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Abstract

Federated Graph Learning is a privacy-preserving collabora-
tive approach for training a shared model on graph-structured
data in the distributed environment. However, in real-world
scenarios, the client graph data usually originate from diverse
domains, this unavoidably hinders the generalization perfor-
mance of the final global model. To address this challenge, we
start the first attempt to investigate this scenario by learning
a well-generalizable model. In order to improve the perfor-
mance of the global model from different perspectives, we
propose a novel framework called Federated Graph Learn-
ing with Generalizable Prototypes (FGGP). It decouples the
global model into two levels and bridges them via prototypes.
These prototypes, which are semantic centers derived from
the feature extractor, can provide valuable classification in-
formation. At the classification model level, we innovatively
eschew the traditional classifiers, then instead leverage clus-
tered prototypes to capture fruitful domain information and
enhance the discriminative capability of the classes, improv-
ing the performance of multi-domain predictions. Further-
more, at the feature extractor level, we go beyond traditional
approaches by implicitly injecting distinct global knowledge
and employing contrastive learning to obtain more powerful
prototypes while enhancing the feature extractor generaliza-
tion ability. Experimental results on various datasets are pre-
sented to validate the effectiveness of the proposed method.

Introduction
Federated Learning (FL) (Yang et al. 2019; Huang et al.
2023d) is a decentralized machine learning technique that
enables multiple parties to collaboratively train a shared
model without sharing their private data (Huang et al. 2022;
Fang, Ye, and Yang 2023). However, the heterogeneous
data from different clients has emerged as a significant is-
sue impacting the performance of the global model, pri-
marily due to divergent optimization directions during lo-
cal training. While previous works have proposed some so-
lutions to this issue, their applications have been predom-
inantly in the realms of image and natural language pro-
cessing (Yang, Huang, and Ye 2023). However, this prob-
lem is also inevitable when dealing with graph-structured
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Figure 1: Problem illustration. We illustrate the scenarios of
FGL with domain shift. represents nodes from differ-
ent domains, represents unlabeled nodes, is activated
by global model in server. Considering attribute and struc-
ture shifts, the global model has poor generalization abil-
ity, which can be evaluated from two aspects: (a) A singular
classifier fails to capture comprehensive information from
multi-domain features, thus losing its ability to make gener-
alizable predictions. (b) The feature extractor only generates
features in the global direction (yellow) and does not blend
signals from different domains (green).

data (Wang et al. 2023; Tian et al. 2023) due to the inher-
ent non-independent and identically distributed (non-IID)
nature of graphs. Therefore, a series of Federated Graph
Learning (FGL) (Fu et al. 2022; Liu and Yu 2022) meth-
ods have been proposed. These methods allow for effective
local graph learning while maintaining data privacy, improv-
ing the overall performance of the global model.

With the objective of obtaining a better shared global
model, existing works in FGL usually achieve collaborative
training between subgraphs owners by dealing with missing
links (Zhang et al. 2021; Baek et al. 2022), which mainly fo-
cused on analyzing distributed graphs within homogeneous
domains (Huang et al. 2023a; Yao et al. 2022). However,
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this perspective overlooks the complexity of real-world sit-
uations where graph data often spans diverse domains (Liu
et al. 2023a), leading to the challenging graph domain shift
(Huang, Ye, and Du 2022; Huang et al. 2023b). This shift,
characterized by disparate distributions of node attributes
and graph structures across graph data (Fig. 1), poses greater
challenges than the conventional domain shift and hinders
the acquisition of a global model with well generalizable
ability. Previous studies on global FGL only considered the
relationship between subgraphs within a single domain, thus
resulting in limited performance improvement. To address
these limitations, our study initiates an innovative explo-
ration of FGL under domain shift with the aim to learn a
generalizable global model that can handle multi-graph do-
main shifts. To the best of our knowledge, we are the first
to investigate the impact of domain shift on global FGL. By
addressing the unique challenges presented by unknown do-
main shifts, our research aims to develop relevant bench-
marks and make an attempt contribution to this field, poten-
tially shedding light on future investigations in FGL.

