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Abstract

The Machine-Learning-as-a-Service (MLaaS) framework al-
lows one to grab low-hanging fruit of machine learning tech-
niques and data science, without either much expertise for
this sophisticated sphere or provision of specific infrastruc-
tures. However, the requirement of revealing all training data
to the service provider raises new concerns in terms of privacy
leakage, storage consumption, efficiency, bandwidth, etc.
In this paper, we propose a lightweight privacy-preserving
MLaaS framework by combining Compressive Sensing (CS)
and Generative Networks. It’s constructed on the favorable
facts observed in recent works that general inference tasks
could be fulfilled with generative networks and classifier
trained on compressed measurements, since the generator
could model the data distribution and capture discriminative
information which are useful for classification. To improve
the performance of the MLaaS framework, the supervised
generative models of the server are trained and optimized
with prior knowledge provided by the client. In order to pre-
vent the service provider from recovering the original data as
well as identifying the queried results, a noise-addition mech-
anism is designed and adopted into the compressed data do-
main. Empirical results confirmed its performance superiority
in accuracy and resource consumption against state-of-the-art
privacy-preserving MLaaS frameworks.

Introduction
The past decades have witnessed the proliferation of AI-
enhanced systems in various application domains. The
promising performance achieved by recent machine learn-
ing approaches have motivated users in different businesses
to apply machine learning algorithms to their own datasets.
The current machine learning frameworks, however, are usu-
ally complicated to non-expert users due to large number of
parameters required for configuration and lack of general
knowledge on how machine learning works. The increas-
ing demand on machine learning for non-expert users has
nourished a new computing paradigm known as the Ma-
chine Learning as a Service (MLaaS) (Ribeiro, Grolinger,
and Capretz 2015), in which data uploading interfaces are
provided while learning details are usually appeared as black
boxes for users. Since MLaaS provides a convenient way
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for users to upload training data and train models for real-
time classification tasks, it has started to gain popularities
and offered services by Google (Google 2020), Microsoft
(Microsoft 2020), Amazon (Amazon 2020), and etc.

In typical MLaaS framework, users are allowed to label
and upload their own data for their customized model train-
ing. After the models are trained, users can upload queries
and the cloud returns classification results in realtime. In this
way, the authors do not need to understand the details of the
model training process and can leverage the cloud computa-
tion powers in both offline training and online classification
phases. This significantly lowers the barriers for non-expert
users in using the machine learning services, however, it also
greatly increases the potential risks of user privacy leakage.
As shown in Figure 1, in the offline training phase, the plain
training data uploaded to the cloud has no privacy protec-
tion guarantees and faces arbitrary attacks with the exis-
tence of malicious cloud admins. In the online classification
phase, both the queries containing users’ realtime data and
classification results (i.e., labels) are private to users, and
without efficient privacy protection approaches users will
be put under a circumstances with severe privacy leakage
risks. Therefore, it is crucial for MLaaS providers to design
a mechanism for efficient privacy protection along with the
basic machine learning services.

To achieve practical privacy-preserving MLaaS, several
requirements exist. First, the computational burden imposed
by the privacy protection mechanisms should be minimized.
Second, the communication costs should also be minimized
to meet the increasing demand of MLaaS services. Last but
not the least, the classification performance should meet
the application requirements and should not sacrifice much
on the classification accuracy. Current solutions on privacy
preserving machine learning fail to meet all the above re-
quirements. For example, Secure Multi-party Computation
(SMC) (Knott et al. 2021)and Federated Learning (FL) (Li
et al. 2021)are all promising methods in relative fields. How-
ever, SMC and FL involve model training and multi-round
interactions among participants, which doesn’t align with
the MLaaS premise where clients often lack expertise in
model design and training capabilities. Homomorphic en-
cryption (Acar et al. 2018) for machine learning (Takabi,
Hesamifard, and Ghasemi 2016) provides learning capa-
bilities over encrypted data, and has become one promis-
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Figure 1: MLaas poses significant risks on training data protection, realtime data protection, and label protection. Our methods
provides protections on all three parts while ensuring the usability of machine learning services.

