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Abstract

Graph neural networks (GNNs) have found widespread appli-
cation in modeling graph data across diverse domains. While
GNNs excel in scenarios where the testing data shares the
distribution of their training counterparts (in distribution, ID),
they often exhibit incorrect predictions when confronted with
samples from an unfamiliar distribution (out-of-distribution,
OOD). To identify and reject OOD samples with GNNs, re-
cent studies have explored graph OOD detection, often fo-
cusing on training a specific model or modifying the data
on top of a well-trained GNN. Despite their effectiveness,
these methods come with heavy training resources and costs,
as they need to optimize the GNN-based models on train-
ing data. Moreover, their reliance on modifying the original
GNNs and accessing training data further restricts their uni-
versality. To this end, this paper introduces a method to detect
Graph Out-of-Distribution At Test-time (namely GOODAT),
a data-centric, unsupervised, and plug-and-play solution that
operates independently of training data and modifications of
GNN architecture. With a lightweight graph masker, GOO-
DAT can learn informative subgraphs from test samples, en-
abling the capture of distinct graph patterns between OOD
and ID samples. To optimize the graph masker, we metic-
ulously design three unsupervised objective functions based
on the graph information bottleneck principle, motivating the
masker to capture compact yet informative subgraphs for
OOD detection. Comprehensive evaluations confirm that our
GOODAT method outperforms state-of-the-art benchmarks
across a variety of real-world datasets.

Introduction
Graph neural networks (GNNs) are potent representation
learning methods that focus on processing graph data (Wang
et al. 2019a,b), and have been widely used in financial net-
works (Zheng et al. 2021), binary code analysis (Wang et al.
2023a), sarcasm detection (Wang et al. 2023b; Yu et al.
2023), etc. Generally, GNNs provide strong support for ac-
curate prediction of downstream tasks by capturing the dis-
tribution of training data (Kipf and Welling 2017; Zhang
et al. 2021). However, when these well-trained GNN mod-
els are deployed in open-world scenarios, they inevitably en-
counter graph samples from unknown classes, the so-called
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Figure 1: Comparisons between GOODAT and other meth-
ods. To detect OOD samples, (a) most GNN-based meth-
ods need to learn a detector from the training data (Liu
et al. 2023a); (b) other data-centric methods learn an MLP
to modify the training data while keeping the well-trained
GNN fixed (Guo et al. 2023). (c) In contrast, our test-time
OOD detector directly works on the test data without need-
ing to consult the training data and change the parameters of
the well-trained GNN.

graph “Out-of-Distribution (OOD)” data (Liu et al. 2023a).
On the OOD data, well-trained GNNs may not be effective,
as the features and distribution patterns of these OOD graphs
are not exposed during GNN training (Bai et al. 2023). This
situation can lead to prediction errors when dealing with
these unknown distribution samples, thereby reducing the
reliability of GNNs. In this scenario, an ideal GNN model
should possess the capability to identify and reject OOD
samples, rather than misclassifying them as belonging to the
in-distribution (ID) classes.

To effectively identify OOD graph samples, various graph
OOD detection approaches have emerged (Huang, Wang,
and Fang 2022; Hoffmann, Galke, and Scherp 2023). A sub-
set of research (Liu et al. 2023a) centers around crafting
GNN-based OOD detection models that are meticulously
tailored for graph OOD detection tasks. While demonstrat-
ing effectiveness, they need to train additional GNNs from
scratch, resulting in a heavy resource expenditure. Another
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type of methodology solves the graph OOD detection prob-
lem from a data-centric perspective (Zheng et al. 2023a),
implementing downstream tasks by modifying data on top
of well-trained GNNs. As a typical method, AAGOD (Guo
et al. 2023) imposes a multi-layer perception (MLP) based
parametric matrix on the adjacency matrix of each training
graph. This is done without changing the parameters of the
well-trained GNN, effectively widening the differences be-
tween OOD and ID graphs. By merely optimizing the MLP
instead of retraining the GNN, AAGOD mitigates the effort
required for model design and parameter training.

Despite the effectiveness of the aforementioned methods,
both types of existing graph OOD detection approaches rely
on the training dataset, leading to several limitations. Firstly,
training a task-specific GNN-based model for OOD de-
tection usually requires significant computational resources
and costs, e.g., training an additional GNN from scratch (Jin
et al. 2023c; Gui et al. 2022). Secondly, in certain scenarios
or platforms where model architectures are inaccessible due
to privacy concerns (Zheng et al. 2023c), making modifica-
tions or adjustments to the GNN architecture becomes im-
practical. Meanwhile, in some cases (e.g., federated learning
(Tan et al. 2023a)), the original training dataset may also be
inaccessible (Tan et al. 2023b), further obstructing the train-
ing process of these OOD methods. In such instances, these
aforementioned OOD detection methods cannot be applied,
exposing their limited universality.