The presence of domain shifts in graph data introduces
substantial heterogeneity, which impedes the generalization
ability of the global model. When dealing with heteroge-
neous data, traditional FL methods achieve better results
through some classifier reweighting methods (Xu, Tong, and
Huang 2023), while we also observe some work emphasized
that classifiers are primarily responsible for the deteriora-
tion of global model performance in the face of data het-
erogeneity (Luo et al. 2021; Li et al. 2023). Considering do-
main shift, classifiers often tend to overfit to domain-specific
features to achieve higher accuracy during local training.
However, following global aggregation, the singular classi-
fier fails to capture comprehensive information across fea-
tures from all domains, thereby losing its capacity for multi-
domain prediction. Based on this observation, we raise the
question: 1) how to construct a classification model that cap-
tures fruitful domain information, ensuring well generaliz-
able prediction? Considering the global model, apart from
the classifier, the feature extractor plays a crucial role in
mapping local data into the feature space. A proficient fea-
ture extractor can be viewed as effectively leveraging local
data and acquiring generalizable representations, which in
turn can benefit the prediction model. Previous works em-
ploy global knowledge as a regularization signal to sup-
port local training, providing a global optimization direction
for better representation acquisition (Tan et al. 2022a; Mu
et al. 2021). However, in the setting of the heterogeneous
domain, strict regularization would impede feature general-
ization due to the fixed global optimization direction, which
is harmful to local data exploration with different domains.
Moreover, they did not carefully consider the characteristics
of graph-structured data and only imposed global knowledge
constraints at the feature level. This leads us to consider: 2)
how to achieve agreement between leveraging global knowl-
edge and fully exploring local data, then obtaining general-
izable features that benefit the classification model?

To tackle the challenges mentioned above at two levels,
we turn to prototypes and conduct an in-depth exploration of
their potential. Prototypes, defined as the mean value of fea-

tures with identical semantics (Wang et al. 2019), are derived
from the feature extractor and can provide diverse classifica-
tion signals. Thus they serve as a gentle yet powerful bridge
between the two levels. In FL, prototypes enhance data pri-
vacy, improve robustness against data imbalance, and main-
tain information across various domains (Tan et al. 2022b).
Motivated by these insights, we introduce Federated Graph
Learning with Generalizable Prototypes (FGGP), using pro-
totypes to tackle dual problems. For the classification model
level, we introduce Federated Cluster Prototypes Prediction
(FCPP). Traditional nonlinear parametric classifiers often
suffer from overfitting to specific domains, thereby limiting
their ability to capture multi-domain information during ag-
gregation. To mitigate this limitation, we advocate for adopt-
ing a prototype-based classification method, which uploads
prototypes instead of the classifier after local updates. On
the server, these prototypes are clustered, with those in the
same domain clustering together. This process retains class
information and domain signals. The clustering centers are
then stored in a global memory bank. During prediction, we
measure distances between samples and these prototypes us-
ing the k-nearest neighbors algorithm to infer results.

For the feature extractor level, in order to obtain more
generalizable features, we propose Global Knowledge In-
jected Contrast (GKIC). Prior work utilized prototypes as
regularization to constraint local training, differently, our
approach involves constructing a novel global view with
the support of global knowledge and conducting contrastive
learning between this view and the original one. This method
not only preserves the model capability to explore local
graph data fully but also subtly incorporates global knowl-
edge to facilitate training. Furthermore, we suggest a proto-
type contrastive learning strategy based on all nodes, opti-
mally utilizing all labeled and unlabeled nodes. This strat-
egy reduces computational overhead, bolsters generaliza-
tion, and generates representative and semantically rich pro-
totypes, which can effectively serve our proposed classifi-
cation model. We conjecture that these two components to-
gether make FGGP a competitive method for FGL with do-
main shift. The main contributions are summarized below.
• We are the pioneers in FGL to probe the impact of domain

shift with the objective of acquiring a well generalizable
global model. In real-world applications, graphs in FGL
are often domain-diverse, constituting a more challeng-
ing environment. Our research endeavors to create relative
benchmarks and contribute to the field, providing valuable
insights for future research in FGL.

• We suggest a new method that separates the model into
two components, linking them with prototypes. This tech-
nique uses clustering prototypes to enhance multi-domain
prediction in classification models. For feature extractor,
it applies contrastive learning for local and global consis-
tency, achieving better representations and ensuring pro-
totype effectiveness.

