
Attribute-Missing Graph Clustering Network
Wenxuan Tu1, Renxiang Guan1, Sihang Zhou2, Chuan Ma3, Xin Peng1,

Zhiping Cai1, Zhe Liu3, Jieren Cheng4,5, Xinwang Liu1

1School of Computer, National University of Defense Technology, Changsha, China
2School of Intelligence Science and Technology, National University of Defense Technology, Changsha, China

3Zhejiang Lab, Hangzhou, China
4School of Computer Science and Technology, Hainan University, Haikou, China

5Hainan Blockchain Technology Engineering Research Center, Haikou, China
wenxuantu@163.com, sihangjoe@gmail.com, xinwangliu@nudt.edu.cn

Abstract

Deep clustering with attribute-missing graphs, where only
a subset of nodes possesses complete attributes while those
of others are missing, is an important yet challenging topic
in various practical applications. It has become a prevalent
learning paradigm in existing studies to perform data impu-
tation first and subsequently conduct clustering using the im-
puted information. However, these “two-stage” methods dis-
connect the clustering and imputation processes, preventing
the model from effectively learning clustering-friendly graph
embedding. Furthermore, they are not tailored for clustering
tasks, leading to inferior clustering results. To solve these is-
sues, we propose a novel Attribute-Missing Graph Clustering
(AMGC) method to alternately promote clustering and im-
putation in a unified framework, where we iteratively pro-
duce the clustering-enhanced nearest neighbor information to
boost the quality of data imputation and utilize the imputed
information to implicitly refine the clustering distribution
through model optimization. Specifically, in the imputation
step, we take the learned clustering information as imputation
prompts to help each attribute-missing sample gather highly
correlated features within its clusters for data completion,
such that the intra-class compactness can be improved. More-
over, to support reliable clustering, we maximize inter-class
separability by conducting cost-efficient dual non-contrastive
learning over the imputed latent features, which in turn pro-
motes greater graph encoding capability for clustering sub-
network. Extensive experiments on five datasets have verified
the superiority of AMGC against competitors.

Introduction
Deep graph clustering (DGC), as a fundamental task in un-
labelled data analysis, aims to identify groups of nodes with
similar properties or behaviors within a given graph. With
the powerful representation learning capability of graph neu-
ral networks (Kipf and Welling 2017; Velickovic et al. 2018;
Xu et al. 2019), DGC has been intensively researched and
demonstrated encouraging performance across a wide range
of practical applications, such as community detection (Park
et al. 2022), face recognition (Wang et al. 2022b), and
metagenomic binning (Xue et al. 2022).

The key prerequisite for the success of current DGC meth-
ods (Bo et al. 2020; Cui et al. 2020; Tu et al. 2021; Peng et al.
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2021; Gong et al. 2022a,b; Liu et al. 2023; Hu et al. 2023;
Yang et al. 2022, 2023) lies in the assumption that all sam-
ples within a graph are trustworthy and complete. However,
such an assumption may not always hold in practical sce-
narios since it is hard to collect all information from graph
data. The reasons behind this include but are not limited to
the privacy-protecting policy, the copyright restriction, and
the failures in data acquisition equipment. All these uncon-
trollable factors could easily trigger data-sparse and data-
absent issues that adversely affect clustering performance.
Based on the absence of node attributes, the graphs with
absent attributes can be broadly classified into two cate-
gories: 1) attribute-incomplete graphs, where only a subset
of attributes for all nodes is absent; and 2) attribute-missing
graphs, where all attributes for specific nodes are absent. In
this study, we focus specifically on the second category as it
is more challenging and holds relevance to numerous real-
world applications. For example, in a citation graph, some
papers are entirely not accessible due to copyright protec-
tion. Moreover, within the co-purchase graph, consumers
tend to abstain entirely from offering feedback for certain
items, primarily driven by privacy concerns. However, most
existing DGC methods lack a dedicated feature completion
mechanism to handle attribute-missing samples. This poses
a significant challenge in learning effective graph embed-
ding for accurate clustering on attribute-missing graphs.