To address the above issues, we delve into the research
problem of test-time graph OOD detection. Concretely, a
test-time graph OOD detection method solely learns on test-
ing data, without being dependent on training data. More-
over, the method is not expected to redesign the backbone
model or add additional networks, ensuring its adaptability
across diverse well-trained GNN models, irrespective of the
characteristics of the training data. Nevertheless, developing
such a test-time OOD detection method presents substantial
complexities due to the following challenges. Challenge 1:
Inconsistent learning objective. Most well-trained GNNs are
trained for specific graph learning tasks (e.g., graph classifi-
cation) rather than OOD detection. In this case, how to align
these pre-existing models with the target of OOD detection
remains a difficulty. Challenge 2: Absence of labels. During
test time, the lack of graph labels poses a challenge in unsu-
pervised detecting ID and OOD graphs, compelling the need
to design an unsupervised model. Challenge 3: Unavailabil-
ity of training data. Constrained by the test-time setting, ac-
cess to the training dataset is unfeasible. This scarcity of
comprehensive knowledge about the original training data
of the GNN model imposes significant limitations on our
capacity to integrate an OOD detection model into GNNs.

To solve the aforementioned challenges, we propose
a novel data-centric method to detect Graph Out-Of-
Distribution At Test-time, namely GOODAT. To address
challenge 1, we first construct a plug-and-play graph masker
consisting of parameterized matrices. This enables us to
compress informative subgraphs from the original input
graphs, thereby indicating their ID or OOD nature. This
lightweight masker can seamlessly integrate with any well-
trained GNN, endowing it with the capability to detect OOD

samples. To handle challenge 2, we design three unsuper-
vised loss functions based on the graph information bottle-
neck (GIB) principle, guiding the masker to capture com-
pact yet sufficient subgraphs for distinguishing ID and OOD
graphs. To deal with challenge 3, we fully exploit the test
data to capture the ID graph patterns of training data. Specif-
ically, we operate under the assumption that all graphs in
the test dataset are inherently ID. Guided by these surrogate
ID labels, the OOD subgraph compressed by the ID label
should significantly differ from the ID subgraph compressed
by the ID label. This distinction serves as a reliable basis for
effectively detecting OOD graphs. Fig. 1 shows the differ-
ences between GOODAT and other methods. To sum up, the
main contributions of this paper are three-fold:

• New paradigm. We pioneer the learning paradigm
of test-time graph OOD detection, unveiling a fresh
perspective. This innovative paradigm sheds light on
lightweight, training data-independent, and plug-and-
play solutions for graph OOD detection, seamlessly ap-
plicable to any well-trained GNN models.

• Novel method. We propose a simple yet effective
method, GOODAT, to solve the test-time graph OOD
detection problem. Leveraging the information bottle-
neck principle, GOODAT captures informative sub-
graphs from each input graph, thus enabling the accurate
identification of OOD samples within the test dataset.

• Extensive experiments. We conduct experiments on
multiple datasets and scenarios to verify the effectiveness
and superiority of GOODAT. Experimental results show
that GOODAT has achieved significant improvements in
graph OOD detection tasks compared to baselines.

Related Works
Graph Neural Networks
With graph-related problems rising in various real-world
scenarios (Wu et al. 2022; Zheng et al. 2023b; Wu et al.
2023a), GNNs have emerged as a powerful paradigm for
tackling complex graph data (Liu et al. 2023c; Zheng et al.
2023d, 2022). GNNs have shown remarkable success across
various domains (Zhang et al. 2022), including social net-
works (Zheng et al. 2022), anomaly detection (Liu et al.
2023b), binary code analysis (Jin et al. 2022), and recom-
mender systems (Jin et al. 2023b,a). Although many meth-
ods have been proposed to improve GNN performance (Kipf
and Welling 2017; Xu et al. 2019), concerns have emerged
about other aspects (e.g., robustness (Zhang et al. 2023c),
privacy (Zhang et al. 2023a; Wu et al. 2024), fairness (Zhang
et al. 2023b)) of GNN models. In the context of generaliza-
tion, while GNNs perform well on ID data, they may per-
form poorly on OOD data (Liu et al. 2023a).

Graph OOD Detection
Graph OOD detection aims to detect whether the test graph
is ID or OOD. Recently, many studies have been proposed
(Zhao et al. 2020; Stadler et al. 2021; Wu et al. 2023b). For
example, GOOD-D (Liu et al. 2023a) uses graph contrastive
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Figure 2: Overview of GOODAT. In the GOODAT training process, a graph masker M is applied on the input test graph
G, consisting of two parameterized matrices. This graph masker M is trained by utilizing three GIB-boosted losses, taking
the graph G and its corresponding surrogate ID label Y as inputs. The informative subgraph Z and the masked graph Z ′ are
obtained with the trainable parameters M (e.g., Z = G⊙M ). During the inference phase of target GNNs, the OOD score of a
test graph is obtained by the graph masker and GIB-boosted losses to infer if the input graph is an OOD graph.

learning to provide an unsupervised view of graph OOD de-
tection. GraphDE (Li et al. 2022) models the graph gener-
ative process to learn latent environment variables for de-
tection. OODGAT (Song and Wang 2022) utilizes a multi-
head attention mechanism to compute node weights and
transform them into edge weights, aiding in the identifica-
tion of OOD nodes. AAGOD (Guo et al. 2023) introduces
a data-centric framework that enlarges the differences be-
tween OOD and ID graphs. However, the above methods
rely on the training dataset to train OOD detection models,
which is different from our GOODAT method.

