
and Roosta 2019), and MNM (Cao and Lai 2020) limit the
computation of the inverse Hessian matrix to local clients.
These methods utilize local Hessian matrices to calculate
the update direction, and the parameter server employs the
local approximate Newton update direction for model up-
dates. While these algorithms are straightforward to com-
pute and memory-friendly, it’s crucial to ensure the similar-
ity between the approximate direction and the global New-
ton direction.

DML Over Unreliable Network
In this subsection, we explore Distributed Machine Learn-
ing (DML) in the context of unreliable networks. A com-
mon issue in such environments is packet loss, as evidenced
by previous studies (Sheth et al. 2007; Lv, Chen, and Wang
2021; Tang, Zhou, and Kato 2020). While the reliable TCP
transmission protocol can prevent packet loss, it can also in-
crease network delay significantly with higher packet loss
rates (Ye, Liang, and Li 2022). Several research efforts have
devised effective solutions by modeling the packet loss net-
work. For instance, the RSP approach proposed in (Yu et al.
2019) offers a packet loss resistant first-order algorithm us-
ing the AllReduce distributed architecture. It assumes a uni-
form packet loss probability and substitutes lost parameter
blocks with the client’s own parameters. However, it over-
looks the potential effect of this substitution on the aggre-
gating weight in its theoretical analysis. On the other hand,
(Ye, Liang, and Li 2022) accounted for packet loss’s impact
on the decentralized federal learning architecture, modeling
the packet loss probability as a parameter associated with de-
vice transmission distance, which aligns more closely with
real packet loss scenarios. However, this research’s decen-
tralized structure is a fully connected topological structure,
and in their theoretical analysis, each bag only contained a
single float 32 parameter.

From a systems perspective, additional solutions have
been proposed (Chen et al. 2021; Hu et al. 2021). Some
works model packet loss as a Gilbert model and employed
the network anti-packet loss strategies FEC (Forward Er-
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Figure 1: Pipeline operations of RED-New

ror Coding) and ARQ (Automatic Repeat-reQuest). This ap-
proach allows the receiver to recover lost data packets when
the packet loss rate is not high, thereby lessening the im-
pact of packet loss on the distributed algorithm (Su et al.
2023). Other works such as (Zhang and Tao 2021) involves
power control, modeling the unstable network as a signal
attenuation transmission model. It optimizes the theoreti-
cal difference between the objective function of the inac-
curate model and the optimal model through iterative dual
algorithms. This technique, despite requiring extra parame-
ter transmission and iterative calculations, is commonly em-
ployed in practice.

According to prior discussions, the classic distributed
Newton method is impacted more significantly by unreliable
networks compared to first-order methods due to its depen-
dence on the inverse of the Hessian matrix. To the best of our
knowledge, we have found that research addressing this par-
ticular scenario remains sparse, necessitating urgent devel-
opment of potential solutions. In this study, we specifically
design our RED-New algorithm to balance both communi-
cation efficiency and resilience to packet loss. A solid theo-
retical analysis supports our approach. Our algorithm shows
a superior convergence performance, surpassing traditional
gradient descent, even in networks of a high packet loss rate
of 40%.

Algorithm Description
In this section, we present the mathematical model of dis-
tributed learning over unreliable channels, and our algo-
rithm, namely RED-New, catering for such imprecision.

Problem Description
In this study, we address the optimization of problem (1)
within the framework of the parameter server (PS) architec-
ture (Li et al. 2014). This paradigm usually consists of one or
more servers for synthesizing the global model, and a num-
ber of devices as Clients for generating local models.
Model of Packet-loss: This study employs a model that cap-
tures the unreliable nature of a network at the packet-level,
specifically focusing on packet-loss. For clarity, a diagram

Figure 2: An illustration for the model of packet loss

illustrating our model is provided in Fig 2. Consider a pa-
rameter vector, xi ∈ Rd, intended for transmission from the
i-th client to the server. Initially, this vector is divided into s
blocks. Each block is then contained within a packet, with a
maximum size limit of 1500 bytes, as shown in the equation:

xi = [(xi)[0], (xi)[1], · · · , (xi)[s]]. (3)

The j-th block of xi, denoted as (xi)[j], will then be trans-
mitted from the client to the server under an unreliable net-
work.