• We have performed extensive experiments on a variety of
graph datasets exhibiting domain shifts. When contrasted
with prior work in FL, our approach effectively mitigates
the issues related to domain shift. The result verifies the
validity of our proposed method.
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Related Work
Federated Graph Learning
Federated Graph Learning (FGL) applies the principles of
federated learning to graph neural networks, enabling col-
laborative training on graph-structured data while preserv-
ing data privacy (Tan et al. 2023b). FGL allows multiple
clients to jointly learn a shared graph representation model
without exchanging raw graph data. Previous work primar-
ily focused on establishing a global model on graph datasets
within the same domain (He et al. 2021; Chen et al. 2021)
or suggesting personalized models across different graph
datasets (Baek et al. 2022; Gauthier et al. 2023). However,
in real-world scenarios, graph datasets from different clients
may come from different domains (Tan et al. 2023a; Ye
et al. 2023), while participants still aspire to build a well-
generalizable global model. We are the first to study this
issue, decoupling the global model and connecting them
through prototypes to investigate the problems of existing
FGL work. More importantly, we have fully considered the
characteristics of graph data to further enhance local train-
ing and improve global model multi-domain generalization
performance.

Prototype Learning
Prototype learning, a subfield of machine learning, focuses
on learning a compact representation of the input space. This
learning paradigm has shown significant potential in a va-
riety of applications (Li et al. 2021, 2020a). For instance,
in supervised classification tasks, the system assigns labels
to test images by computing their distance from the proto-
types of each class (Snell, Swersky, and Zemel 2017). This
approach is deemed to be more robust and stable in man-
aging few-shot and zero-shot scenarios (Tian et al. 2020;
Jetley et al. 2015). Furthermore, there has been a growing
interest in various areas, e.g., semantic segmentation tasks
(Zhou et al. 2022). In the context of federated learning appli-
cations, both FedProto (Tan et al. 2022a) and FedProc (Mu
et al. 2021) employ prototypes as global knowledge regu-
larization terms within local updates to impose constraints.
However, these methods only consider global knowledge as
constraints at the feature level, neglecting the exploration of
local data, which can lead to degradation in certain scenar-
ios. In this study, we extensively leverage the characteris-
tics of graph data and implicitly incorporate global knowl-
edge, rather than using it solely as a regularization factor.
Specifically, we construct a global view supported by global
knowledge from both semantic and structural perspectives,
which is then utilized to achieve consistency between global
knowledge and local data, ultimately establishing a more
powerful prototype through contrastive learning.

Contrastive Learning on Graph
Contrastive learning (Ye et al. 2022, 2019), a methodology
discerning similarities and disparities within datasets, has
demonstrated significant potential when employed in graph
data analysis (Liu et al. 2022a, 2021). Initial works such
as DGI (Velickovic et al. 2019) and InfoGraph (Sun et al.

2020) maximized the mutual information between graph-
level and substructure-level representations. Similar to Sim-
CLR (Chen et al. 2020), GRACE (Zhu et al. 2020) maxi-
mizes the agreement of node embeddings across two cor-
rupted views of the graph. More recently, SimGRACE (Xia
et al. 2022) and BGRL (Thakoor et al. 2021) try to sim-
plify graph contrastive learning by discarding the negatives.
GREET (Liu et al. 2023f) combines contrastive learning
with heterophilic graphs. (Liu et al. 2023e, 2022b) involve
contrastive learning in cluster tasks. In this work, we have
given thorough consideration to the setting of FGL, employ-
ing global knowledge to facilitate data augmentation. This
approach allows us to execute contrastive learning between
a globally enriched view and row view, rather than resorting
to random graph disruption strategies.