Preliminaries and Problem Definition

Graphs and Graph Maskers. Given an undirected graph
G = (X,A), X ∈ Rn×d represents the node feature
matrix with n nodes and each node has a feature dimen-
sion of d, and A ∈ Rn×n indicates the adjacency ma-
trix of G. A label Y is associated with G, where Y =
0 indicates that the graph is ID, and Y = 1 indicates
that the graph is OOD. A graph masker is defined as
M = (MX ,MA), where MX ∈ Rn×d and MA ∈ Rn×n are
parameterized matrices for extracting the subgraph from the
original graph G. We can modify the graph masker by gra-
dient descent on MX and MA. For example, we can ob-
tain a subgraph Z = G⊙M = (X ⊙MX , A⊙MA) from
G, where ⊙ denotes the Hadamard product. Given Z, the
remaining part of the test graph is donated as the masked
graph Z ′ = (X −X ⊙MX , A−A⊙MA). For a given
test graph G = Z ∪ Z ′, the overlap between Z and Z ′ is
defined as Z ∩ Z ′, and |Z ∩ Z ′| represents its size.
Graph Information Bottleneck (GIB). From the view of
information theory, the information bottleneck aims at com-
pressing the original information to obtain crucial informa-
tion related to the label (Alemi et al. 2017). As for graph
information bottleneck, given a graph G and its label Y , the
graph information bottleneck aims to compress the informa-
tion of G to obtain a compressed graph Z, which maximizes
the mutual information between Y and Z and minimizes
the mutual information between Z and G (Yu et al. 2021).
Specifically, assuming that I(·) indicates the Shannon mu-
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Figure 3: GOODAT intuition. “Inf.” denotes information.

tual information, the GIB can be defined as (Wu et al. 2020):

max
Z

I(Y,Z)− λI(G,Z), (1)

where λ is a Lagrange multiplier.
Test-time Graph OOD Detection. For a test graph G, we
assumed that it comes from the ID or OOD graph distribu-
tion. The test-time graph OOD detection task is defined as:
Definition 1 (Test-time graph OOD detection). Given a
well-trained GNN f and a graph G from the test dataset, the
test-time graph OOD detection aims to determine the source
distribution of G during the inference time of f with an OOD
detector D. Specifically, the objective of the detection task is:

Detection label =

{
1 (OOD), if D(f,G) ⩾ η

0 (ID), if D(f,G) < η
(2)

where η is a threshold, and the parameters of f are fixed
during the OOD detection.

Methods
Fig. 2 shows the overview of our GOODAT method, whose
effectiveness in distinguishing ID and OOD graphs is
demonstrated below. Given the surrogate label, GIB is em-
ployed to find the subgraph with the highest correlation to
its label for each input graph. Hence, the subgraphs obtained
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from the ID and OOD graphs can be distinguishable, since
they come from different distributions. During the test-time,
a well-trained GNN f tends to make right predictions on
ID graphs while making wrong predictions on OOD graphs,
since OOD graphs can be regarded as being in an unknown
class. In this case, the subgraph of OOD graphs extracted
by the GIB principle can be significantly different from the
ones of ID graphs. As shown in Fig. 3, considering an ID
graph GI with the right label prediction (e.g., Y = 0), the
subgraph obtained from GIB is denoted as ZI

0 . When the
predicted label (e.g., Y = 0) is wrong (e.g., for an OOD
graph GO), the extracted subgraph ZO

0 obviously differenti-
ates from ZI

0 as ZI
0 is not included in GO. Otherwise, GO is

not an OOD graph. Such distinguishability between ZI
0 and

ZO
0 can effectively separate ID and OOD graphs, enabling

our method to execute the test-time OOD detection.
In this paper, three different GIB-boosted loss functions

are presented to enhance the capability of GIB on reasoning
subgraphs that most correlate with labels. Below are details
on each of the three loss functions.

Subgraph GIB Loss
From the perspective of factual reasoning, the subgraph GIB
loss facilitates the extraction of informative subgraph Z that
related to the predicted label. With the surrogate label Y
and obtaining the informative subgraph Z = G ⊙ M by
applying the graph masker M = (MX ,MA), we propose
to utilize the following subgraph GIB loss to optimize the
parameters MX and MA in M . Specifically, we maximize
the Shannon mutual information between the subgraph Z
(embedding from f ) and the label Y , while minimizing the
Shannon mutual information between the subgraph Z and
the original test graph G (embedding from f ). We seek the
most informative and compressed subgraph representation
by optimizing the following objective:

max
Z

I(Z, Y )− αI(Z,G), (3)

where α is the Lagrange multiplier to balance the two com-
ponents. Building on the work (Alemi et al. 2017), we trans-
fer I(Z, Y ) and I(Z,G) into our loss function.
(1) According to the definition of mutual information, we
obtain I(Z, Y ) =