Noted that the server is usually collocated with a base sta-
tion or an access point that has large transmission power,
and thus the received signal quality at the downlink clients is
satisfactory. On the other hand, the clients are power-limited
mobiles or Internet of Thing (IoT) devices so that the re-
ceived signal quality at the server is relatively weak. There-
fore, we can reasonably assume that the downlink transmis-
sion is reliable and the uplink transmission is prone to packet
losses. Our model suggests that packet loss occurs with a
uniform probability p. Based on this, if we send (xi)[j] over
the unreliable network, the arrived packet at the server side,
(x̃i)[j], is expressed as:

(x̃i)[j] = Ξ((xi)[j]) :=

{
(xi)[j] with probability p

0 with probability 1− p
.

(4)
Reflecting real-world conditions, we have designated the
packet loss rate between 0% and 40%, in line with models
from (Chen et al. 2021; Vargaftik et al. 2022).
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Upon receiving these packets, the server typically aggre-
gates the parameters to derive a global parameter, denoted
as x̃. From the packet-level perspective, the j-th block of
aggregated parameter, x̃[j] can be represented as x̃[j] =
1
m

∑m
i=1(x̃i)[j]. Unlike this, our RED-New proposed a scal-

ing strategy with the use of statistical loss rate to aggregate
the parameters, introduced in the following subsection.

RED-New Algorithm
To address the issue of packet loss, RED-New employs a
packet-level empirical loss rate, denoted as p̂[j]. This rate is
used to scale the received parameters by a factor of 1

1−p̂[j]
.

Consider that the i-th client transmits the vector xi to the
server through a lossy network, and the arrived packets is x̃i

, with the j-th packet represented as (x̃i)[j], defined in (4).
The empirical loss rate for the subsequent aggregated block,
(p̂x)[j], can be expressed as:

(p̂x)[j] =

∑m
i=1 I{(x̃i)[j] = 0}

m
, (5)

where I{(x̃i)[j] = 0} indicates the count of lost packets and
the received j-th block of xi is zero.

Using this statistical loss rate, local blocks can be aggre-
gated as:

x̃[j] =

∑m
i=1 (x̃i)[j]

m(1− (p̂x)[j])
, (6)

In this context, x̃[j] is the j-th block of the global parameter
aggregated by the server. The well-designed scaling factor,

1
1−(p̂x)[j]

, amplifies the aggregated weight of successfully re-
ceived data packets when packet loss occurs. By leveraging
this approach, the gap between the original 1

m

∑m
i=1 xi and

x̃[j] can be effectively constrained by the norm of the exact
one.

We formally present the the proposed RED-New method
in Algorithm 1 and illustrate each steps of RED-New as fol-
lows. RED-New operates in three stages: 1) gradient trans-
mission, 2) inexact update direction transmission, and 3)
model update.
Gradient Transmission. At this stage, each client calculates
its local gradient and divides the parameters into s packets
for delivery denoted as gi = [(gt

i)[0], (g
t
i)[1], · · · , (gt

i)[s]].
Each packet might get lost with probability p. For the j-th
packet of client i, its reception on the server follows the rule

(g̃t
i)[j] = Ξ

(
(gt

i)[j]

)
. (7)

These inexact local gradients are then generated to the global
gradient as g̃t = [(g̃t)[0], (g̃

t)[1], · · · , (g̃t)[s]]
T . In paricular,

the j-th block can be computed by

(g̃t)[j] =

∑m
i=1 (g̃

t
i)[j]

m(1− (p̂tg)[j])
, (8)

where (p̂tg)[j] =
∑m

i=1 I{(g̃t
i)[j]=0}

m .

Algorithm 1: RED-New
input : initial local models w0

i .

for t = 0, 1, . . . until terminate do
for i = 1 to m in parallel do

The i-th client computes local gradient
gt
i = ∇fi(w

t).
The server receives (g̃t

i) according to (7) and
compute the global gradient:

(p̂tg)[j] =
∑m

i=1 I{(g̃t
i)[j]=0}

m

(g̃t)[j] =
∑m

i=1 (g̃t
i)[j]

m(1−(p̂t
g)[j])

.

g̃t = [(g̃t)[1], · · · , (g̃t)[s]]
The server send (g̃t) to each clients.
for i = 1 to m in parallel do

The i-th client computes local Hessian matrix
Ht

i = ∇2fi(w
t).

The i-th client computes the inexact local
direction
(µt

i) = (Ht
i)

−1g̃t.
The server receives (µ̃t

i) according to (10) and
compute the update direction:

(p̂tµ)[j] =
∑m

i=1 I{(µ̃t
i)[j]=0}

m

(µ̃t)[j] =
∑m

i=1 (µ̃t
i)[j]

m(1−(p̂t
µ)

[j]
) .