Methodology
Preliminaries
In the Federated Graph Learning framework, M partici-
pants, each indexed by m, possess private graph data Gm =
(Vm, Am, Xm) and corresponding node labels Ym. Here,
Vm, Am, Xm represent nodes, adjacency matrices, and node
features, respectively. In this context of heterogeneous graph
data featuring domain shifts, two primary types of distribu-
tion shifts are identified:
Attribute Shift. Node features xv for nodes v ∈ V are sam-
pled based on the corresponding node labels yv . While the
distribution of node labels P (y) remains consistent across
clients, the conditional distribution of features P (x|y) dif-
fers among them. Attribute shift is defined by the condition:
Pm(x|y) ̸= Pn(x|y), given Pm(y) = Pn(y).
Structure Shift. Consider the joint distribution of the ad-
jacency matrix and node labels PA×Y . The structure shift
refers to Pm(A, Y ) ̸= Pn(A, Y ) (Pm(y) = Pn(y)) . We fur-
ther explain attribute shift and structure shift in Fig. 1.

Additionally, participants have agreed to share a model
with a uniform architecture. The model is composed of two
key modules: a feature extractor and a classification model.
The feature extractor, symbolized by f , often utilizes Graph
Neural Networks (GNN), such as Graph Convolutional Net-
works (GCN) (Kipf and Welling 2017). This extractor en-
codes a local graph (X,A) into a compact d-dimensional
feature vector, Z = f(X,A) ∈ Rv×d, in the feature space.
The classification model, represented by g, transforms the
feature vector Z into a logits output, Z → U ∈ Rv×|I|,
where I represents the classification categories. The opti-
mization goal is to train a globally generalizable model that
performs well across various domains.

Federated Cluster Prototypes Prediction
Motivation. In conventional FGL, the classifier functions as
a layer in the model during global aggregation. However,
if the graph data from diverse clients demonstrate domain
shift, the singular post-global aggregation classifier is only
able to map features to logits while neglecting the signals
of various domains. This results in subpar generalizable pre-
diction across all domains.
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Prototype-based Prediction Due to the limited ability of
classifiers under highly heterogeneous data, inspired by the
non-parameter classifiers in previous works (Wang et al.
2022), we introduce a novel prototype-based classification
model. Typical prototype cj ∈ Rd is calculated by the mean
vector of the features belonging to the same class:

cj =
1

|Nj |
∑

vi∈Nj

Zi, (1)

where Nj means the set of nodes annotated with class j.
Prototypes usually carry the unique semantic information
of classes. However, in scenarios of domain shift, the pro-
totypes aggregated from node features also carry domain-
specific signals. This encourages us to consider retaining
prototypes from different domains globally, then make pre-
dictions based on the similarities between node represen-
tations and memoried prototypes. Specifically, in the final
round of local training, clients upload prototypes to the
server memory bank B instead of classifiers. During the test-
ing phase of the global model on graph data from different
domains, we first obtain the representation of the nodes Z
through the feature extractor f , and then, based on similarity,
the top k closed samples in the memory bank are collected
to generate a voting prediction. Given a node representation
zi, the prediction pipeline can be defined as :

πk(zi) = softmax(
∑

j∈Ik,B(zi)

ω(zi, cj)1cj ), (2)

where 1cj is the one-hot class label with corresponding pro-
totypes cj , Ik,B(zi) donates ordered index of k subset of the
global memory bank B, the ω(zi, cj) is the cosine similarity
between node representation zi and prototype cj , which is
defined as:

ω(zi, cj) =
zi · cj

||zi|| × ||cj ||
. (3)

The predictor in Eq. (2) can be viewed as a voting mecha-
nism among the global memory prototypes analogous to the
node representation. Initially, we gather the k nearest proto-
types to xi from the memory bank and subsequently com-
pute their cosine similarities. The model will give the la-
bel that corresponds to the maximum aggregated weights. In
contrast to prior work that directly utilized features as mem-
orized samples (Zhang et al. 2023), employing prototypes
offers a more privacy-friendly approach as they have been
subjected to a round of aggregation. These prototypes, being
discriminative representations drawn from various domains,
can provide not only semantic information but also fruitful
domain signals. This approach efficiently addresses the issue
where the classifier fails to represent multi-domain signals.
Generalizable Prototypes. Our initial design of a clas-
sification model incorporated domain discrimination abil-
ities. However, it continues to grapple with the following
challenges: 1) Given the unique characteristics of graph
data learning, nodes may encompass both labeled and un-
labeled instances. The conventional computation of pro-
totypes, however, solely incorporates labeled samples, ne-
glecting unlabeled ones. Consequently, the prototypes end
up possessing only semantic information skewed toward la-
beled nodes. 2) As the client count escalates, the global
memory bank confronts substantial storage issues, resulting