∫∫
p(Z, Y ) log p(Y |Z)

p(Y ) dY dZ. For the

item p(Y |Z) =
∫ p(Y |G)p(Z|G)p(G)

p(Z) dG, which depends on
the Markov property (Sun et al. 2022) and is difficult to cal-
culate, we propose using q(Y |Z) to approximate p(Y |Z).
Specifically, we use the Kullback-Leibler divergence (Kull-
back and Leibler 1951) to measure their distance and make
them closer. Since DKL(p(Y |Z)||q(Y |Z)) ⩾ 0, we obtain∫

p(Y |Z) log p(Y |Z)dy ⩾
∫

p(Y |Z) log q(Y |Z)dY. (4)

According to Eq. (4), the lower bound of I(Z, Y ) is:

I(Z, Y ) ⩾
∫∫

p(Y,Z) log
q(Y,Z)

q(Z)
dZdY −

∫
p(Y ) log p(Y )dY.

⩾
∫∫∫

p(Y,G)p(Z,G)

p(G)
log

q(Y, Z)

q(Z)
dZdY dG.

(5)

(2) For I(Z,G) =
∫∫

p(Z,G) log p(Z,G)
p(Z)p(G)dZdG, where

it is not easy to directly calculate p(Z), we propose to
use a learnable ϕ(Z) to approximate p(Z). Similarly, since
DKL(p(Z)||ϕ(Z)) ⩾ 0, an upper bound of I(Z,G) is:

I(Z,G) ⩽
∫∫

p(Z,G) log
p(Z,G)

ϕ(Z)p(G)
dGdZ. (6)

Combining the inequalities about I(Z, Y ) and I(Z,G), we
derive a lower bound of I(Z, Y )− αI(Z,G). Specifically,

I(Z, Y )− αI(Z,G)

⩾
∫∫∫

p(Y,G)p(Z,G)

p(G)
log

q(Y, Z)

q(Z)
dZdY dG

− α

∫∫
p(Z,G) log

p(Z,G)

ϕ(Z)p(G)
dGdZ.

(7)

where the hyperparameter α balances informativeness and
compression. Instead of directly solving maxZ I(Z, Y ) −
αI(Z,G), we employ the following subgraph GIB loss:

Ls =
1

N

N∑
i=1

(Eξ∼p(ξ)(− log q(Yi|Zi)) + αDKL[p(Zi|Gi)||ϕ(Zi)]),

≈ Lcls(q(Yi|Zi), Yi) + αDKL[p(Zi|Gi)||ϕ(Zi)]),
(8)

where N represents the number of graphs, Lcls indicates the
classification loss. We use the Gaussian distribution to ap-
proximate q and ϕ. Fig. 4 (a) illustrates the impact of sub-
graph GIB loss on the subgraph compression process.

Masked Graph GIB Loss
From the perspective of counterfactual reasoning, the
masked graph GIB loss is used to obtain the masked graph
Z ′, which ensures the irrelevance between the Z ′ and the la-
bel. Considering that Z ′ is regarded as the noise part of the
graph G, the optimization objective from the GIB perspec-
tive can be formulated as:

max
Z′

βI(Z′, G)− I(Z′, Y ), (9)

where β is a Lagrange multiplier. Similar to the derivation
of the subgraph GIB loss, the masked graph GIB loss Lm

can be defined as:

Lm =
1

N

N∑
i=1

(Eξ∼p(ξ)(log q(Yi|Z′
i)− βDKL[p(Z

′
i|Gi)||ϕ(Z′

i)]),

≈ −Lcls(q(Yi|Z′
i), Yi)− βDKL[p(Z

′
i|Gi)||ϕ(Z′

i)]).
(10)

We use the Gaussian distribution to approximate q and ϕ.
Fig. 4 (b) illustrates the masked graph GIB loss.

According to an existing study (Tan et al. 2022), only con-
sidering the subgraph GIB loss Ls leads to sufficient but not
necessary Z, while exclusively using the masked graph GIB
loss Lm tends to generate necessary but not sufficient Z. To
overcome this limitation (i.e., a large |Z ∩ Z ′|), employing
Ls and Lm simultaneously helps to dig out sufficient and
necessary Z (i.e., limited |Z ∩ Z ′|).
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Graph Distribution Separating Loss
To further reduce the overlapping size (i.e., |Z ∩ Z ′|), we
propose the graph distribution separating loss to separate the
distributions of Z and Z ′ from the statistical view, where Z
and Z ′ are supposed to own a small joint probability density.
Sklar (1959) declares that the joint distribution of N random
variables can be decomposed into the respective marginal
distributions of the N variables and a Copula function (Sklar
1973), so as to separate the randomness and coupling of the
variables. In this paper, we assume that Z and Z ′ have the
following Gaussian form of marginal distributions, i.e.,

pZ(Z) =
1√

2π|σ1|
e

−Z2

2σ2
1 , pZ′(Z′) =

1√
2π|σ2|

e
−Z′2

2σ2
2 , (11)

where σ1/σ2 represents the standard deviation of Z/Z ′.
According to the Copula theory (Durante, Fernandez-

Sanchez, and Sempi 2013), there must be a function that
couples the marginal probabilities. Therefore, the joint prob-
ability function of Z and Z ′ can be defined as:

Ld =
1

2π|σ1σ2|
√

1− ρ2
e

[
− 1

2(1−ρ2)
×
[
Z2

σ2
1

−2ρ Z×Z′
|σ1σ2|+

Z′2
σ2
2

]]
,

(12)
where ρ indicates the correlation coefficient. Fig. 4 (c) illus-
trates how the graph distribution separating loss influences
the distinguishability of graph distributions.

