
BVT-IMA: Binary Vision Transformer with Information-Modified Attention

Zhenyu Wang1*, Hao Luo4, 5†, Xuemei Xie2, 3†, Fan Wang4, Guangming Shi2

1Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
2Guangzhou Institute of Technology, Xidian University, Guangzhou 510700, China

3Pazhou Lab, Huangpu, 510555, China
4DAMO Academy, Alibaba group, 310023, Hangzhou, China

5Hupan Lab, 310023, Hangzhou, China
zy wang1995@outlook.com, {michuan.lh, fan.w}@alibaba-inc.com, xmxie@mail.xidian.edu.cn, gmshi@xidian.edu.cn

Abstract

As a compression method that can significantly reduce the
cost of calculations and memories, model binarization has
been extensively studied in convolutional neural networks.
However, the recently popular vision transformer models
pose new challenges to such a technique, in which the bina-
rized models suffer from serious performance drops. In this
paper, an attention shifting is observed in the binary multi-
head self-attention module, which can influence the infor-
mation fusion between tokens and thus hurts the model per-
formance. From the perspective of information theory, we
find a correlation between attention scores and the informa-
tion quantity, further indicating that a reason for such a phe-
nomenon may be the loss of the information quantity induced
by constant moduli of binarized tokens. Finally, we reveal the
information quantity hidden in the attention maps of binary
vision transformers and propose a simple approach to mod-
ify the attention values with look-up information tables so
that improve the model performance. Extensive experiments
on CIFAR-100/TinyImageNet/ImageNet-1k demonstrate the
effectiveness of the proposed information-modified attention
on binary vision transformers.

Introduction
Benefiting from the powerful long-range modeling capabil-
ity of multi-head self-attention (MSA) module, vision trans-
former (ViT) (Dosovitskiy et al. 2020) and its variants (Tou-
vron et al. 2021; Liu et al. 2021a) have achieved promising
performance against the convolution neural networks in a
variety of computer vision tasks (Amini, Periyasamy, and
Behnke 2021; Ding et al. 2022; He et al. 2021). Although
ViTs provide an architecture with better feature represen-
tation, the high computational cost and massive parameters
restrict their application in resource-limited devices (Chen
et al. 2021; Chuanyang et al. 2022). Thus, the ViT com-
pression technology attracts wide attention, emerging vari-
ous compression methods such as structured pruning (Yang
et al. 2021; Yu et al. 2021; Yin et al. 2023), token reduc-
tion (Ryoo et al. 2021; Liang et al. 2021; Bolya et al. 2022),
weights sharing (Lan et al. 2019; Zhang et al. 2022a), and
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Figure 1: Attention shifting in binary ViT. ‘BVT’ is short
for ‘binary ViT’. The attention maps and their correspond-
ing average attention on the input image of different heads in
the same block are visualized. All results are sampled from
DeiT-Tiny on TinyImageNet. Compared to that in ViT atten-
tion maps, the highlight attention of BVT seriously shifts.

quantization (Liu et al. 2021c; Yuan et al. 2022; Li et al.
2022).

Model binarization is a special compression method that
quantizes the activations and weights from 32-bits to 1-bit,
resulting in an almost 32× reduction in memory consump-
tion as well as significant speed-up induced by replacing
the float-point multiplications with bit-wise operations. Un-
fortunately, the performance drop caused by its poor repre-
sentation capability and optimization difficulties restrict the
development of such a method. To tackle the bottlenecks
of model binarization, several studies have been conducted
in convolutional neural networks (CNNs). A variety of op-
timization schemes are proposed from the perspectives of
the representation ability (Liu et al. 2020b,a; Zhang et al.
2022b), the quantization error (Rastegari et al. 2016; Xu
et al. 2023), and the gradient approximation (Bai, Wang, and
Liberty 2019; Qin et al. 2020), which have significantly nar-
rowed the performance gap between binary CNNs and real-
value ones. For transformers, researchers have also made
progress on BERT (Kenton and Toutanova 2019) for nat-
ural language processing (NLP) tasks by migrating some
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CNN binarization approaches (Liu et al. 2022) and correct-
ing the attention value range mismatch (Qin et al. 2022).
Although these methods perform well on NLP tasks, recent
studies (He et al. 2023a; Gao et al. 2023) find it is still chal-
lenging to binarize ViTs due to the more complex features
in vision tasks and indicate that the improper binarization in
has a large impact on the model performance, which means
correcting MSA is the key to improve the accuracy of binary
ViTs.