ing privacy-preserving machine learning approach. How-
ever, homomorphic encryption incurs high computational
costs, making it infeasible for large-scale learning and re-
altime inference tasks, which are usually required in MLaaS
scenarios. Another mainstream of privacy-preserving ma-
chine learning (PPML) (Al-Rubaie and Chang 2019) is
achieved through differentially-private data release (pertur-
bation techniques) (Zheng, Hu, and Han 2020). These ap-
proaches usually achieves better scalability comparing with
the encryption-based approaches, however it’s efficiency in
computation and communication still needs to be improved
to meet the communication, storage, and computation re-
quirements in order to provide practical privacy preserving
MLaaS services.

Inspired by the recent advances in compressive learning
(Tran et al. 2020) and generative networks (Ledig et al.
2017), in this paper we propose a generative compressive
learning approach to achieve a practical privacy preserving
MLaaS paradigm. Compressive learning aims to perform in-
ference tasks on a small number of compressively sensed
measurements. It provides a promising learning framework
for cloud-based machine learning paradigms such as MLaaS
application scenarios, due to its lightweight nature in data
acquisition and communication. However, research on com-
pressive learning’s still at its early stage and the accuracy
still needs to be improved especially when facing various
customized requirements of different users in MLaaS. To
improve the performance (i.e., classification accuracy), gen-
erative network is incorporated. However, the generation-
inference way may make it fail to meet the privacy pro-
tection guarantee. Hence, a data perturbation mechanism is
designed and embedded into the learning process. In a nut-
shell, the proposed privacy-preserving MLaaS paradigm al-
lows the server process inference tasks efficiently on the
compressed and perturbed inputs while providing data and

label protection.
The contribution of this paper is summarized as follows:

• To the best of our knowledge, this paper is the first to
jointly combine compressive learning, generative mod-
els, and perturbation techniques to achieve privacy pre-
serving MLaaS.

• Propose to utilize the prior knowledge of the original sig-
nals to improve the inference performance which directly
learned on the compressed measurements.

• Quantitatively and qualitatively shows the effectiveness
and efficiency of the proposed solution.

Related Work
Compressive Sensing
Compressive sensing provides a concise signal acquisition
paradigm. Mathematically, it tries to reconstruct an un-
known signal x ∈ Rn upon observation of m < n noisy
linear measurements of its entries:

y = Ax+ η, (1)

where A ∈ Rm×n is called the measurement matrix and
η ∈ Rm represents the noise. For a unique restore of x
from the above-mentioned under-determined system of lin-
ear equations, the sparsity on x and specific conditions on
matrix A, e.g., the Restricted Isometry Property (RIP) or
the related Restricted Eigenvalue Condition (REC), are most
commonly assumed. These constraints turn the reconstruc-
tion process into solving some restricted optimization prob-
lems. However, loss of restoration accuracy usually comes
along with the fact that in practice requirement of the spar-
sity on x is not always precisely satisfied.

In recent years, instead of the assumption of sparsity on
x, (Dhar, Grover, and Ermon 2018; Kamath, Price, and Kar-
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Figure 2: The overview of direct inference on compressed measurements.

malkar 2020) considered the structure of x is from a gener-
ative model and used the generative model to recover x. In
these works, the corresponding theoretical recovery guaran-
tee is also presented and experimental results showed that
it can use fewer measurements than the methods based on
sparsity for the same recovery results. However, the recon-
struction process is still a process of solving some restricted
optimization problems.