Training of GOODAT and OOD Graph Detection
By integrating the above three loss functions together, the
overall loss Lg for training M can be expressed as:

Lg = Ls + Lm + Ld. (13)

Note that in our method, all parameters in the target GNN f
are fixed, and we employ the surrogate label Y and embed-
dings of G, Z, and Z ′ to train the mask generator M .

When implementing OOD detection, we employ the sub-
graph GIB loss (Eq. 8) as the graph OOD detection score.
Specifically, for a test graph G, we first use the well-trained
graph masker M to obtain its informative subgraph Z =
G⊙M . Next, we obtain the GIB loss on Z w.r.t. Ls, which
is used to determine whether G is an OOD graph by Eq. (2).

Experiments
Experimental Setup
Datasets In this paper, we utilize the evaluation proto-
col proposed by (Liu et al. 2023a) which encompasses a
graph OOD detection benchmark and a graph anomaly de-
tection benchmark. The graph OOD detection benchmark
contains 8 pairs of molecule datasets, 1 pair of bioinfor-
matics datasets, and 1 pair of social network datasets. Each
dataset pair within the same field exhibits a moderate do-
main shift. Following the setting in previous studies (Liu
et al. 2023a; Guo et al. 2023), we allocate 90% of ID sam-
ples for training GNNs, while the remaining 10% of ID sam-
ples and an equal number of OOD samples constitute the test
set. The graph anomaly detection benchmark comprises 15
datasets from TU benchmark (Morris et al. 2020). Anoma-
lies encompass samples of the minority or real anomalous
class, with the rest categorized as normal data. In our test-
time OOD detection setting, we use the test set of each
dataset as the input of GOODAT for test-time training.

Baselines & Settings We compared GOODAT with 13
mainstream baseline methods for graph OOD detection,
which can be divided into four categories.
(1) Graph Kernels + Detectors methods use graph ker-
nels as the pre-train model to learn graph embedding, and
then inputs these graph embeddings to OOD/anomaly de-
tector. Graph kernels include the Weisfeiler-Lehman ker-
nel (WL) (Shervashidze et al. 2011) and propagation ker-
nel (PK) (Neumann et al. 2016). OOD/anomaly detectors
include local outlier factor (LOF) (Breunig et al. 2000), one-
class SVM (OCSVM) (Manevitz and Yousef 2001), and iso-
lation forest (iF) (Liu, Ting, and Zhou 2008).
(2) Graph Neural Networks + Detectors methods utilize
self-supervised GNNs as pre-trained models with OOD de-
tectors for detection tasks. The self-supervised GNN models
include InfoGraph (Sun et al. 2020) and GraphCL (You et al.
2020). The detectors include iF and Mahalanobis distance
(MD) (Sehwag, Chiang, and Mittal 2021).
(3) Test-time Training Methods achieve graph OOD gen-
eralization at test-time, without modifying the parameters of
well-trained GNNs. The most recent method that falls into
this category is GTrans (Jin et al. 2023c). Since GTrans is
not explicitly designed for graph OOD detection, its loss
value is adopted as the OOD score in our experiments.
(4) Data-centric Methods. One quintessential method of
this category is AAGOD (Guo et al. 2023). AAGOD em-
ploys a graph adaptive amplifier module, which is integrated
into a well-trained GNN to facilitate graph OOD detection.
Unlike the test-time training approach, AAGOD employs
the training set for the OOD detection training process. As
of the submission of this paper, AAGOD has not released the
code, so we conduct comparisons based on the experimental
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ID dataset ENZYMES Tox21 FreeSolv BBBP ClinTox Esol Avg. *

OOD dataset PROTEIN SIDER ToxCast BACE LIPO MUV Rank

PK-LOF 50.47±2.87 51.33±1.81 49.16±3.70 53.10±2.07 50.00±2.17 50.82±1.48 9.9
PK-OCSVM 50.46±2.78 51.33±1.81 48.82±3.29 53.05±2.10 50.06±2.19 51.00±1.33 10.0
PK-iF 51.67±2.69 49.87±0.82 52.28±1.87 51.47±1.33 50.81±1.10 50.85±3.51 8.1
WL-LOF 52.66±2.47 51.92±1.58 51.47±4.23 52.80±1.91 51.29±3.40 51.26±1.31 7.2
WL-OCSVM 51.77±2.21 51.08±1.46 50.38±3.81 52.85±2.00 50.77±3.69 50.97±1.65 8.1
WL-iF 51.17±2.01 50.25±0.96 52.60±2.38 50.78±0.75 50.41±2.17 50.61±1.96 9.3