In this paper, we observe a phenomenon named attention
shifting that occurs in binarized ViT, which may be a rea-
son for the binary-attention-induced accuracy degradation.
Compared to the attention maps in the real-value model,
the positions of highlight attention values shift in the bi-
nary ViT as shown in Figure 1. Such a deviation changes
the regions of interest to ViT and thus prevents the model
from extracting discriminative features from key regions in
images, making the binary ViTs hard to be optimized. Fur-
ther analyzing and comparing the calculation processes of
self-attentions in two models (real-value ViT and binary
ViT), we find the difference between the moduli of their
tokens may be a reason for the attention shifting. Given a
query Q and a key K, the attention value A = QKT =
∥Q∥2 ∥K∥2 · cos ⟨Q,K⟩ is determined by two factors, the
normalized similarity (cos ⟨Q,K⟩) between tokens along
with the moduli of tokens (∥Q∥2 ∥K∥2) which are positively
correlated to the information quantity (detailed analyses in
subsequent sections). For the real-value model, two factors
dynamically change with the query and key. However, for
binary ViTs, the constant moduli of queries and keys caused
by binarization can not represent the changes of information
quantities in different tokens, leaving only one dynamic fac-
tor (the normalized similarity) in the attention value and thus
losing much information.

Based on these analyses, we explore the representation of
the information quantity hidden in the attention of binary
ViTs. Specifically, the process of computing an attention
score in binary models is considered as several Bernoulli tri-
als, for which its probability-dense function (PDF) can be
achieved. According to the PDF of attention scores and the
limited attention values in binary MSA, the missing infor-
mation quantity can then be represented by a group of learn-
able PDF-related modification factors that are optimized to-
gether with the model weights. The modification factors of
each attention head form an information table, with which
the attention maps can be modified by simple looking-up op-
erations. With the help of such an information modification,
the attention shifting will be relieved as shown in Figure 1,
improving the feature fusion capability of binary ViTs. The
code will be uploaded to https://github.com/Daner-Wang/
BVT-IMA.git.

Related Work
CNN binarization. Due to the limited representation ca-
pacity and the non-differentiable quantizer (e.g., sign func-
tion), model binarization will cause serious performance
degradation. Several methods have been proposed to in-
crease the accuracy of binary CNNs from perspectives of

binarization-friendly architecture (Bulat, Martinez, and Tz-
imiropoulos 2021; Bethge et al. 2021; Zhang, Zhang, and
Lew 2022), optimizing the gradient estimator (Courbariaux
and Bengio 2016; Ding, Liu, and Zhou 2022; He et al.
2023b), knowledge distillation (Mishra and Marr 2018; Mar-
tinez et al. 2020), etc. XnorNet (Rastegari et al. 2016) pro-
poses to replace the matrix multiplications with bit-wise op-
erations and increase the representation capability by em-
ploying float-point scaling factors for binarized weights.
ReActNet (Liu et al. 2020b) introduces generalized Sign
and PReLU functions for distribution reshaping and shift-
ing. Real-to-binary (Liu et al. 2021b) explores the influ-
ence of different training schemes on binary CNNs and
reveals that the Adam optimizer can overcome the lo-
cal optimization induced by zero gradients. IR-Net (Qin
et al. 2020) narrows the gradient gap between the quan-
tizer and gradient estimator by smoothing the backward pro-
cess. ReBNN (Xu et al. 2023) reduces the binarization error
through dynamic constraints. Bi-Real Net (Liu et al. 2020a)
and PokeBNN (Zhang, Zhang, and Lew 2022) enhance the
information capacity of binary models with extra residual
architectures. Unfortunately, these approaches have not gen-
eralized well to transformer models (Liu et al. 2022), leading
to the exploration of binary transformers.