The above recovery methods all need to solve a optimiza-
tion problem, which make them computational intensive and
time consuming and definitely prevent theirs adoption in
real-time applications. To solve this problem, (Mousavi and
Baraniuk 2017) presented a new signal recovery framework
called DeepInverse using a special deep convolutional net-
work. DeepInverse takes the measurements y ∈ Rm as in-
put and directly produces the corresponding output x̂ ∈ Rn

as recovery. DeepInverse is composed of a fixed fully con-
nected layer, whose weights is set to the transpose matrix of
measurement matrix AT , and several convolutional layers
without any pooling operations. The fully connected layer
is connected to the input and is used to expand the dimen-
sion of the input from m to n. After training on a set of
signals which don’t need to meet the requirement of sparsity,
DeepInverse can produce state-of-the-art recoveries from the
measurements very quickly.

Compressive Sensing in Machine Learning
Although the compressed measurements will lose some in-
formation after compression, they still have many features
of the original signals. Authors in (Yi et al. 2019) delve
into the causality between the ”feature compression prop-
erty” of deep learning-based classifiers from the perspective
of information and coding theory. As a result, it is possible
to infer directly on the compressed measurements by means
of machine learning, such as extreme multi-label classifica-
tion (Wu et al. 2019).

In recent years, great progress has been made in inference
directly on the compressed measurements. (Calderbank, Ja-
farpour, and Schapire 2009) theoretically showed that the
linear kernel SVM’s classifier in the compressed measure-
ments is likely to have true accuracy close to the accuracy
of the best linear threshold classifier in the original signals.

(Lohit et al. 2015) presented a new face recognition frame-
work by using the linear correlational features extracted di-
rectly from the compressed measurements.

Since the extracted linear features cannot represent the
characteristics of the complex datasets well, (Lohit, Kulka-
rni, and Turaga 2016) presented a model which uses convo-
lutional neural networks (CNNs) to extract non-linear fea-
tures Directly from the Compressed Measurements (we re-
fer it to DCM in this paper) for inference, and experimen-
tally showed it has a great performance on classification
tasks. Similar to (Mousavi and Baraniuk 2017), DCM linear
projects the compressed measurements to the signal space
by using the transpose matrix of measurement matrix AT

as the projection matrix at the first layer. As a result, the
prior knowledge of the measurement matrix A can be uti-
lized and the number of network parameters can be reduced
to avoid overfitting especially for the situations where the
original signals are high-dimensional. The rest part of DCM
is an ordinary CNN and the specific architecture depends on
the application and the dataset.

However, when privacy protection is taken into consider-
ation, the above mentioned methods are not suitable. Either
the inference performance is poor, or the privacy is leaked.
For example, the inference performance of DCM is great
but the measurement matrix A is required in the inference
process which will lead to privacy leakage after using the
model presented by (Kabkab, Samangouei, and Chellappa
2018) and called CSGAN. CSGAN can reconstruct the sig-
nals just by using the measurement matrix A and a large
set of compressed measurements. In this paper, we propose
a new model that has a comparable inference performance
with the above models while ensuring privacy protection.

Model Description
Direct Inference on Compressed Measurements
Due to the compression, the measurements only carries par-
tial useful information for reference. Consequently, the per-
formance of inference directly on the measurements is worse
than the performance of inference directly on the original
signals. This motivates us to use the prior knowledge of
the original signals to recover more useful information from
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(a) Training Phase

(b) Testing Phase

Figure 3: The overview of direct inference on compressed measurements with privacy protection.

the compressed measurements to assist inference rather than
directly infer on the measurements without any utilization
of prior knowledge. As a result, we propose a new model,
which can still meet the requirement of real-time and has a
better inference performance, by combining DCM presented
by (Lohit, Kulkarni, and Turaga 2016) and DeepInverse pre-
sented by (Mousavi and Baraniuk 2017). The overview of
our model is shown in Figure 2.