InfoGraph-iF 60.00±1.83 56.28±0.81 56.92±1.69 53.68±2.90 48.51±1.87 54.16±5.14 5.4
InfoGraph-MD 55.25±3.51 59.97±2.06 58.05±5.46 70.49±4.63 48.12±5.72 77.57±1.69 4.5
GraphCL-iF 61.33±2.27 56.81±0.97 55.55±2.71 59.41±3.58 47.84±0.92 62.12±4.01 5.7
GraphCL-MD 52.87±6.11 58.30±1.52 60.31±5.24 75.72±1.54 51.58±3.64 78.73±1.40 2.6

GTrans 49.94±5.67 61.67±0.73 50.81±3.03 64.02±2.10 58.54±2.38 76.31±3.85 5.5

AAGOD-GINS+ 66.22 64.26 − 67.80 − − −
AAGOD-GINL+ 65.89 57.59 − 57.13 − − −
Ours 66.29±1.54 68.92±0.01 68.83±0.02 77.07±0.03 62.46±0.54 85.91±0.27 1.4

Table 1: OOD detection results in terms of AUC score (%). *Full results are available at arXiv:2401.06176 due to the page
limitation.

results outlined in the AAGOD evaluations. AAGOD exists
in two versions: AAGOD-GINS+ and AAGOD-GINL+,
which correspond to distinct OOD evaluation methods. Un-
reported experimental results are denoted by ‘−’.

We employ a GIN (Xu et al. 2019) as the well-trained
GNN encoder. We use the Adam optimizer (Kingma and Ba
2014) for optimization. Experiments run on a GeForce GTX
TITAN X GPU with 24 GB memory, repeated five times for
average scores and standard deviations. The best results are
highlighted with bold. Experimental analyses are based on
the full results.

Performance of Graph OOD Detection
We conduct a comparative analysis of our proposed method
against 13 competing approaches across 10 graph OOD de-
tection datasets. The results, in terms of AUC scores, are
summarized and presented in Table 1. From this compre-
hensive comparison, we garner the following insights: 1)
GOODAT showcases a remarkable performance by outper-
forming all baseline methods on 8 datasets. Furthermore,
when considering the average rank across all methods, our
proposed approach stands as the leader. This underscores
the effectiveness of GOODAT in accurately detecting OOD
samples within diverse graph-structured datasets. 2) While
we may not have achieved the absolute best results on two
datasets, our performance is in close proximity to the opti-
mum results. One plausible explanation for this outcome is
the relatively high edge density observed in these datasets,
which potentially reduces the effect of GIB-boosted loss
for subgraph compression. 3) Although the test-time graph
OOD generalization method GTrans is also effective for
OOD detection, our method has achieved overall advan-
tages on all datasets. This demonstrates that directly substi-
tuting of graph OOD generalization for graph OOD detec-
tion may lead to sub-optimal performance. 4) Compared to
the AAGOD method, GOODAT shows superiority across all

datasets. This implies that our method achieves better results
only using a test dataset, showcasing enhanced efficacy.

Performance of Graph Anomaly Detection
To assess the potential applicability of GOODAT on graph
anomaly detection tasks, we conduct experiments on 15
datasets, following the evaluation protocol in (Liu et al.
2023a; Ma et al. 2022). We select 6 graph anomaly de-
tection methods and a test-time training method as base-
lines, and the experiment results are summarized in Table
2. The AAGOD baseline is not included here as its code is
not released. Experimental results indicate that GOODAT’s
applicability extends seamlessly to the anomaly detection
scenario, showcasing remarkable performance. This supe-
rior performance can be attributed to the inherent strengths
of our method, which effectively enhances the distinctions
in anomalous samples by utilizing GIB-boosted losses with
ID-label guidance. Moreover, we observe that GOODAT ex-
hibits significant advantages in anomaly detection over the
use of GTrans. This observation indicates the universality of
GOODAT in contrast to other test-time-oriented techniques.

Ablation Study
GOODAT incorporates subgraph GIB loss Ls, masked
graph GIB loss Lm, and graph distribution separation loss
Ld. To evaluate the effectiveness of each of them, an ablation
study is conducted and the results are summarized in Table
3, where a ‘✓’ indicates the presence and a ‘−’ denotes the
absence of a component. Several key observations emerge
from analyzing the table. (1) Utilizing all components con-
currently yields optimal results on 8 out of 10 datasets, with
decent results on the remaining 2 datasets. This demon-
strates the effectiveness of integrating multiple loss func-
tions to enhance graph OOD detection. (2) The distinct con-
tributions of each loss function underscore their effective-
ness as individual components. (3) Combining the two loss
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Method WL-OCSVM WL-iF InfoGraph-iF GraphCL-iF GTrans Ours Improve*