Transformer binarization. In the field of NLP, re-
searchers have proposed some binarized transformers and
closed the gap with real-value models to a few percent-
age points. BinaryBERT (Bai et al. 2021) preliminarily at-
tempts the binarization in words embedding and weights
for BERT (Kenton and Toutanova 2019). BiBERT (Qin
et al. 2022) firstly proves the practicability of fully binarized
transformers and indicates that the attention map should be
binarized to {0, 1}. BiT (Liu et al. 2022) further shows the
performance of binarized BERT by the elastic binarization
function and multi-distillation. Recently, studies for ViT bi-
narization have also been started, in which the more complex
vision features make it a new challenge. BiViT (He et al.
2023a) takes the long-tailed distribution of softmax atten-
tion into account and proposes a softmax-aware binarization
to reduce the quantization error in attention maps. GSB (Gao
et al. 2023) (Group Superposition Binarization) also indi-
cates that the poor feature representation in the binarized
self-attention module has a large impact on the performance
and introduces a group superposition binarization scheme
to increase its feature diversity. Compared to these meth-
ods, this paper further analyzes the possible reason for the
accuracy decline induced by binary self-attention from the
perspective of information quantity and improves the per-
formance with a simple learnable information table, which
can keep same float operations during inference.

ViT Binarization
In general, a ViT model is stacked by several transformer
blocks including multi-head self-attention (MSA) modules,
LayerNorm layers, and the fully connected (FC) layers of
Feed-Forward Networks (FFN). Following suggestions of
previous binarization studies (Qin et al. 2022; Liu et al.
2022), a binary ViT baseline is built as that shown in Fig-
ure 2, in which the FC layers as well as the attention maps in
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Figure 2: Binarized Vision Transformer block. The weights WB of fully connected (FC) layers are binarized to {−1, 1}. The
orange circular rectangles denote the binarization for activations. The inputs of MSA/FFN, and the query/key/value in MSA
are quantized to {−1, 1}. The normalized attention maps in MSA and the nonlinear outputs between two FC layers of FFN are
binarized to {0, 1}. The normalization layer with few parameters and the non-parametric residual connections are retained.

all blocks are binarized. The activations other than the atten-
tion maps and the outputs of activation functions are quan-
tized to {−1, 1} by the sign function, for which the Straight-
Through Estimator (STE) (Bengio, Léonard, and Courville
2013) is used to optimize its backward process. The channel-
wise learnable bias βx ∈ RD and the layer-wise learnable
scale factor αx ∈ R are applied for adjusting the distribu-
tion and reducing the quantization error as BiT (Liu et al.
2022) and then the binarization function is formulated as:

XB = αx · S(XR − βx), (1)

where S(·) means sign-function, XR ∈ RN×D is the real-
value activations, XB ∈ {−αx, αx}N×D denotes the quan-
tized features, N is the number of tokens, and D is the token
dimension. The real-value weights WR ∈ RD×D′

are cen-
tralized to zero-mean before binarization for larger informa-
tion entropy and then quantized as:

WB = αw · S(WR − W̄R), αw =
∥WR∥

1

D×D′ , (2)

where W̄R is the mean value of weights, D and D′ denote
the input channels and output channels, respectively. With
the quantized weights and inputs, the outputs X ′ ∈ RN×D′

of FC layers can be reformulated as:

X ′ = XBWB = αxαw ·S(XR−βx)S(WR− W̄R), (3)

which can be accelerated by the efficient XNOR and Bit-
count operators (Rastegari et al. 2016).

Particularly, because the real-values of the activation
function (e.g., GELU) outputs and the attention map after
softmax normalization are round zero in the negative semi-
axis, these activations are suggested (Liu et al. 2022) to bi-
narize to {0, 1}:

XB = αx ·
⌊
Clip(

XR − βx

αx
, 0, 1)

⌉
, (4)

where ⌊·⌉ is the round function. The gradient of the scal-
ing factor in such a discontinuous differentiable function is
estimated as that in LSQ (Esser et al. 2020).

Information Loss in Binary Attention
As the key module used to fuse information among tokens,
the multi-head self-attention has a large impact on ViTs. A

(a) Real-value query and key (b) Binary query and key

Figure 3: Query and key in different spaces. (a) shows the
projections of the real-value query and key in the two-
dimensional surface, in which vectors are located on a plane
with diverse moduli. (b) demonstrates the projections of the
binarized query and key, in which the moduli for queries and
keys are constants.

special information loss that happens only in the attention
map of binary ViTs causes the attention shifting and thus
significantly influences the model performance.