Our model consists of two parts: a generator and a clas-
sifier. The generator, which is the same as DeepInverse, is
mainly used to recover partial lost information of the orig-
inal signals which is useful for inference, however it also
extracts inference features. As for the classifier, it is totally
used to perform classification. The training dataset is com-
posed of the measurement matrix and the original signals,
and the corresponding compressed measurements, which
can be obtained by using Equation (1). During the training
process, the generator uses these original signals to capture
the data distribution of signals for the purpose that it can
recover useful information from the compressed measure-
ments in the testing phase. As a result, the training loss is set
to:

loss = λ ∥x− x̂∥22 − log logits[ℓ] (2)

where x̂ is the output of the generator, λ is a weight which
represents the relative importance to restore information by
the generator, ℓ is the class label of the data, and logits[ℓ]
represents the probability that the data is correctly classified.

Direct Inference on Compressed Measurements
with Privacy Protection
As mentioned above, (Kabkab, Samangouei, and Chellappa
2018) showed that signals can be restored only by the mea-
surement matrix and the ground-true compressed measure-
ments. As a result, when privacy protection is considered,
neither the measurement matrix nor the ground-true com-
pressed measurements can be given for inference. Since the
inference performance is poor without the measurement ma-
trix, it is a better choice to add a constant noise to the
compressed measurements before sending them to the cloud
server for inference, which can also provide users choice of
the trade-off between privacy protection and inference per-
formance. Obviously, larger noise leads to worse inference
performance.

As for our model, the training dataset contains the origi-
nal signals which also need to be perturbed to avoid privacy
leakage. Therefore, we firstly determine the noise added
to the original signals of the training dataset, and then the
noise added to the compressed measurements is also deter-
mined immediately. This also has the advantage that users
can directly see the effect of privacy protection after adding
noise. However, adding a constant noise to the original sig-
nals is not as secure as adding a constant noise to the com-
pressed measurements. Since the Equation (1) is an under-
determined system of equations, the noise which should be
added to the original signals to produce a constant noise on
the compressed measurements is not unique. As a result, the
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Algorithm 1: Algorithm of adding noise to original signals
of the training dataset

1: Initialize ηc ∈ Rn with IID entries ∼ U(−1.0,−0.9) ∪
U(0.9, 1.0).

2: Initialize R ∈ Rn×c .
3: Shuffle the columns of Z ∈ Rn×d where d ≥ n−m.
4: for i = 0 to d− 1 do
5: Scale the values of Z[:, i] to [−1, 1].
6: end for
7: for i = 0 to c− 1 do
8: R[:, i] = sum(Z[:, i ∗ d/c : (i+ 1) ∗ d/c])
9: Scale the values of R[:, i] to [−1, 1].

10: end for
11: for all x in the training dataset do
12: Shuffle the columns of R.
13: ηr = sum(R[:, 0 : c ∗ p])
14: Scale the values of ηr to [−1, 1].
15: Get the noisy signals xnoise by:

xnoise =
x+ λnoise(ηc + ηr) + 2λnoise1⃗

4λnoise + 1

16: end for

noise which we add to the signals consists of two parts: a
constant noise and a random noise for the purpose that the
noise added to each signal is different. The constant noise ηc
determines the constant noise added to the measurements,
while the random noise ηr has no effect on the measure-
ments. In other words, ηr does not change the value of the
measurements and is randomly sampled from the null space
of the measurement matrix Null(A):

Null(A) =
{
v ∈ Rm : Av = 0⃗

}
(3)

For the matrix A ∈ Rm×n, the corresponding null space
Null(A) has an orthonormal basis Z which contains more
than or equal to n−m vectors. Since every linear combina-
tions of vectors of Z is an element in Null(A), ηr is simply
the sum of a random part of Z, which maintains the random-
ness and keeps the time cost of making the training dataset
low. In order to further control the trade-off between ran-
domness and time cost, Z is randomly and evenly divided
into c parts to form a candidate set R and then ηr is the
sum of the random p percent of R. With the assumption
that the range of the value of the elements of the signals
is between [0, 1], the algorithm of adding noise to signals is
shown in Algorithm 1, where λnoise in Equation (4) repre-
sents the trade-off between privacy protection and inference
performance. It is easy to deduce that the time complexity of
adding noise to a signal is Ω(c∗p∗n), and the number of ηr
types is Cc∗p

c . After adding noise, the value of the elements
of noisy signals xnoise is also between [0, 1].