µ̃t = [(µ̃t)[1], · · · , (µ̃t)[s]]
The server updates the global parameter:
wt+1 = wt − µ̃t.
The server send wt+1 to each clients.

Return the final model w.

Inexact Update Direction Transmission: Each client com-
putes its local Hessian matrix Ht

i with the local data sam-
ples. Using the received global gradient g̃t, each node com-
putes the local Newton update direction (µt

i) by using the
local Hessian information,

(µt
i) = (Ht

i)
−1g̃t. (9)

(µt
i) is then divided into s packets and sent to the server, also

in the face of possible packet loss Ξ. The server receives the
local updated direction according to

(µ̃t
i)[j] = Ξ

(
(µt

i)[j]

)
(10)

and aggregate them as µ̃t = [(µ̃t)[0], (µ̃
t)[1], · · · , (µ̃t)[s]].

We calculate (µ̃t)[j] as

(µ̃t)[j] =

∑m
i=1 (µ̃

t
i)[j]

m(1− (p̂tµ)[j])
, (11)

where (p̂tµ)[j] =
∑m

i=1 I{(µ̃t
i)[j]=0}

m .
Model Update: Finally, the parameter server updates the
model weights w based on the global approximate inexact
update direction µ and dispatches them to each client,
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wt+1 = wt − µ̃t (12)

RED-New excels the classic distributed Newton method
in two aspects. First, the data volume transmitted in one
iteration is reduced from O(d2) matrices to O(d) vectors,
significantly reducing the communication overhead. Second,
unlike the direct inversion of the lossy Hessian which may
leads to a huge deviation from the Newton direction, espe-
cially when the Hessian matrix is ill-conditioned. Our algo-
rithm avoid such inversion by limiting the inverse operation
of matrix to a local level, thus permitting the application of
the concentration inequalities to constrain the gap’s upper
bound norm to ensure algorithmic stability even under un-
reliable network conditions. Furthermore, a scaling strategy
is employed that doesn’t require any prior knowledge of the
packet loss rate, ensuring the algorithm adapts effectively
to real-world scenarios suffers from unreliable network con-
nections.

Convergence Analysis
In this section, we prove that RED-New possesses a linear-
quadratic convergence rate, implying that the algorithm per-
forms better than first-order methods in terms of the number
of training rounds till convergence.

We first introduce the notations for the analysis. We use
Ht and gt to denote ∇2f(wt) and ∇f(wt). We use ∥ · ∥2
to present spectral norm and Euclidean norm of matrix and
vector respectively. Additionally, we introduce the weighted
norm ∥ · ∥H such that ∥x∥H :=

√
xTHx. We use the fol-

lowing measure to present the convergence

∆t := ∥wt −w∗∥Ht
.

We then introdice the following standard assumptions on
the object function (1).
Assumption 1. The loss f(w) has L2-Lipschitz Hessian ma-
trices, i.e.,

∥∥∇2f (x)−∇2f (y)
∥∥
2
⩽ L ∥x− y∥2 holds for

all x and y.
Assumption 2. The Hessian matrix satisfies the form of
∇2f (w) = Q(w)TQ(w) +B(w), where B(w) is a posi-
tive semi-definite matrix.
Remark 1. A large range of function class like f(w) =
l(w⊤x)+λ∥w∥2 satisfy Assumption 2. Such assumption is
also commonly adopted in the literature (Wang et al. 2018;
Ye, Luo, and Zhang 2021; Derezinski et al. 2021).
Lemma 1. Under Assumption 2, if a sample size at each
worker node satisfies l ⩾

(
3d log(dm/δ)

ϵ2

)
, then

(1− ϵ)H ≼ H̃i ≼ (1 + ϵ)H,(
1− ϵ√

m

)
H ≼ H̃i ≼

(
1 +

ϵ√
m

)
H,

holds with probability at least 1− δ, δ, ϵ ∈ (0, 1).
Remark 3. This lemma states that the local Hessian can be
constrained by the scale of the global Hessian with a high
probability. It leverages the properties of Sketching Matri-
ces (Drineas, Mahoney, and Muthukrishnan 2006; Clarkson

and Woodruff 2017), where the local Hessian can be con-
structed as H̃i = [SiQ (x)]

T
[SiQ (x)]. Here, Si ∈ Rl×n

is a leverage score matrix that is well-designed to satisfy
(1 − ϵ)Q (x)

T
Q (x) ⩽ [SiQ (x)]

T
[SiQ (x)] ⩽ (1 +

ϵ) Q (x)
T

Q (x) . This theoretical result was previously
proven in (Pilanci and Wainwright 2017).