in a decline in the scalability of this methodology.
In response to the first concern, we procure prototypes by

calculating the weighted average of all node representations,
the Eq. (1) can be rewritten as follows:

cj =
1

W j

∑
i∈argmax(Ui)=j

wiZi, (4)

where U is the logits output given by local classifier, weight
wi = max(Ui) is the confidence in prediction for unla-
beled nodes, otherwise wi = 1 for labeled nodes. W j is
the sum of weight wi of all nodes allocated to class j. In this
manner, the prototype effectively capitalizes on all supervi-
sion signals. To address the second concern, we introduce a
clustering of prototypes. We employ the unsupervised clus-
tering method FINCH (Sarfraz, Sharma, and Stiefelhagen
2019) to derive compact prototype representations within
the same domain. Unlike conventional clustering methods,
FINCH operates without parameters, making it apt for fed-
erated learning with uncertain participant scales and uniden-
tified domains. Given that FINCH clusters through nearest
neighbors, prototypes from an identical class but disparate
domains have a heightened probability of being clustered
into distinct clusters, while those from the same domain are
more likely gathered into the same cluster:

Cj = {cjm}Nm=1
Cluster−→ {cjm}Hm=1 ∈ RH×d, (5)

here we assume that the clustering outcome comprises H
clusters, with the prototype Cj of each category j retained
in the global memory bank. By doing this, we obtain a
compact prototype representation that can characterize a
single domain. Concurrently diminishing the complexity
from O(Nd) to O(Hd). This modification ensures that the
method is no longer constrained by the client count N and
therefore enhances scalability.

Global Knowledge Injected Contrast
Motivation. Prior research has considered prototypes as a
regularization term of global knowledge in localized train-
ing, yet they have solely regarded the constraints of global
knowledge, neglecting an exhaustive exploration of local
data, leading to these methods not being universally effec-
tive. This propels us to consider how to maximize the utiliza-
tion of local data, while subtly incorporating global knowl-
edge to bolster training, eventually boosting the generaliza-
tion capability of the feature extractor.

This section describes aligning local graphs with global
knowledge using graph contrastive learning. Traditional un-
supervised graph studies mainly used random feature masks
or edge removal for augmentation. Our approach, however,
maintains the original view and adds a global perspective
by injecting global knowledge. Recognizing the importance
of topology in GNN feature extraction, we reconstruct the
graph structure by integrating global knowledge both se-
mantically and structurally.
Global Semantic K-nearest Neighbor Completion. Given
that the topological connections of local graph data are only
present in the original adjacency matrix, they are not con-
nected to potential semantic neighbors, which could help
in mining more information during message propagation.
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Figure 2: Architecture illustration of Federated Graph Learning with Generalizable Prototypes. We show the two key compo-
nents in (a) and (b), nodes of different classes are marked with different colors. For cluster prototypes, instances from the same
class but different domains are marked with different shades of color. Best viewed in color. Zoom in for details.

Specifically, we preserve the global feature extractor at the
local level, which possesses the capability to identify the
potential global neighbors of the local nodes. Subsequently,
we link each node to its k′ semantic neighbors using the k-
nearest neighbor graph completion (Liu et al. 2023d) method
and then incorporate them into the original topological struc-
ture. Given the original adjacency matrix A and nodes em-
beddings Z ′ given by the global feature extractor fg , this
procedure can be expressed as:

A′
ij =


1, if Aij = 1,

1, if i ̸= j and j ∈ Topk′(i),

0, otherwise.
(6)

Here Topk′(i) means the index of the highest k′ similar-
ity nodes to node i measured by cosine similarity distance
Eq. (3). Through Eq. (6), we subsequently acquire a new se-
mantically completed view A′.
Global Structure Adaptive Reconstruction. Prior research
highlights the significance of using structural knowledge
in graph learning (Liu et al. 2023b, 2022c). We developed
an adaptive graph topology augmentation module, G, to
integrate global structural data into graph view construc-
tion. This module calculates the distribution P(Ag|X,A′)
for generating discrete adjacency matrices probabilistically.
It first transforms the node feature matrix X into a hidden
space representation F ∈ Rn×d. We then compute a prob-
ability matrix Ω = σ(FFT ) ∈ Rn×n, where σ is the sig-
moid function and Ωij indicates the likelihood of a con-
nection between nodes vi and vj . To create a discrete ad-
jacency structure and enable differentiable sampling, we use
Gumbel-Softmax sampling (Jang, Gu, and Poole 2016; Wu
et al. 2022), resulting in a new topology Ag:

Ag
i,j = ⌊ 1

1 + exp−(logBi,j+S)
+

1

2
⌋, (7)

where the Bi,j := λA′
ij + (1− λ)Ωij , λ ∈ [0, 1] stands for

the degree of graph augmentation and S = Gumbel(0, 1)

represents a Gumbel random variate. The module G is glob-
ally shared and aggregated during the training process. This
characteristic guarantees that a new topology view can be
effectively acquired by leveraging the structural knowledge
from various clients.
Prototype-based Contrastive Learning. Using both the
global and original graph views, we apply contrastive learn-
ing across different graphs. Traditional node-level con-
trastive learning, which neglects existing supervision sig-
nals, incurs a high computational cost (O(n2)) on clients.
Our approach utilizes a prototype-based method for con-
trastive learning. We process the views Ag and A using lo-
cal feature extractors to generate node representations Zg

and Z. We then derive prototypes cgj and cj as per Eq. (4).
We achieve prototype consistency using the Info-NCE loss
(Chen et al. 2020; Liu et al. 2023c):

Lcon =
−1

2|I|

|I|∑
j=1

(
log

s
(
cj , c

g
j

)∑
j ̸=l s (cj , c

g
l )

+ log
s
(
cj , c

g
j

)∑
j ̸=l s

(
cl, c

g
j

)) .

(8)
Here the s(cj , c

g
j ) = exp(ω(cj , c

g
j )/τ) , τ is the con-

trast temperature. By optimizing Eq. (8), we achieve the
following advantages: 1) It fully utilizes existing supervi-
sion signals, encouraging intra-class compactness and inter-
class separability, leading to better node representations.
2) It takes into account unlabeled nodes, preventing nodes
from overfitting to labeled nodes through the single CE
loss. 3) It combines information from different views, allow-
ing for the local acquisition of more powerful prototypes.
4) Compared to traditional node-level contrastive learning,
prototype-level contrastive learning has lower complexity,
reducing the computational burden from O(n2) to O(|I|2).

Overall Objective
Finally, we compute the local logit outputs U , Ug of the
two views and the cross-entropy loss with respect to the la-
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Twitch Citation
Methods

EN ES FR PT RU DE AVG △ DBLP ACM AVG △

FedAvg [ASTAT17] 58.19 48.17 44.22 49.54 36.89 65.47 50.41 - 67.20 73.14 70.17 -
FedProx [arXiv18] 58.58 40.59 42.85 45.49 33.81 66.76 48.01 -2.40 67.20 73.21 70.21 +0.04
MOON [CVPR21] 58.75 40.54 42.73 45.23 33.81 66.76 47.97 -2.44 73.38 65.50 69.44 -0.73
FedOPT [ICLR21] 59.42 60.22 50.52 64.05 52.85 66.58 58.94 +8.53 71.73 72.98 72.35 +2.18
FedProc [ICLR21] 58.40 46.45 45.26 48.10 38.72 66.11 50.51 +0.10 66.08 73.04 69.56 -0.61

FedSage [NeurIPS21] 56.40 51.56 45.17 54.20 43.51 63.02 52.31 +1.90 71.01 72.71 71.86 +1.69
FedProto [AAAI22] 58.75 41.45 42.85 45.62 34.21 66.74 48.27 -2.14 66.62 73.01 69.82 -0.35

FGGP (ours) 47.81 73.55 63.91 66.54 70.28 53.92 62.67 +12.26 82.26 67.34 74.80 +4.63