We also modify our model to meet the requirement of pri-
vacy protection and the overview of our modified model is
shown in Figure 3. In the training phase, the cloud server
gets the noisy signals instead of original signals, and the

(a) MNIST

(b) SVHN

(c) CIFAR-10

Figure 4: The noisy images with ηc that are most similar
to the original images by using different similarity met-
rics and their corresponding original images. From left to
right, the similarity metrics used in the first three columns
is PNSR, the middle three columns use SSIM, and the last
three columns use FSIMc.

training loss is modified to:

loss = λ ∥xnoise − x̂∥22 − log logits[ℓ]. (4)

In the testing phase, when the signal acquisition using CS is
finished, the users only need to additionally add a constant
noise determined by ηc to the compressed measurements be-
fore sending it to the cloud server:

ynoise =Axnoise

=
y +A(λnoiseηc + 2λnoise1⃗)

4λnoise + 1
. (5)

As a result, the resource consumption of users is still low.

Privacy Analysis
Assuming that the machine learning service providers are
malicious, i.e., attempting to recover data information from
the disclosed data y. Recovering a sparse signal from rel-
atively few measurements (finding the sparsest solution of
a severely underdetermined linear system of equations) is
NP-hard (Scherzer 2010). Thus, obtaining xnoise from ynoise
is challenging. However, considering the specificity of im-
age visual classification tasks, obtaining a relative estima-
tion solution x̂ may enable attackers to gain access to visual
information. In our scheme, for performance enhancement,
we propose sending the measurement matrix A to the server.
Therefore, the security of this scheme relies on the difficulty
of recovering x from xnoise.

The noising strategy in this paper, based on compressed
sensing characteristics, is crucial for achieving the practi-
cal privacy-preserving MLaaS design goal. As indicated in
Equation 3, the noise consists of two components:
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Constant Noise ηc: It adds constant noise to the original
signal x. As illustrated in Figure 4 (a) and (b), it changes
measurement values y without disrupting inter-class classi-
fication information, allowing image obfuscation while re-
taining semantic information.
Random Noise ηr: It is randomly sampled from the null
space of the measurement matrix. It doesn’t alter measure-
ments y but introduces randomness, ensuring random noise
addition for each sample. ηr disrupts the distribution of sig-
nal x, making x̂ non-learnable, preventing the server from
recovering x or the noise through the generator and ynoise.

In contrast, other noising schemes, such as the DP noising
mechanism, cannot simultaneously ensure the introduction
of randomness while preserving inter-class classification in-
formation in y (i.e., disrupting the distribution of signal x
without altering its measurement values y) and may render
the observed values non-learnable.

As mentioned above, due to the addition of random noise
ηr, the distribution of signal x is perturbed, and the noise
ηc + ηr is no longer a one-time pad with reuse. Suppose the
malicious server provider attempts to infer ηr from matrix
A, the space of ηr, denoted as Ω(ηr), could be estimated as

Ω(ηr) =

|Nall(A)|∑
i=0

Ci
|Nall(A)| = 2|Nall(A)| ≥ 2cn.

Here, c = 1− r, and r is the sampling rate.

Experiments
Experiment Setup
In our experiments, we use three image datasets to eval-
uate the performance of our model: the MNIST dataset
of handwritten digits (Lecun et al. 1998), the Street View
House Numbers (SVHN) dataset (Netzer et al. 2011), and
the CIFAR-10 dataset (Krizhevsky, Hinton et al. 2009).