Real-value attention. In real-value ViTs, the attention
map of a head can be formulated as:

Softmax

(
AR

√
d

)
= Softmax

(
(QR)(KR)T√

d

)
, (5)

where QR and KR ∈ RN×d denote the real-value query
and key in the head. The attention score AR

i,j in the i-th row,
and the j-th column before softmax normalization can be
rewritten as:

AR
i,j =

∥∥QR
i

∥∥
2

∥∥KR
j

∥∥
2
· cos

〈
QR

i ,K
R
j

〉
. (6)

This demonstrates the attention value in real-value MSA is
determined by the cosine distance as well as the moduli of
tokens, both of which change with the query and key.

Binary attention. The binarization will be adopted to
the self-attention twice as that shown in Figure 2. Queries
and keys are binarized before the matrix multiplication. The
achieved attention maps will be binarized after softmax nor-
malization. Because the normalization and the binarization
operations will not change the relative magnitudes of atten-
tion values, the positions of highlight attentions are deter-
mined by the products (attention scores) of binary queries
and keys. As demonstrated in Figure 3(b), the elements in
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queries and keys are binarized to {−αq, αq} and
{
−αk, αk

}
resulting in a fixed modulus for any queries and keys in a
block: ∥∥QB

i

∥∥
2
= αq

√
d,
∥∥KB

j

∥∥
2
= αk

√
d, (7)

where d is the dimensions of the vector. The attention score
before softmax normalization is thus formulated as:

AB
i,j =

∥∥QB
i

∥∥
2

∥∥KB
j

∥∥
2
· cos

〈
QB

i ,K
B
j

〉
= αqαkd · cos

〈
QB

i ,K
B
j

〉
,

(8)

where αq and αk are constant scaling factors for tokens in
the query and key matrices, respectively. Compared to the
real-value model with tokens of dynamic moduli in a head
(e.g.,

∥∥QR
i

∥∥
2
∈ R+), the modulus of any token is a constant

in binarized ViTs (e.g.,
∥∥QB

i

∥∥
2
= αq

√
d), leading to the

attention scores rely only on the changes of cosine distances
between tokens.

Loss of information quantity. The constant moduli in bi-
nary MSA are considered to have lost the information quan-
tity hidden in the attention score, leading to the attention
shifting to some extent. To explain this, we review the con-
notation of the moduli in real-value attention from the per-
spective of information theory. The activations in ViTs with
maximum information entropy after full convergence ap-
proximately follows zero-mean Gaussian distribution (Qin
et al. 2022). Thus, the total information quantity Iqi of the
token QR

i can be estimated by:

Iqi =
∑d−1

j=0 − log 1√
2πσ

exp

(
− (QR

i,j)
2

2σ2

)
= 1

2σ2

∑d−1
j=0

(
QR

i,j

)2
+ d log

√
2πσ

⇒
∑d−1

j=0

(
QR

i,j

)2 . (9)

where ⇒ means positive correlation. Meanwhile, The mod-
ulus of the token is:∥∥QR

i

∥∥
2
=

√∑d−1
j=0

(
QR

i,j

)2 ⇒
d−1∑
j=0

(
QR

i,j

)2
. (10)

Obviously,
∥∥QR

i

∥∥
2
⇒ Iqi , which means the moduli of real-

value tokens represent the information quantity contained
in them.

∥∥QR
i

∥∥
2

∥∥KR
j

∥∥
2
⇒ Iqi I

k
j can then be regarded as

the information quantity of the real-value attention score.
Therefore, the attention scores in real-value MSA measure
both the correlation between different tokens and the infor-
mation quantity contained in them. In binary MSA, the at-
tention values with constant modulus lose the attribute of
the information quantity. Binary ViTs are thus insensitive
to such information and the relative magnitudes among at-
tentions are changed. These biased attention maps influence
the information fusion between tokens and finally restrict the
performance of binary ViTs.

Information Modified Binary Attention
To relieve the attention shifting caused by the loss of in-
formation quantity in binary MSA, this paper proposes to
modify the attention map from the perspective of informa-
tion theory and extracts the information quantity hidden in
binary attention by a simple scheme.