Lastly, based on the lemma and assumptions, we present
our main theoretical results below.
Theorem 1. Under Assumption 1 and 2, running Algo-
rithm 1 on the quadratic object function, if the sample size
on each workers satisfies that l ⩾

(
3d log(dm/δ)

ϵ2

)
, it holds

that
∥∆t∥Ht

⩽ (β) ∥∆t−1∥Ht
,

where

β =
1√
m

· ϵ

1 + ϵ
+

Cγ,p

δ(1− ϵ)
+

Cγ,p

δ2(1− ϵ)(1− γ)
,

Cγ,p = 2p+
γ

1− γ
, γ =

√
−2logδ

m(1− p)
.

with probability 1− δ and δ ∈ (0, 1).
Theorem 1 reveals the efficacy of the RED-New method

on a quadratic loss function, achieving a linear convergence
rate. Notably, the use of Hessian norms in our analysis, un-
like the norm-2 ∥∆t∥2 employed in related works (Pilanci
and Wainwright 2017; Wang et al. 2018), leads to stronger
theoretical results. Specifically, this approach frees the de-
cay factor from the condition number, eliminating the need
for a more strict range on β.

Next, we provide the convergence result for RED-New
for general object function.
Theorem 2. Under Assumption 1 and 2, running Algo-
rithm 1 on the general smooth object function, if the sam-
ple size on each workers satisfies that l ⩾

(
3d log(dm/δ)

ϵ2

)
, it

holds with at least 1− δ, δ ∈ (0, 1) that

∥∆t+1∥Ht
⩽ max

{
ρ1 ∥∆t∥Ht

, ρ2 ∥∆t∥2Ht

}
,

where,

ρ1 = 2

√
β2

1− β2
,

ρ2 =
2L

σmin (Ht)
3
2

,

β =
1√
m

· ϵ

1 + ϵ
+

Cγ,p

δ(1− ϵ)
+

Cγ,p

δ2(1− ϵ)(1− γ)
,

Cγ,p = 2p+
γ

1− γ
, γ =

√
−2logδ

m(1− p)
.

Theorem 2 provides a local linear-quadratic convergence
for RED-New on the general smooth loss function. The
quadratic term inherits from the classical Newton method
that embraces a quadratic convergence rate. The linear term
in the inequality stems from the approximation of the New-
ton direction (Ye, Luo, and Zhang 2021). Theorem 2 shows
that the proposed method enjoys a faster rate than the first-
order methods especially When ϵ, p, and δ are small.
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(a) w8a (b) a9a (c) gisette

Figure 3: Training loss comparison of GD, Standard Newton, GIANT, and RED-New over the unreliable network with a packet
loss rate p = 5% on three datasets, a9a, w8a, and gisette

(a) w8a (b) a9a (c) gisette

Figure 4: Training loss comparison of GD, Standard Newton, GIANT, and RED-New over the unreliable network with a packet
loss rate p = 20% on three datasets, a9a, w8a, and gisette

Experiments
Our experiments are conducted on the benchmark LIBSVM
Libraray datasets (Chang and Lin 2011) for the convex prob-
lem of logistic regression with l2-regularization:

min
w

1

n

n∑
j=1

log
(
1 + exp

(
−yixi

Tw
))

+
λ

2
∥w∥22, (13)

where xi ∈ Rd is the feature vector and yi ∈ {−1, 1} is the
corresponding label. The regularization coefficient λ con-
trols the generalization ability, and is set to 10−6. We con-
duct our experiments using Python with the Mpy4pi 3.1.4
function for distributed optimization. The experiments are
operated on the Intel(R) Xeon(R) Platinum 8369B 2.90GHz,
equipped with 32 CPU cores and 2.0TB memory.

Experimental Setting
Parameter configuration: We employ three commonly
used datasets from the LIBSVM Library: a9a (N =
32561, d = 123), w8a (N = 49749, d = 300), and gisette
(N = 6000, d = 5000). Here, N denotes the number of
samples and d is the number of features of each sample.
We set 8 workers for the distributed training and a warm-
up strategy is used. To make our experiments more general,

we introduce random features based on the RBF kernel, ex-
panding the number of features to 800 for a9a, and 1000 for
w8a.