The MNIST dataset consists of 28×28 gray images so its
signal dimension n is 28 × 28 × 1 = 784. The SVHN and
CIFAR-10 datasets consists of 32×32 colour images and the
corresponding signal dimension n is 32 × 32 × 3 = 3072.
While the test set of all datasets is kept the same, the MNIST,
SVHN and CIFAR-10 datasets took out 10,000, 10,000 and
5,000 images from their respective training sets as their re-
spective validation sets.

Our implementation is based on TensorFlow and builds on
open-source software (Kabkab, Samangouei, and Chellappa
2018; Silberman and Guadarrama 2016). For all datasets,
the architecture of the generator of our model is the same as
DeepInverse in (Mousavi and Baraniuk 2017) and the clas-
sifier of our model is a variant of the LeNet model in (Silber-
man and Guadarrama 2016). For fair comparison, we use the
same classifier architecture as DCM. To investigate the influ-
ence of network architecture, we also train our model with-
out the utilization of the information of the images (λ = 0)
and refer to it as DCMG. While we refer to our trained
model using the original images without privacy protection
as DCMG-O, we refer to our trained model using the noisy
images with privacy protection as DCMG-N.

Measurement Rate 0.05(%) 0.1(%) 0.25(%)

MNIST DCM 94.71 97.06 98.16
DCMG 94.89 97.04 98.21
DCMG-O 95.90 98.28 99.07
DCMG-N 94.51 97.52 98.53

SVHN DCM 80.25 81.60 83.81
DCMG 79.39 82.17 85.47
DCMG-O 86.95 89.58 90.79
DCMG-N 82.23 85.13 87.38

CIFAR-10 DCM 51.21 53.49 55.46
DCMG 49.71 51.60 53.61
DCMG-O 56.74 62.13 66.42
DCMG-N 53.37 56.95 59.89

Table 1: Classification accuracy.

Similarity Metrics PSNR SSIM FSIMc

MNIST 6.9300 0.2487 0.3909
SVHN 14.2647 0.2684 0.7608
CIFAR-10 14.3193 0.2587 0.7531

Table 2: The maxinum values of different similarity metrics
between the original datasets and the noisy datasets added
ηc (For all similarity metrics used in this paper, the larger
the value, the more similar the noisy image is to the original
image).

It is noticed that data augmentation is not used in all ex-
periments of this paper. In all experiments, the measurement
matrix is chosen to be a Gaussian random matrix and the
Adam optimizer (Kingma and Ba 2015) is used to train
the model. In all experiments of DCMG-O and DCMG-
N, we set λ = 100, 000. In all experiments of DCMG-
N, for making training dataset we set λnoise = 2, p =
0.5, c =

√
n−m for MNIST and λnoise = 1, p = 0.5, c =√

n−m for SVHN and CIFAR-10. More details of the
hyper-parameters can be found in the code repository.

Experimental Evaluation

When varying the measurement rate m/n, the classification
accuracy is shown in Table 1. It can be seen that DCMG-O
has much better classification performance than both DCM
and DCMG, which indicates the importance of the utiliza-
tion of the prior knowledge of the original images.

The Effects of Privacy Protection As for DCMG-N, the
effects of privacy protection by adding noise to the first ten
original images of the training set are shown in Figure 6. It is
obvious that the original contents can not be identified from
the noisy images. However, it is needed to confirmed that
every noisy images in the dataset which is sent to the server
and consists of the training set and the validation set can not
be identified. It is a waste of time to check the contents of
all noisy images in dataset every time we adjust the value of
λnoise to find the smallest possible λnoise.
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Figure 5: The results of t-SNE visualizations.

As a result, we use some similarity metrics to pick up the
noisy images most similar to the original images to make
sure the effects of privacy protection as soon as possible,

such as Peak Signal to Noise Ratio (PSNR), SSIM (Wang
et al. 2004), and FSIMc (Zhang et al. 2011). In our experi-
mental settings, the noisy images with ηc that are most simi-
lar to their corresponding original images by using different
similarity metrics are shown in Figure 4 and the values of
different similarity metrics between them are shown in Ta-
ble 2. These results further indicate that in our DCMG-N
experiments, the original contents can not be identified from
the noisy images and it indeed meets the requirement of pri-
vacy protection.