Twitch Citation
Methods

EN ES FR PT RU DE AVG △ DBLP ACM AVG △

FedAvg [ASTAT17] 57.21 36.40 40.33 49.29 42.22 65.37 48.47 - 78.71 70.61 74.66 -
FedProx [arXiv18] 57.52 39.46 41.17 43.53 32.50 65.82 46.67 -1.80 78.74 70.97 74.86 +0.20
MOON [CVPR21] 57.38 36.51 40.44 42.61 30.33 65.32 45.43 -3.04 78.51 69.44 73.98 -0.73
FedOPT [ICLR21] 59.80 45.38 43.84 48.24 37.51 67.79 50.43 +1.96 71.77 78.78 75.28 +0.62
FedProc [ICLR21] 55.70 44.19 43.53 44.44 36.49 68.50 48.81 +0.37 78.58 70.34 74.46 -0.20

FedSage [Neurips21] 59.52 43.71 43.91 47.71 36.60 67.45 49.82 +1.35 78.62 72.14 75.38 +0.72
FedProto [AAAI22] 57.35 43.26 40.29 42.61 30.50 65.53 46.59 -1.88 78.71 71.68 75.20 +0.54

FGGP (ours) 57.49 64.25 54.29 65.10 62.66 66.63 61.74 +13.27 85.22 68.32 76.77 +2.11

Table 1: Comparison with the state-of-the-art methods on Twitch and Citation tasks with α = 5 (upper) and α = 10 (lower).
AVG denotes the average accuracy calculated on all domains. Best in bold and second with underline.

bels Y which is denoted as L′
ce = Lce + Lg

ce. Addition-
ally, to constrain the output of the adaptive graph topology
augmentation module, we introduce a regularization term
Lreg = H(A′, Ag), where H represents the cross-entropy
loss. The overall optimization objective can be expressed as:

L = L′
ce + βLcon + γLreg. (9)

Discussion. We further explain the distinctions between our
generalizable prototype and previous applications of proto-
types in FL. In previous work, prototypes were primarily
used as a regularization technique of global knowledge, aid-
ing in local training. In contrast, our approach focuses on ob-
taining prototypes that are more generalizable by employing
contrastive learning. Additionally, FPL (Huang et al. 2023c)
introduces the concept of clustering prototypes, which rep-
resents an improvement over previous methods. Yet, these
client-side prototypes limit local training due to a fixed
global optimization direction, constraining generalization,
especially across different graph domains. This limitation
led us to explore a server-side solution. Here, we use cluster
prototypes to capture multi-domain signals and class infor-
mation, enhancing the generality of predictions.

Experiment
Experimental Setup
We perform experiments on node-level tasks on graph data
with domain shift to confirm the efficacy of FGGP.
Datasets. For node classification, our experiment is con-
ducted on three environments under domain shift:

• Citation. We follow (Wu et al. 2020) and choose
DBLPv8, ACMv9 for different domains, which are ob-
tained from DBLP and ACM respectively. Each node rep-
resents a paper and each edge indicates a citation between
two papers. The goal is to predict the topic of a paper.

• Twitch. Twitch Gamer networks, where nodes represent
gamers and edges are followerships between them where
different domain represents different language. The task is
to predict whether a user streams mature content.

Network Structure. Following the common approach in
FGL, we utilize GCN as the 2 layers feature extractor f and
classifier g, with the hidden layer size of 128 for all datasets.
Implemention Details. In each experimental environment,
we designate the complete graph of each domain as the tar-
get for testing on the server side. These graphs are divided
into different subgraphs assigned to individual clients, with
60% of nodes used for training. To examine the efficacy
of the proposed method under varying degrees of domain
shift, we define α as the ratio representing the num of split
subgraphs across different domains. An increase in α corre-
sponds to a higher degree of domain shift. In all experimen-
tal environments, we set the learning rate to 3e − 4 and use
SGD (Robbins and Monro 1951) as the selected optimizer
with momentum 0.9 and weight decay 1e− 5. The commu-
nication round is 200 and the local training epoch is 6 for
all datasets. The metric used in our experiments is the node
classification accuracy on the testing nodes. We conduct ex-
periments three times and report the last five communication
epochs accuracy as the final performance. The code is avail-
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(a) Contrastive parameter τ (b) Neighbor Completion k′

Figure 3: Analysis on hyper-parameter. Performance with
hyper-parameter τ and k′, where green and blue represent
the Twitch task with α = 10 and α = 5 respectively, while
yellow and red represent the Citation task with α = 10 and
α = 5 respectively.