During transmission, each client encapsulates 375
float 32 data into a packet of 1500 Bytes. Equivalently, at
each iteration of two communication rounds, the number of
packet transmitted by a client will be 6 for a9a and w8a, 32
for gisette.

Our baseline methods include the distributed gradient de-
scent, the standard distributed Newton method, and the ap-
proximate distributed Newton method GIANT (Wang et al.
2018). The learning rate of the proposed methods and the
baselines are tuned from {1, 0.1, 0.01, 0.001}.

Experimental Results
Comparison of Training loss: To evaluate the performance
of RED-New, we conduct experiments with different packet
loss rate p that ranges from 0 to 40%, and compare the re-
sults with other baselines. Fig.3∼ 5 illustrate the training
losses of different algorithms against the number of train-
ing rounds with p set to 5%, 20%, and 40% respectively.
One can observe that both RED-New and GIANT converge
much faster than the first-order gradient descent method,
and the standard Newton method does not converge even
the packet loss rate is merely 5%. This throws light on the
limitations of certain algorithms in challenging network en-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15837



(a) w8a (b) a9a (c) gisette

Figure 5: Training loss comparison of GD, Standard Newton, GIANT, and RED-New over the unreliable network with a packet
loss rate p = 40% on three datasets, a9a, w8a, and gisette

Traffic(KB) p=5% p=20% p=40%
a9a w8a gisette Redu. a9a w8a gisette Redu. a9a w8a gisette Redu.

GD 3931 2449 12343 89.07% 4668 2875 14726 90.77% 6246 3902 19512 92.33%
STNEW 958640 ∞ 99.97% ∞ – ∞ –
GIANT 356 664 39 6.47% 500 945 78 40.63% 887 1555 117.19 61.69%

RED-New 325 593 39 – 331 585 39 – 337 679 39 –

Table 1: Comparison of Traffic Volume (KB) for Various Algorithms reaching the predefined objective value f̂ . Results are
shown for three datasets: a9a, w8a, and gisette. The Redu. item represents average reduction ratio contributed by RED-New in
Traffic volume compared to other benchmark algorithms.

vironments, as the inversion of Hessian is quite susceptible
to the impact of inaccurate transmission. When the packet
loss rate becomes large, RED-New considerably outper-
forms GIANT in terms of the number of training rounds till
convergence. This is especially evident when compared to
the robust performance of our RED-New algorithm. The ex-
periment outcomes align with the foundational intuition be-
hind RED-New. While it adopts an approximation direction
similar to GIANT, it extends further to a higher robustness
with an scaling strategy adaptive to the real-world packet
loss scenarios. This aligns with our goal of developing a
second-order algorithm that is both communication-efficient
and robust, demonstrating the resilience of our method in the
face of the unreliable network with packet loss.
Comparison of Traffic volume and Training time:

Table 1 measures the uplink traffic volume until the ob-
jective function reaches the predefined tolerance f̂ . For fair
evaluation, f̂ of a given dataset is selected as the largest
value of a series of minimum objectives attained by different
algorithms after a fixed number of training rounds.

The traffic volume for each iteration is calculated based on
the number of parameters transmitted uplink to the server,
interpreting a float 32 datum as equivalent to 4 bytes. The
empirical results reveal the notable efficiency of the RED-
New algorithm in curtailing traffic volume. Specifically,
when faced with a lossy environment characterized by a 40%
packet loss rate, RED-New reduces traffic by an average
of 92.33% compared to the first-order method, and 61.69%
in comparison to GIANT. Comparing across varying packet
loss rate, such reduction in communication volume becomes

more remarkable as the packet loss rate increasing. An il-
lustrative example of this is the comparative reduction ra-
tio against GIANT. In scenarios with a 5% lossy network,
RED-New achieves a traffic volume decrement of 6.47%.
This ratio soars to a substantial 61.69% when faced with a
packet loss rate of 40%. These numerical results highlight
the advantage of RED-New in terms of reduced traffic vol-
ume, especially as packet loss rates escalate.