Each element in the attention maps of binary MSA can be
calculated by the XNOR operator as follow:

AB
i,j =

∑d−1
t=0 QB

i,tK
B
j,t

= αqαkd
∑d−1

t=0 S(QB
i,t)⊙ S(KB

j,t),
(11)

where ⊙ denotes the XNOR operator. The XNOR operation
between the two elements with only two results (S(QB

i,t) ⊙
S(KB

j,t) ∈ {−1, 1}) can be considered as the result of one
Bernoulli trial (Qin et al. 2022) with the positive probability
p, i.e., the probability of S(QB

i,t)⊙ S(KB
j,t) = 1. Therefore,

the attention score AB
i,j obeys Bernoulli distribution B (d, p).

Assuming the Hamming distance between the query token
and the key token is ni,j which denotes the number of times
the result of the XNOR operation is 1 during the calcula-
tion of an attention score, the attention score can then be
rewritten as AB

i,j = αqαk(2ni,j − d). Hence, the probability
density function (PDF) of AB

i,j is:

f
(
AB

i,j

)
= C

ni,j

d (p)ni,j (1− p)d−ni,j . (12)

Since the PDF of attention score in binary MSA has been
obtained, the corresponding information quantity Iai,j is for-
mulated as:

Iai,j = − log f(AB
i,j) = log 1

f(AB
i,j)

⇒
(
f(AB

i,j)
)−1

⇒
(
C

ni,j

d (p)ni,j (1− p)d−ni,j
)−1

.

(13)

It is obvious that the information quantity of the attention
score in binary MSA is related to the Hamming distance ni,j

between tokens and the positive probability p. Although the
Hamming distance ni,j can be easily achieved from the at-

tention score AB
i,j by ni,j =

1
2 (

AB
i,j

αqαk +d), the probability p is
different for diverse scores and can not be directly inferred.
Fortunately, due to the definite token dimensions and results
of XNOR operations, the attention score here involves only
d + 1 values, leading to limited probabilities required to be
estimated. Taking advantage of such a property, the informa-
tion quantity of attention scores in a binary MSA head can
be approximated with d + 1 learnable modification factors{
γni,j |ni,j = 0, 1, 2, . . . , d

}
:

γni,j =
(
C

ni,j

d (pni,j )
ni,j (1− pni,j )

d−ni,j
)−m

, (14)

where pni,j
is the unknown probabilities, m ∈ R+ is a

hyper-parameter used during the initialization. Specifically,
due to lack of sufficient prior information, the uncertain term
(pni,j

)ni,j (1 − pni,j
)d−ni,j will be set to a constant value 1

during the initialization for simplicity. This will lead to a
large range of initial modification factors, which are hard to
be optimized. Thus, m is set to 0.5⌊log2(log10(max(C

ni,j
d )))⌋,

scaling the initial modification factors to a range (0, 1] easy
to be optimized. As shown in Figure 4, all modification fac-
tors form a table used to correct the attention map. For each
attention score AB

i,j , the corresponding Hamming distance
ni,j is also the index used to identify the modification factor
γni,j

. The attention score is then modified as:

ÂB
i,j = AB

i,j ·
∣∣γni,j

∣∣ . (15)
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Figure 4: Attention modification for binary MSA. The attention score AB
i,j in a MSA head is revised with d + 1 learnable

modification factors {γ0, γ1, . . . , γd}, which denotes the information quantity contained in binary attentions.

Particularly, the revised attention can be further formu-
lated as ÂB

i,j = αqαk(2ni,j − d) ·
∣∣γni,j

∣∣, in which ni,j and
γni,j contain d + 1 one-to-one possible values. Hence, the
information table can be updated as:

γ̂ni,j
=

∣∣γni,j

∣∣·αqαk(2ni,j−d), ni,j = 0, 1, 2, . . . , d. (16)

The scaling factors are fused into the table, simplifying the
uncorrected attention score AB

i,j and the index ni,j to AB
i,j =

S(QR
i −βq)S(KR

j −βk)T and ni,j = (AB
i,j +d) >> 1, re-

spectively. The procedure of the self-attention modification
can then be replaced by filling an N × N map with values
γ̂ni,j

identified by the index ni,j .