To learn strong graph neural networks (GNNs) capable of
handling attribute-missing data for clustering, recent studies
propose two types of graph learning methods. The first cate-
gory is termed embedding alignment-based methods, which
firstly conduct the structure-attribute embedding distribution
matching to reconstruct latent features of attribute-missing
samples (Chen et al. 2022; Li et al. 2022b) and then uti-
lize the decoded information for clustering. The second cat-
egory, termed data imputation-based methods, addresses this
issue by completing missing attributes using data imputation
techniques (Yoo et al. 2022; Tu et al. 2022; Jin et al. 2023)
and subsequently performing clustering in the latent space.
Though demonstrating impressive clustering performance,
the above “two-stage” methods share the following limita-
tions: 1) isolate the clustering and imputation processes, pre-
venting two steps from negotiating with each other to learn
clustering-friendly graph embedding; and 2) not tailored for
clustering tasks. Most of them complete missing attributes
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in the noise latent space by searching for reliable signals
from a global aspect, which may potentially increase the
risk of constructing a noisy connection between two sam-
ples not belonging to the same cluster. In this circumstance,
the imputed information is less accurate, posing challenges
in effectively estimating associations between the imputed
nodes and clusters. Consequently, the intra-class samples ex-
hibit scattering, while the inter-class samples tend to mix to-
gether, resulting in sub-optimal performance.

Based on the above observations, we find that attribute-
missing DGC has emerged as a pressing real-world de-
mand yet has not been sufficiently explored. This moti-
vates us to propose an efficient yet effective DGC frame-
work termed Attribute-Missing Graph Clustering (AMGC),
where we iteratively produce the clustering-enhanced near-
est neighbor information to boost the quality of data impu-
tation and utilize the imputed information to implicitly re-
fine the clustering distribution through model optimization.
To this end, we design a cluster-oriented imputation-then-
refinement scheme, which is a key innovation of our work.
On the one hand, we take the learned clustering pseudo la-
bels as imputation prompts to help attribute-missing samples
identify the most relevant clues within their respective clus-
ters. By filtering noisy connections among different clusters
and enhancing the most reliable ones within each cluster,
the network is encouraged to boost the quality of data im-
putation, making the learned graph embedding more com-
pact and distinguishable for clustering. On the other hand,
we construct cost-efficient positive and negative cluster cen-
ter pairs using the imputed information and develop a novel
dual non-contrastive clustering loss to conduct discrimina-
tion between positive and negative pairs. By doing this, the
clustering sub-network is enabled to generate well-separated
clusters for subsequent imputation while avoiding the expen-
sive negative sampling step evident in contrastive learning.
As the clustering pseudo labels become more reliable and
the imputed latent features become more accurate, the model
can learn clustering-friendly graph embedding for better per-
formance. We summarize the contributions of this work:
• To the best of our knowledge, this is the first attempt to

investigate a unified learning paradigm for the attribute-
missing DGC problem, which is more practical and chal-
lenging than the attribute-complete counterpart.

• A novel attribute-missing DGC method termed AMGC is
proposed, where clustering and imputation are promoted
alternately within a unified optimization framework. In
addition, a novel cluster-oriented imputation scheme and
a new dual non-contrastive clustering loss are designed
to facilitate high-quality data completion and promote
clustering-friendly graph embedding, respectively.

• Extensive experiments on five graph datasets have solidly
demonstrated the effectiveness and superiority of AMGC
compared to other competitors.