Conclusions
In this paper, we propose RED-New, a second-order New-
ton method that is both robust to the packet loss and commu-
nication efficient. We prove that over unreliable network, our
algorithm can reach an improved linear-quadratic conver-
gence rate. Numerical experiments are conducted to evaluate
the convergence rate of RED-New, significantly surpassing
the first-order and second-order baselines over same packet
loss rate, ranging from 5% to 40%. In the future, it will be
interesting to investigate the trade-off between per-iteration
communication efficiency and the total number of training
rounds, utilizing Forward Error Correction (FEC) to achieve
an optimal balance.
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Suresh, A. T.; and Bacon, D. 2017. Federated Learn-
ing: Strategies for Improving Communication Efficiency.
arXiv:1610.05492.
Lee, J. D.; Lin, Q.; Ma, T.; and Yang, T. 2017. Distributed
Stochastic Variance Reduced Gradient Methods by Sam-
pling Extra Data with Replacement. Journal of Machine
Learning Research, 18(122): 1–43.
Li, M.; Andersen, D. G.; Smola, A. J.; and Yu, K. 2014.
Communication Efficient Distributed Machine Learning
with the Parameter Server. In Ghahramani, Z.; Welling,
M.; Cortes, C.; Lawrence, N.; and Weinberger, K., eds.,
Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc.
Li, X.; Huang, K.; Yang, W.; Wang, S.; and Zhang, Z.
2020. On the Convergence of FedAvg on Non-IID Data.
arXiv:1907.02189.
Liu, C.; Chen, L.; Luo, L.; and Lui, J. C. S. 2023. Com-
munication Efficient Distributed Newton Method with Fast
Convergence Rates. arXiv:2305.17945.
Lv, Z.; Chen, D.; and Wang, Q. 2021. Diversified Technolo-
gies in Internet of Vehicles Under Intelligent Edge Comput-
ing. IEEE Transactions on Intelligent Transportation Sys-
tems, 22(4): 2048–2059.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
Arcas, B. A. y. 2017. Communication-Efficient Learning
of Deep Networks from Decentralized Data. In Singh, A.;
and Zhu, J., eds., Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, 1273–1282.
PMLR.
Mishchenko, K.; Malinovsky, G.; Stich, S.; and Richtarik, P.
2022. ProxSkip: Yes! Local Gradient Steps Provably Lead
to Communication Acceleration! Finally! In Chaudhuri, K.;
Jegelka, S.; Song, L.; Szepesvari, C.; Niu, G.; and Sabato, S.,
eds., Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine
Learning Research, 15750–15769. PMLR.
Mitra, A.; Jaafar, R.; Pappas, G. J.; and Hassani, H. 2021.
Linear Convergence in Federated Learning: Tackling Client
Heterogeneity and Sparse Gradients. Advances in Neural
Information Processing Systems, 34: 14606–14619.
Nesterov, Y. 2007. Accelerating the Cubic Regularization
of Newton’s Method on Convex Problems. Math. Program.,
112(1): 159–181.
Nesterov, Y.; and Polyak, B. T. 2006. Cubic Regularization
of Newton Method and Its Global Performance. Math. Pro-
gram., 108(1): 177–205.
Peris, R.; Marquina, A.; and Candela, V. 2011. The con-
vergence of the perturbed Newton method and its applica-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15839



tion for ill-conditioned problems. Applied Mathematics and
Computation, 218(7): 2988–3001.
Peters, G.; and Wilkinson, J. H. 1979. Inverse Iteration, Ill-
Conditioned Equations and Newton’s Method. SIAM Re-
view, 21(3): 339–360.
Pilanci, M.; and Wainwright, M. J. 2017. Newton Sketch:
A Near Linear-Time Optimization Algorithm with Linear-
Quadratic Convergence. SIAM Journal on Optimization,
27(1): 205–245.
Safaryan, M.; Islamov, R.; Qian, X.; and Richtarik, P. 2022.
FedNL: Making Newton-Type Methods Applicable to Fed-
erated Learning. Proc. of the 39th International Conference
on Machine Learning, 162: 18959–19010.
Shamir, O.; Srebro, N.; and Zhang, T. 2014.
Communication-Efficient Distributed Optimization us-
ing an Approximate Newton-type Method. In Xing, E. P.;
and Jebara, T., eds., Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceed-
ings of Machine Learning Research, 1000–1008. Bejing,
China: PMLR.
Sheth, A.; Nedevschi, S.; Patra, R.; Surana, S.; Brewer, E.;
and Subramanian, L. 2007. Packet Loss Characterization
in WiFi-Based Long Distance Networks. In IEEE INFO-
COM 2007 - 26th IEEE International Conference on Com-
puter Communications, 312–320.
Smith, V.; Forte, S.; Ma, C.; Takáč, M.; Jordan, M. I.;
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