Experiments
Implementation Details
The proposed method is applied to popular ViT mod-
els (DeiT (Touvron et al. 2021), Swin (Liu et al.
2021a), and NesT (Zhang et al. 2022c)) and evaluated
on the CIFAR-100 (Krizhevsky and Hinton 2009)/Tiny-
ImageNet (Pouransari and Ghili 2014)/ImageNet-1k (Rus-
sakovsky et al. 2015) benchmark of 100/200/1000 classes.
All experiments are implemented with the Pytorch (Paszke
et al. 2019) and TIMM library on NVIDIA-V100 GPUs.
The embedding layer and classification head are quan-
tized to 8 bits as GSB (Gao et al. 2023) while the MSA,
and FFN modules are binarized. Two-stage training is
adopted, in which only weights are binarized in the first
stage. Activation binarization and information tables are
adopted in the second stage. The Adam optimizer with-
out weight decay is employed. The cosine annealing sched-
ule with 5 epochs of warm-up is applied to adjust the
learning rate initialized to 5e − 4. For ImageNet-1k, a
two steps binarization scheme 1 is adopted during warm-
up to help models to converge on the complex dataset.
The knowledge distillation is adopted for each quantized
model to learn from its corresponding real-value teacher
with the cross entropy loss function and 0.5 distillation fac-
tor. Models are trained for 300/150/150 epochs in each stage

1activations are quantized as: 32bits ⇀ 2bits ⇀ 1bit

on CIFAR-100/TinyImageNet/ImageNet-1k. Limited by the
GPU memory, the batch size is 128 for DeiT-Tiny in both
stages while 128/64 for the other models in the first/second
stage. The data augmentation and other hyper-parameters
are the same as those in DeiT.

Performance on Full-Attention Transformer
The performances of the proposed method on binary DeiT
models are shown in Table 1 and compared with the latest
reported ViT binarization studies. We reproduce the archi-
tecture of BiT as the binary baseline. On all benchmarks,
the proposed BVT-IMA achieves the state-of-the-art (SOTA)
performance. Compared to GSB (Gao et al. 2023) that intro-
duces several scaling factors to MSA, BVT-IMA achieves
better performance (75.77% vs 71.10%) with less operations
(0.15G vs 0.32G). Compared with BiT (Liu et al. 2022), the
information modified attention significantly improves the
performance with a few more FLOPs. On ImageNet-1k, the
proposed method outperforms BiBERT (Qin et al. 2022) and
BiViT (He et al. 2023a) in the same quantization setting. The
comparison results show that the proposed information mod-
ification is a novel and effective way to improve the feature
extraction capability of binary ViTs rather than just stacking
scaling factors.

Performance on Local-Attention Transformer
In addition to DeiT models, BVT-IMA is also evaluated on
popular local-attention transformers (LATs) (e.g. Swin (Liu
et al. 2021a), and NesT (Zhang et al. 2022c)) and com-
pared with recently most related studies, of which the re-
sults are shown in Table 2, and Table 3. The results of ap-
proaches migrated from NLP (e.g., BiBERT, and BiT) are
reproduced by BiViT. It can be found that naively migrating
the methods that succeed in NLP transformers to the vision
field seriously may hurt the model performance (Table 2:
only 32.39% ∼ 41.89% on TinyImageNet) and even lead
to fail convergence (Table 3: BiBERT). Compared to previ-
ous methods, our BVT-IMA still obtains the SOTA perfor-
mances on LATs, which are even better than those of the
method (e.g., BiViT) with channel-wise scaling factors.
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Dataset Model Method W-A Top1 BOPs (G) FLOPs (G) OPs (G)

CIFAR-100

DeiT-Tiny
Real-value 32-32 86.81% 0 1.26 1.26

BiT (Liu et al. 2022) 1-1 43.59% 1.23 0.036 0.06
BVT-IMA (Ours) 1-1 62.46% 1.23 0.037 0.06

DeiT-Small

Real-value 32-32 88.80% 0 4.63 4.63
Q-ViT (Li et al. 2022) 1-1 50.26% − − −
GSB (Gao et al. 2023) 1-1 71.10% 4.57 0.25 0.32
BiT (Liu et al. 2022) 1-1 66.41% 4.57 0.072 0.14
BVT-IMA (Ours) 1-1 75.77% 4.57 0.074 0.15