The Importance of the Added Random Noise In order
to further investigate the difference between original images,
noisy images contained only ηc, and noisy images contained
ηc, ηr, we also use t-SNE (van der Maaten 2014), an embed-

(a) MNIST

(b) SVHN

(c) CIFAR-10

Figure 6: The effects of privacy protection by adding noise
to the first ten original images of the training set, from top to
bottom rows is: original images, noisy images with ηc, noisy
images with ηc, ηr and r = 0.05 , noisy images with ηc, ηr
and r = 0.1, and noisy images with ηc, ηr and r = 0.25.
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ding technique, to visualise the original MNIST, the noisy
MNIST contained only ηc, and the noisy MNIST contained
ηc, ηr in scatter plots. The results of t-SNE visualizations are
shown in Figure 5. It is obvious that when only ηc is added
to the original MNIST, the simple distinguishable features
between the categories of the original MNIST are not de-
stroyed until ηr is added, even if it is shown from Figures 6
and 4 that only ηc can prevent original contents from be-
ing recognized. It implies the importance of ηr which can
prevent the original contents of the noisy images from be-
ing identified by ηc being found. It is worth noting that after
training, the CNN can still extract complex distinguishable
features from the noisy MNIST contained ηc, ηr for classifi-
cation.

When considering privacy protection, the classification
accuracy shown in Table 1 indicates that DCMG-N still has
comparable classification performance to both DCM and
DCMG, sometimes even better especially in the case of high
measurement rate. It further shows that the prior knowledge
of the original images can be used to improve performance.

Conclusion
In this paper, we present a practical visual privacy-
preserving MLaaS paradigm by combining compressive
sensing, generative models and data disturbation techniques.
Fulfilled in a compress-generate learning way, it remains the
favourable lightweight features of compressive learning for
the clients and incorporates the strong learning power of
generative models. Disturbed original signals are also used
to optimize the inference performance while guarantees both
data and label privacy protection. The superiorities of the
proposed scheme are experimentally confirmed.

Acknowledgements
This work was supported in part by the National Key R&D
Program of China under Grant 2020YFA0908700, the Na-
tional Nature Science Foundation of China under Grants
62073225, 62203134, 61972263, 62072315, the Natural
Science Foundation of Guangdong Province-Outstanding
Youth Program under Grant 2019B151502018, the Nat-
ural Science Foundation of Guangdong Province under
Grant 2021A1515011153, the Guangdong Pearl River Tal-
ent Recruitment Program under Grant 2019ZT08X603,
the Guangdong ”Pearl River Talent Plan” under Grant
2019JC01X235, the Shenzhen Science and Technology In-
novation Commission under Grant 20200805142159001,
JCYJ20220531103401003, JCYJ20210324093808021.

References
Acar, A.; Aksu, H.; Uluagac, A. S.; and Conti, M. 2018.
A survey on homomorphic encryption schemes: Theory and
implementation. ACM Computing Surveys (Csur), 51(4): 1–
35.

Al-Rubaie, M.; and Chang, J. M. 2019. Privacy-preserving
machine learning: Threats and solutions. IEEE Security &
Privacy, 17(2): 49–58.

Amazon. 2020. Amazon Machine Learning. https://docs.
aws.amazon.com/machine-learning/. Accessed: 2020-09-
04.
Calderbank, R.; Jafarpour, S.; and Schapire, R. 2009. Com-
pressed learning: Universal sparse dimensionality reduction
and learning in the measurement domain. preprint.
Dhar, M.; Grover, A.; and Ermon, S. 2018. Modeling Sparse
Deviations for Compressed Sensing using Generative Mod-
els. In Dy, J. G.; and Krause, A., eds., Proceedings of the
35th International Conference on Machine Learning, ICML
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