Related Work
Attribute-Complete Deep Graph Clustering
Graph Neural Networks (GNNs) have been de-facto stan-
dard deep learning models for graph data analysis (Liang

et al. 2023a,b; Peng et al. 2024). Due to the strength of
GNNs, graph clustering techniques have made remarkable
advancements in recent years. As one of the most represen-
tative clustering paradigms, generative graph clustering aims
to provide self-supervision signals by reconstructing node
attributes or graph structure and predict clustering labels
by applying or incorporating clustering techniques (Wang
et al. 2019; Tao et al. 2019; Pan et al. 2020; Bo et al. 2020;
Tu et al. 2021; Peng et al. 2021). Another vital research
line in this field is contrastive graph clustering, which ac-
quires clustering-friendly graph embedding for clustering by
pulling positive samples close while pushing negative sam-
ples away (Gong et al. 2022b; Xia et al. 2022; Liu et al.
2022, 2023; Tu et al. 2023b). One common underlying as-
sumption embraced by these methods is that all node at-
tributes are available and trustworthy. While in practical ap-
plications, this assumption may be invalid, and the presence
of missing data poses a significant challenge for achieving
satisfactory clustering performance. In contrast, we address
the problem of deep clustering with attribute-missing graphs
and advocate a unified learning paradigm that alternates be-
tween clustering and imputation to enhance performance.

Clustering with Attribute-Missing Data
Recently, clustering with attribute-missing data has attracted
significant attention from researchers (Liu 2021; Jin et al.
2021; He et al. 2022; Cui et al. 2022; Rossi et al. 2022;
Tu et al. 2022; Yoo et al. 2022; Xu et al. 2022; Jin et al.
2023). For example, SAT (Chen et al. 2022) and CSAT (Li
et al. 2022b) perform distribution matching between the at-
tribute embedding and the structure embedding to estimate
missing attributes for clustering. Another type of method
completes missing latent features for clustering by various
data imputation techniques like structured variational infer-
ence (Yoo et al. 2022), node similarity preserving (Tu et al.
2022), and generative adversarial learning (Jin et al. 2023).
Despite their success in achieving high-quality data comple-
tion, these methods disconnect the clustering and imputa-
tion processes, thereby hindering effective negotiation be-
tween the two learning processes. Moreover, none of them
are specialized designs to handle clustering tasks, and thus
the learned graph embedding is sub-optimal for clustering
in extremely attribute-missing scenarios. To solve these is-
sues, several advanced algorithms, such as incomplete mul-
tiple kernel clustering (IMKC) and incomplete multi-view
clustering (IMVC), have been proposed to jointly impute
and partition multi-view data with missing information in
some specific views (Liu et al. 2020, 2021; Liu 2021; Xu
et al. 2022; Xia et al. 2023). For instance, IMKAM (Liu
2021) initially treats absent kernel elements as variables that
can be completed through optimizing a clustering objective,
and the updated variables are used in turn to perform the
subsequent clustering. DIMVC (Xu et al. 2022) alternately
conducts the multi-view cluster complementarity for data
completion and the multi-view clustering consistency over
the completed latent features. Despite their achievements in
processing non-graph data, the simple integration of cluster-
ing and imputation may be less effective in handling graph
data. This is because the non-Euclidean property of graphs
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Figure 1: The overall architecture of AMGC. The clustering and imputation processes are integrated into a unified two-step
alternate optimization framework. Specifically, in the clustering step, we estimate the clustering distribution from encoded graph
embedding via K-means. While in the imputation step, the cluster-oriented imputation scheme and the dual non-contrastive
clustering loss LD encourage the model to enhance intra-class compactness and maximize inter-class separability, respectively.

could easily trigger uncertainty in estimating missing data
(Tu et al. 2023a), possibly affecting subsequent clustering.
To improve the imputation stability and quality, we simul-
taneously filter noisy connections between different clusters
and strengthen the most trustworthy ones within each cluster
using the learned clustering information. To support reliable
clustering, we in turn leverage the imputed information to fa-
cilitate well-separated clusters through model optimization.

Method
In this part, we begin with an illustration of basic notations
and definitions, and then present the proposed AMGC in de-
tail. An overview of AMGC is shown in Fig. 1.

Notations and Definitions
Given an undirected graph G = {V, E} with C clusters,
where V = {vn}Nn=1, E , and N are the node set, the edge
set, and the number of all nodes, respectively. In classic
graph learning, G is usually described by an attribute matrix
X ∈ RN×D and a normalized adjacency matrix A ∈ RN×N

(Kipf and Welling 2017), where D refers to the node at-
tribute dimension.