PROTEINS-full 51.35±4.35 61.36±2.54 57.47±3.03 60.18±2.53 60.16±5.06 77.92±2.37 28.37%
AIDS 50.12±3.43 61.13±0.71 70.19±5.03 79.72±3.98 84.57±1.91 95.50±0.99 12.92%
DHFR 50.24±3.13 50.29±2.77 52.68±3.21 51.10±2.35 61.15±2.87 61.52±2.86 0.60%
BZR 50.56±5.87 52.46±3.30 63.31±8.52 60.24±5.37 51.97±8.15 64.77±3.87 2.31%
COX2 49.86±7.43 50.27±0.34 53.36±8.86 52.01±3.17 53.56±3.47 59.99±9.76 12.01%
DD 47.99±4.09 70.31±1.09 55.80±1.77 59.32±3.92 76.73±2.83 77.62±2.88 1.16%
IMDB-B 54.08±5.19 50.20±0.40 56.50±3.58 56.50±4.90 45.34±3.75 65.46±4.34 15.86%
REDDIT-B 49.31±2.33 48.26±0.32 68.50±5.56 71.80±4.38 69.71±2.21 80.31±0.85 11.85%
HSE 62.72±10.13 53.02±5.12 53.56±3.98 51.18±2.71 58.49±2.68 63.05±0.90 0.53%
MMP 55.24±3.26 52.68±3.34 54.59±2.01 54.54±1.86 48.19±3.74 69.41±0.04 25.65%
p53 54.59±4.46 50.85±2.16 52.66±1.95 53.29±2.32 53.74±2.98 63.27±0.04 15.90%
PPAR-gamma 57.91±6.13 49.60±0.22 51.40±2.53 50.30±1.56 56.20±1.57 68.23±1.54 17.82%

Avg. Rank* 4.4 5 4.2 4.3 4.4 2.1

Table 2: Anomaly detection results in terms of AUC score (%). *Full results are available at arXiv:2401.06176.

Ls Lm Ld
ENZYMES Tox21 FreeSolv BBBP ClinTox Esol

PROTEIN SIDER ToxCast BACE LIPO MUV

✓ - - 61.55±3.25 68.89±0.01 68.58±0.10 65.20±1.06 56.50±0.16 55.70±1.38
- ✓ - 52.74±0.01 68.87±0.01 67.65±0.08 63.77±0.24 66.71±0.05 85.82±0.08
- - ✓ 51.95±0.11 68.90±0.01 68.62±0.06 76.98±0.04 54.03±0.04 80.23±0.05
✓ ✓ - 65.67±2.31 68.92±0.01 68.77±0.10 76.65±0.25 63.25±0.56 85.90±0.44
✓ - ✓ 60.46±3.40 68.89±0.01 68.67±0.14 66.21±0.89 56.34±0.17 54.60±1.29
- ✓ ✓ 52.73±0.02 68.88±0.01 67.73±0.07 63.70±0.14 66.76±0.08 85.76±0.09

✓ ✓ ✓ 66.29±1.54 68.92±0.01 68.83±0.02 77.07±0.03 62.46±0.54 85.91±0.27

Table 3: Ablation study results in terms of AUC score (%). Full results are available at arXiv:2401.06176.

(a) Influence on the pa-
rameter α and β.

(b) OOD and ID G-
Emb.

(c) Sub and Masked
G-Emb.

Figure 5: Parameter sensitivity analysis and visualization.

functions often leads to performance improvements, outper-
forming isolated evaluations of individual components.

Parameter Sensitivity Analysis
In GOODAT, two hyperparameters α (in Eq. 8) and β
(in Eq. 10) are employed to control the involvement de-
gree of subgraph GIB loss and masked graph GIB loss,
respectively. We conduct a parameter sensitivity experi-
ment on the PTC-MR/MUTAG dataset, where α is se-
lected from {0.1, 0.3, 0.5, 0.7, 0.9} and β is selected from
{0.01, 0.03, 0.05, 0.07, 0.09}. As shown in Fig. 5 (a), when
β is fixed, optimal outcomes are achieved with α in the range
of 0.1-0.3. This implies that a slight level of compression on
subgraphs proves the most effective results. Likewise, when
α is held constant, β values in the range of 0.3-0.5 yield op-

timal results, which suggests that moderate compression of
masked graph components enhances model effectiveness.

Visualization
To visually demonstrate the impact of our methods, we vi-
sualize distributions of subgraph embeddings to show the
distinction between ID and OOD graphs. Fig. 5 (b) shows
the embedding distributions of OOD subgraphs and ID sub-
graphs. We observe that the ID subgraph and OOD subgraph
can be clearly distinguished, which indicates that GOODAT
can detect OOD graphs intuitively. Fig. 5 (c) shows the dis-
tribution of subgraphs (i.e., Z) and masked graphs (i.e., Z ′),
where the distinction between subgraphs and masked graphs
is also obvious. This demonstrates the effectiveness of our
proposed graph distribution separation loss.

Conclusions
In this paper, we make the first attempt toward detect-
ing graph out-of-distribution (OOD) samples at test time.
To achieve this, we introduce a pioneering method, named
GOODAT, which is a data-centric, unsupervised, and plug-
and-play solution. With a graph masker applied to the input
test graph, GOODAT identifies the clear differentiation be-
tween OOD graphs and ID graphs. We design three GIB-
boosted losses to optimize the graph masker. Comprehen-
sive experimentation demonstrates the superiority of GOO-
DAT compared to baseline methods across diverse real-
world benchmark datasets.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15543



Acknowledgments
This work is supported by National Key Research and De-
velopment Program of China (2023YFC3304503), National
Natural Science Foundation of China (92370111, 62276187,
62272340).