TinyImageNet

DeiT-Tiny
Real-value 32-32 75.11% 0 1.26 1.26

BiT (Liu et al. 2022) 1-1 24.32% 1.23 0.036 0.06
BVT-IMA (Ours) 1-1 39.67% 1.23 0.037 0.06

DeiT-Small
Real-value 32-32 78.56% 0 4.63 4.63

BiT (Liu et al. 2022) 1-1 38.77% 4.57 0.072 0.14
BVT-IMA (Ours) 1-1 43.42% 4.57 0.075 0.15

ImageNet-1k

DeiT-Tiny

Real-value 32-32 74.48% 0 1.26 1.26
BiT (Liu et al. 2022) 1-1 21.68% 1.23 0.036 0.06
BVT-IMA (Ours) 1-1 30.03% 1.23 0.038 0.06

BiBERT (Qin et al. 2022) 1-1/32 25.40% − − 0.39
BiViT (He et al. 2023a) 1-1/32 37.90% − − 0.39

BVT-IMA (Ours) 1-1/32 43.99% 22.95 0.038 0.40

DeiT-Small
Real-value 32-32 81.16% 0 4.63 4.63

BiT (Liu et al. 2022) 1-1 30.73% 4.57 0.072 0.14
BVT-IMA (Ours) 1-1 47.98% 4.57 0.075 0.15

DeiT-Base

Real-value 32-32 83.38% 0 17.66 17.66
BiT (Liu et al. 2022) 1-1 38.19% 17.54 0.145 0.42
BVT-IMA (Ours) 1-1 62.65% 17.54 0.150 0.42

BiBERT (Qin et al. 2022) 1-1/32 67.50% − − 5.81
BiViT (He et al. 2023a) 1-1/32 69.60% − − 5.81

BVT-IMA (Ours) 1-1/32 74.06% 365.09 0.150 5.85

Table 1: Performance of binary DeiT on different datasets. ‘BOPs’ and ‘FLOPs’ denote the number of bit-wise operations and
float-point operations during inference, respectively. ‘OPs’ is a sum of BOPs and FLOPs, i.e., ‘OPs = BOPs

64 +FLOPs’ (Liu
et al. 2020b). ‘W-A’ denotes the bit width of weights and activations. ‘1-1/32’ indicates that all weights are binarized while
activations in MLP modules are maintained at full precision as BiViT (He et al. 2023a).

Model Method W-A Top1

Swin-Tiny

Real-value 32-32 78.86%
BiBERT (Qin et al. 2022) 1-1 41.89%

BiT (Liu et al. 2022) 1-1 40.52%
BiViT (He et al. 2023a) 1-1 58.66%

BVT-IMA (Ours) 1-1 60.85%

NesT-Tiny

Real-value 32-32 79.94%
BiBERT (Qin et al. 2022) 1-1 32.39%

BiT (Liu et al. 2022) 1-1 34.72%
BiViT (He et al. 2023a) 1-1 52.21%

BVT-IMA (Ours) 1-1 64.23%

Table 2: Performance of binary LATs on TinyImageNet.

Ablation Study
Influence of different information table settings. The ini-
tialization and the size of the information table will affect
the attention modification. Thus, we further analyze the in-

Model Method W-A Top1

Swin-Tiny

Real-value 32-32 81.20%
BiBERT (Qin et al. 2022) 1-1/32 68.30%
BiViT (He et al. 2023a) 1-1/32 70.80%

BVT-IMA (Ours) 1-1/32 72.03%

NesT-Tiny

Real-value 32-32 81.10%
BiBERT (Qin et al. 2022) 1-1/32 0.27*%
BiViT (He et al. 2023a) 1-1/32 68.70%

BVT-IMA (Ours) 1-1/32 71.00%

Table 3: Performance of binary LATs on ImageNet-1k.
‘*’ denotes the results of fail convergence reported by
BiViT (He et al. 2023a).

fluence of different table settings on the model performance.
All experiments are conducted on DeiT-Tiny and evaluated
on CIFAR-100 and TinyImageNet. Two initialization ap-
proaches ‘One-init’ and ‘Bernoulli-init’ are evaluated. ‘One-
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Dataset w/ Table Initialization Top1

CIFAR-100
× − 43.59%
✓ One-init 46.04%
✓ Bernoulli-init 62.46%

TinyImageNet
× − 24.32%
✓ One-init 26.20%
✓ Bernoulli-init 39.67%

Table 4: Influence of information table initialization on the
model performance. The evaluated model is DeiT-Tiny.