Definition 1 (Attribute-Missing Graph). In attribute-
missing deep graph clustering, with the existence of missing
attributes, we define Vc = {vc

n}N
c

n=1 and Vm = {vm
n }N

m

n=1
to form the set of attribute-complete nodes and the set of
attribute-missing nodes, respectively. Accordingly, V = Vc

∪ Vm, Vc ∩ Vm = ∅ and N = N c + Nm. Based on these
notations, an attribute-missing graph could be formulated
as G̃ = {Vc, E}.

Definition 2 (Learning Task). In this paper, we consider
node clustering on attribute-missing graphs. The goal of our
task is to learn a clustering sub-network fC and an imputa-
tion sub-network fA = fD ◦ fE , where fC is a GNN-based
encoder, and fA is composed of a GNN-based encoder fE
and an MLP-based decoder fD. Specifically, fC outputs the
clustering-friendly graph embedding matrix Zv2 ∈ RN×d

such that d ≪ D, which provides the learned clustering
information to guide the data completion. Similarly, fA pro-
duces the well-imputed graph embedding matrix Z ∈ RN×d,
which is subsequently utilized to refine the clustering distri-
bution. Both clustering and imputation processes are inte-
grated in a two-step alternate optimization framework.

Graph Pre-Processing
Before training AMGC, we first generate two augmented
graphs as input views from G̃. These views are then fed
into the graph encoder fE and the momentum graph en-
coder fC , respectively. Specifically, to ease the model train-
ing under a high attribute-missing ratio ra, we fill missing
attributes with a set of initial values T m = {tmn }N

m

n=1, where
tmn ∈ RD represents the zero-filling or Laplacian smooth-
ing feature vector. Moreover, under an edge-masking ratio
re, we sample a subset of masked edges Ẽ from E following
a Bernoulli distribution (Li et al. 2023a). With these mathe-
matical formulations, two augmented graph views could be
defined as G̃v1 = {Vc, T m, ∁E Ẽ} and G̃v2 = {Vc, T m, E},
respectively, where ∁E Ẽ is the complementary set of Ẽ . Af-
ter that, we map these two augmented graphs into the latent
space for alternately optimizing clustering and imputation
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processes in the next step:

Zv1 = fE(G̃v1 |ΘfE ) = fE(Ã, X̃ |ΘfE ), (1)

Zv2 = fC(G̃v2 |ΘfC ) = fC(A, X̃ |ΘfC ), (2)

where ΘfE and ΘfC denotes the learnable parameters of two
graph encoders. Ã ∈ RN×N and X̃ ∈ RN×D denotes the
normalized masked adjacency matrix and the initially im-
puted attribute matrix.

Clustering and Imputation Negotiation
As previously discussed, we are facing a challenging yet
under-explored task: utilizing limited graph information to
perform clustering and imputation simultaneously. To bridge
this gap, an intuitive solution is to conduct these two steps
in an alternate optimization manner: 1) complete attribute-
missing samples under the guidance of clustering; 2) up-
date the clustering distribution with imputed information. To
this end, we design a simple yet effective Cluster-oriented
Imputation-Then-rEfinement (CITE) scheme. As shown in
Fig. 1, the core components of CITE consist of two parts,
i.e., cluster-oriented imputation and cluster refinement.

Cluster-Oriented Imputation During the data imputa-
tion process, to collect K-nearest nodes within respective
clusters, we develop a cluster-oriented information filtering
and enhancing operation that mainly includes four steps.
Firstly, we perform the classical K-means algorithm K(·)
(Hartigan and Wong 1979) over Zv2 to obtain prior cluster-
ing information:

{C,p} ← K(Zv2), (3)

where C = [c1, c2, . . . , cC ] ∈ RC×d denotes the cluster
center matrix, and p = [pzv2

1
, pzv2

2
, . . . , pzv2

N
] ∈ RN indi-

cates the predicted cluster assignment vector. In other words,
pzv2

n
= i implies that the predicted clustering pseudo label

of sample zv2
n is i, where i ∈ [1, C].