Twitch
FCPP GKIC

EN ES FR PT RU DE AVG

✗ ✗ 57.21 36.40 40.33 49.29 42.22 65.37 48.47

✓ ✗ 45.32 70.29 63.02 62.92 76.40 40.84 59.80

✗ ✓ 57.51 44.91 44.33 47.64 42.72 63.14 50.04

✓ ✓ 57.49 64.25 54.29 65.10 62.66 66.63 61.74

Table 2: Ablation study of key components in Twitch task.

able at https://github.com/GuanchengWan/FGGP.
Counterparts. We compare ours against several SOTA fed-
erated approaches focusing on learning a shared global
model: FedAvg (AISTATS’17 (McMahan et al. 2017)), Fed-
Prox (arXiv’18(Li et al. 2020b)), Moon (CVPR’21 (Li, He,
and Song 2021)), FedOpt (ICLR’21 (Reddi et al. 2021)),
FedProc (arXiv’21 (Mu et al. 2021)), FedSage (NeurIPS’21
(Zhang et al. 2021)) and FedProto (AAAI’22 (Tan et al.
2022a) with parameter averaging).

Experimental Results
The results of node classification with various state-of-the-
art methods under domain shift are presented in Tab. 1. We
contrast our approach (FGGP) with several prevalent FL al-
gorithms, including global FL, personal FL, and FGL meth-
ods. FGGP effectively enhances multi-domain generaliza-
tion performance across different environments, achieving
higher average performance. When encountering varying
degrees of domain shift (α = 5/10), the method maintains
its competitive performance. We also show the t-SNE results
of features on Citation in Fig. 4, which proves that the fea-
ture extractor obtains more representative features.

Diagnostic Analysis
Hyper-parameter. We first investigated the τ in contrastive
learning and k′ in nearest neighbor completion in the Fig. 3.
For τ , within the interval τ ∈ [1, 0.1], the impact on perfor-
mance is not significant. When we set it to a minimum of
τ = 0.01, it will cause a certain degree of decline. For k′,
too few neighbors lead to insufficient semantic completion,
and too many will lose the original adjacency information.

Cluster Twitch

Method EN ES FR PT RU DE AVG

Kmeans 43.96 71.77 63.80 70.02 71.97 53.71 62.37

DBSCAN 44.33 69.09 65.12 64.89 76.47 48.09 61.33

FINCH 47.81 73.55 63.91 66.54 70.28 53.92 62.67

Table 3: Different Cluster Methods Comparation.

(a) DBLP (b) ACM

Figure 4: t-SNE Visualization of features in Citation task. In
each dataset, the left side represents FedAvg, and the right
side represents FGGP.

The impact of key components. Tab. 2 discusses two key
designs in our method. Firstly, GKIC enhances performance
by aligning local and global knowledge. Secondly, FCPP
improves the average prediction performance across multi-
ple domains while mitigating the influence of the dominant
domain. When these two components are effectively com-
bined, the method achieves its optimal performance.
Different Cluster Methods. We compared FINCH with
several clustering algorithms (e.g., Kmeans (MacQueen
et al. 1967) and DBSCAN (Ester et al. 1996)), and found that
these methods require careful hyper-parameter fine-tuning,
which makes them less effective in adapting to the FL. Dif-
ferently, FINCH not only achieves competitive performance
but also introduces the advantage of requiring no hyper-
parameters. This characteristic enables it to adapt more ef-
fectively to the setting where the domains are unknown.

Conclusion
In this paper, we pioneer an innovative exploration of Fed-
erated Graph Learning under Domain Shift with the objec-
tive of obtaining a generalizable global model. To achieve
this, we decompose the global model into a feature extrac-
tor and a classification model, which are connected through
prototypes, and propose a novel framework called Federated
Graph Learning with Generalizable Prototypes (FGGP). For
the classification model, we use Federated Cluster Proto-
types Prediction (FCPP) to merge multi-domain data and
boost class distinction. At the feature extractor level, our
Global Knowledge Injected Contrast (GKIC) aligns local
data with global knowledge using contrastive learning, en-
riching feature diversity and enhancing prototypes. This in-
tegrated approach shows promising results and offers in-
sights for advancing Federated Graph Learning.
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