Dataset w/ Table Table mode Top1

CIFAR-100
× − 43.59%
✓ single-head 62.16%
✓ multi-head 62.46%

TinyImageNet
× − 24.32%
✓ single-head 39.19%
✓ multi-head 39.67%

Table 5: Influence of multi-head information table on the
model performance.

init’ denotes initializing all γni,j to 1 while ‘Bernoulli-init’
introduces the Bernoulli distribution prior to γni,j based on
Eq. 14. As shown in Table 4, the ‘Bernoulli-init’ achieves
better performance on both benchmarks, which proves the
rationality of introducing the Bernoulli prior. Additionally,
the impact of whether the information table is shared by all
heads in the same MSA module is analyzed as well, i.e., the
influence of single/multi-head table. Table 5 demonstrates
the results of weather sharing a table for different heads. The
diversity induced by the multi-head information table is also
slightly beneficial for binary ViT models.

Influence of the information table on attention maps.
We also employ quantitative analysis of the changes in atten-
tion maps after modification and propose a criterion to mea-
sure the quality of the attention maps, in which the maps
of high consistency to those in real-value models are con-
sidered to be high-quality maps. As described in previous
sections, the attention shifting changes the relative magni-
tude between attention scores, misleading ViTs to pay less
attention to significant tokens. Hence, the quality of atten-
tion maps in binary ViTs can be measured by how many rel-
ative magnitudes are retained the same as those in real-value
models. For example, given an attention score AR

i,j larger
than another score AR

i,t in the real-value model. If the cor-
responding score AB

i,j is still larger than AB
i,t in the binary

model, then the relative magnitude between such two atten-
tion values is considered to be retained. This case and its
opposite case are respectively recorded as 1 and 0 by the rel-
ative magnitude consistency ci,j,t

2. Based on this, we intro-
duce a criterion named consistent relative magnitude (CRM)
ratio to evaluate the quality of the attention maps after bi-

2ci,j,t = max(S(AR
i,j −AR

i,t) · S(AB
i,j −AB

i,t), 0)

(a) CRM of DeiT-Tiny (b) CRM of DeiT-Small

Figure 5: Consistent relative magnitude ratio of softmax at-
tentions. ‘CRM’ denotes the consistent relative magnitude
which measures how many attention values in binary mod-
els retain their magnitude relationships as those in real-value
models. The results are evaluated on CIFAR-100.

narization as CRM = 1
N3

∑N−1
i=0

∑N−1
j=0

∑N−1
t=0 ci,j,t. The

higher the CRM ratio is, the better the quality of attention
maps is. As shown in Figure 5, the CRM ratio of models with
information tables is higher (orange bars), which proves that
the proposed method indeed relieves the attention shifting
and improves the attention map quality in binary ViTs.

More details and results are reported in the supplementary
material, including Pytorch implementation of IMA, visual-
ization of attention maps, and so forth.

Conclusion and Discussion
In this paper, we indicate the attention shifting that occurs
after ViT binarization, which has a large impact on the fea-
ture fusion and the model performance. By comparing and
analyzing the differences in self-attention modules between
binary and real-value ViTs, we further propose that the de-
ficiency of the information quantity in binary ViTs may be
a reason for such a phenomenon. Then, a simple approach
is introduced to represent the information quantity hidden in
the attention score of a binarized ViT with limited learnable
modification factors, which form information tables for dif-
ferent attention heads. With these tables, the missing infor-
mation can be efficiently achieved by looking up operations.
Beneficial from these information modification factors, the
attention shifting as well as the performance in binary ViTs
are improved. Finally, we also introduce a criterion named
consistent relative magnitude (CRM) ratio to measure the
quality of attention maps. Experiments on different bench-
marks demonstrate that our information-modified attention
(IMA) is more suitable to binary ViTs, leading to even more
than 20% improvement in accuracy. As a primary attempt
to optimize binary ViTs from the perspective of information
theory, more future studies can be explored to design more
reasonable architectures based on it.
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