Next, according to p, the graph embedding matrix Zv1

could be grouped into C sample sets H = {Ci}Ci=1, where
all samples belonging to Ci have a common predicted clus-
tering pseudo label i. After that, within these sample sets, we
search K nearest neighbors for each attribute-missing node
based on the sample similarity (e.g., Euclidean distance). Fi-
nally, these selected samples are gathered to update Zv1 :

Z = O(Zv1 , p, K), (4)

where O(·) refers to the cluster-oriented information filter-
ing and enhancing operation. Z ∈ RN×d denotes the im-
puted graph embedding matrix. By doing so, when complet-
ing attribute-missing samples, some noisy connections (e.g.,
two connected samples not belonging to the same cluster)
could be eliminated among different clusters while more re-
liable ones are encouraged to be identified within the same
cluster. Consequently, the network is promoted to learn a
more compact clustering pattern for better performance.

Cluster Refinement Besides a compact cluster structure,
an ideal clustering distribution should exhibit well-separated
clusters (Li et al. 2021; Huang et al. 2023). To this end,
we leverage the imputed information to implicitly refine the
clustering distribution by designing a dual non-contrastive
clustering loss LD. It is worth noting that the cluster cen-
ters (i.e., C) obtained by K-means are detached and can-
not be applied to the loss computation for gradient back-
propagation directly. Inspired by the success of ProPos
(Huang et al. 2023), we reestimate all cluster centers by
associating the learned graph embedding with the cluster
assignment posterior probability. Specifically, we calculate
C′ ∈ RC×d and p′ ∈ RN over Z, similar to Eq. (3), and
then redefine the cluster center vectors ci, c′i ∈ Rd as ui,
u′
i ∈ Rd:

ui =

∑|Ci|
z
v2
n ∈Ci

wnz
v2
n

∥
∑|Ci|

z
v2
n ∈Ci

wnz
v2
n ∥2

, (5)

u′
i =

∑|C′
i|

zn∈C′
i
w

′

nzn

∥
∑|C′

i|
zn∈C′

i
w′

nzn∥2
, (6)

where wn and w
′

n represent the normalized posterior prob-
abilities of cluster assignment, calculated from p and p′ re-
spectively. ui and u′

i are the updated cluster center vectors
with gradient, and ∥ · ∥2 denotes the ℓ2-normalization.

According to Eq. (5) and Eq. (6), the final dual non-
contrastive clustering loss LD can be formulated as follows:

LD =
1

C

( C∑
i=1

ui · T (
{
u′
j

}C

j ̸=i
)

∥ui∥∥T (
{
u′
j

}C

j ̸=i
)∥
−

C∑
i=1

ui · u′
i

∥ui∥∥u′
i∥
)
, (7)

where T (·) is the random cluster center-sampling operation.
The first term minimizes the similarity between the negative
cluster center pair across two views, while the second term
maximizes the consistency within the positive cluster center
pair. With Eq. (7), the clustering sub-network is efficiently
promoted to enlarge the distance between inter-cluster sam-
ples through model optimization, leading to more clustering-
friendly graph embedding and clearer clustering partitions.

Edge Decoding and Optimization
Edge Decoding To boost the learning stability of the im-
putation sub-network, we impose a simple MLP-based de-
coder fD to recover masked edges. The masked edge recon-
struction loss can be formulated as follows:

sn,n′ = Sigm
(
fD(zn, zn′)

)
, (8)

LE = − 1

|Ẽ |

∑
enn′∈Ẽ

log sn,n′ − 1

|Ê |

∑
ell′∈Ê

log(1− sl,l′), (9)

where Sigm(·) is sigmoid activation function. sn,n′ is the
probability of node vn and node vn′ being connected. zn
and zn′ denote the corresponding node embedding vectors
encoded by fE . Ẽ is a set of positive edges while Ê is a set
of negative edges sampled from the graph, where |Ẽ | = |Ê |.
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Algorithm 1: The learning procedure of AMGC

Input: Augmented graphs G̃v1 , G̃v2 ; maximum epoch E;
edge-masking ratio re; nearest neighbors K, learning
rate η.