References
Alemi, A. A.; Fischer, I.; Dillon, J. V.; and Murphy, K. 2017.
Deep Variational Information Bottleneck. In ICLR 2017.
Bai, H.; Canal, G.; Du, X.; Kwon, J.; Nowak, R. D.; and
Li, Y. 2023. Feed Two Birds with One Scone: Exploiting
Wild Data for Both Out-of-Distribution Generalization and
Detection. In ICML 2023.
Breunig, M. M.; Kriegel, H.; Ng, R. T.; and Sander, J. 2000.
LOF: Identifying Density-Based Local Outliers. In SIG-
MOD 2000.
Durante, F.; Fernandez-Sanchez, J.; and Sempi, C. 2013. A
topological proof of Sklar’s theorem. Applied Mathematics
Letters, 26(9): 945–948.
Gui, S.; Li, X.; Wang, L.; and Ji, S. 2022. GOOD: A Graph
Out-of-Distribution Benchmark. In NeurIPS 2022.
Guo, Y.; Yang, C.; Chen, Y.; Liu, J.; Shi, C.; and Du, J.
2023. A Data-centric Framework to Endow Graph Neural
Networks with Out-Of-Distribution Detection Ability. In
KDD 2023.
Hoffmann, M.; Galke, L.; and Scherp, A. 2023. Open-World
Lifelong Graph Learning. In IJCNN 2023.
Huang, T.; Wang, D.; and Fang, Y. 2022. End-to-end
open-set semi-supervised node classification with out-of-
distribution detection. In IJCAI 2022.
Jin, D.; Wang, L.; Zhang, H.; Zheng, Y.; Ding, W.; Xia, F.;
and Pan, S. 2023a. A survey on fairness-aware recommender
systems. Information Fusion, 100: 101906.
Jin, D.; Wang, L.; Zheng, Y.; Li, X.; Jiang, F.; Lin, W.; and
Pan, S. 2022. CGMN: A Contrastive Graph Matching Net-
work for Self-Supervised Graph Similarity Learning. In IJ-
CAI 2022.
Jin, D.; Wang, L.; Zheng, Y.; Song, G.; Jiang, F.; Li, X.; Lin,
W.; and Pan, S. 2023b. Dual Intent Enhanced Graph Neural
Network for Session-based New Item Recommendation. In
WWW 2023.
Jin, W.; Zhao, T.; Ding, J.; Liu, Y.; Tang, J.; and Shah, N.
2023c. Empowering Graph Representation Learning with
Test-Time Graph Transformation. In ICLR 2023.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. In ICLR 2014.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classi-
fication with Graph Convolutional Networks. In ICLR 2017.
Kullback, S.; and Leibler, R. A. 1951. On information and
sufficiency. The annals of mathematical statistics, 22(1):
79–86.
Li, Z.; Wu, Q.; Nie, F.; and Yan, J. 2022. GraphDE: A
Generative Framework for Debiased Learning and Out-of-
Distribution Detection on Graphs. In NeurIPS 2022.

Liu, F. T.; Ting, K. M.; and Zhou, Z. 2008. Isolation Forest.
In ICDM 2008.
Liu, Y.; Ding, K.; Liu, H.; and Pan, S. 2023a. GOOD-D:
On Unsupervised Graph Out-Of-Distribution Detection. In
WSDM 2023.
Liu, Y.; Ding, K.; Lu, Q.; Li, F.; Zhang, L. Y.; and Pan, S.
2023b. Towards Self-Interpretable Graph-Level Anomaly
Detection. In NeurIPS 2023.
Liu, Y.; Ding, K.; Wang, J.; Lee, V.; Liu, H.; and Pan, S.
2023c. Learning Strong Graph Neural Networks with Weak
Information. In KDD 2023.
Ma, R.; Pang, G.; Chen, L.; and van den Hengel, A. 2022.
Deep Graph-level Anomaly Detection by Glocal Knowledge
Distillation. In WSDM 2022.
Manevitz, L. M.; and Yousef, M. 2001. One-Class SVMs
for Document Classification. Journal of machine Learning
research, 2: 139–154.
Morris, C.; Kriege, N. M.; Bause, F.; Kersting, K.; Mutzel,
P.; and Neumann, M. 2020. TUDataset: A collection of
benchmark datasets for learning with graphs. In ICML Work-
shop 2020.
Neumann, M.; Garnett, R.; Bauckhage, C.; and Kersting,
K. 2016. Propagation kernels: efficient graph kernels from
propagated information. Machine learning, 102(2): 209–
245.
Sehwag, V.; Chiang, M.; and Mittal, P. 2021. SSD: A Uni-
fied Framework for Self-Supervised Outlier Detection. In
ICLR 2021.
Shervashidze, N.; Schweitzer, P.; van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
Lehman Graph Kernels. Journal of Machine Learning Re-
search, 12: 2539–2561.
Sklar, A. 1973. Random variables, joint distribution func-
tions, and copulas. Kybernetika, 9(6): 449–460.
Sklar, M. 1959. Fonctions de répartition à n dimensions et
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