Output: Clustering results p.
1: Initialize {ΘfC ,ΘfE ,ΘfD} with an Xavier manner
2: for e = 1 to E do
3: Update G̃v1 by randomly masking edges with re

/∗ Clustering step (C-step) ∗/
4: Update ΘfC by Eq. (10)
5: Obtain Zv2 from G̃v2 with fC by Eq. (2)
6: Obtain C and p from Zv2 with K-means by Eq. (3)

/∗ Imputation step (I-step) ∗/
7: Obtain Zv1 from G̃v1 with fE by Eq. (1)
8: Obtain Z from Zv1 based on p and K by Eq. (4)
9: Calculate LD and LE by Eq. (5) - Eq. (9)

10: Calculate L by Eq. (11)
11: Update {ΘfE ,ΘfD} by calculating:

ΘfE ← ΘfE − η∇ΘfE
L

ΘfD ← ΘfD − η∇ΘfD
L

12: end for
13: return p

Optimization To facilitate the negotiation between clus-
tering and imputation, the proposed AMGC is implemented
in a two-step alternate optimization framework.
Optimizing ΘfC with fixed ΘfE and ΘfD . In the clustering
step, we update the parameters of fC by exponential moving
average (EMA) (Grill et al. 2020) with those of fE and fD
fixed at each epoch. Specifically, we define ΘfE and ΘfC
as the parameters of fE and fC , respectively, and ΘfC are
updated by incorporating historical information from ΘfE :

ΘfC ← γΘfC + (1− γ)ΘfE , (10)

where γ is the momentum factor that has been determined
empirically and fixed as 0.999. The goal of this step is to
predict the clustering pseudo label for each sample, which
serves as a hint for subsequent data imputation.
Optimizing ΘfE and ΘfD with fixed ΘfC . In the imputa-
tion step, we update the imputation sub-network by incorpo-
rating LD and LE into the final objective function:

L = min LD + LE . (11)

Based on Eq. (11), fE and fD are optimized through back-
propagation. It is worth noting that fC is detached from the
gradient back-propagation. The detailed learning procedure
of AMGC is shown in Algorithm 1.

Computational Complexity
The time complexity of the proposed AMGC could be dis-
cussed from the network and loss computation aspects. For
two GNN-based encoders, the time complexities of fC and
fE are O

(
Nd2(L − 1) +NdD + |E|dL

)
, where N , L, |E|

are the number of all nodes, encoder layers, and edges, re-
spectively. Moreover, D and d are the dimensions of raw at-
tributes and latent features, respectively. For the MLP-based

Dataset Samples Edges Dimension Classes
Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Co.CS 18,333 81,894 6,805 15

Co.Physics 34,493 247,962 8,415 5

Table 1: Dataset summary.

decoder, the time complexity of fD is O
(
Nd2(L − 1) +

NdD
)
. For the loss functions, the time complexities of LD

and LE are O(C) and O(|Ẽ |). The overall time complex-
ity of AMGC for each training iteration isO

(
Nd2(L−1)+

NdD+|E|dL+C+|Ẽ |
)
≈O(N+|E|). We can observe that

the time complexity of AMGC is linear with the numbers of
all nodes N and edges |E|, making the proposed AMGC the-
oretically efficient and scalable.

Experiments
Experiment Setup
Datasets To evaluate the proposed AMGC, we choose five
public graph datasets, i.e., small-scale Cora and Citeseer,
medium-scale Pubmed and Coauthor CS (Co.CS), and large-
scale Coauthor Physics (Co.Physics). Details of these graph
datasets are introduced below.
• Citation Graphs. In citation graphs, nodes typically rep-

resent papers, where node attributes correspond to key-
words extracted from the papers. Furthermore, edges de-
note cross-citation connections, while categories reflect
the topics covered in the papers. Please note that nodes
within citation graphs may occasionally represent au-
thors, institutions, or other entities (Wu et al. 2023). The
used citation graphs include Cora, Citeseer, and Pubmed.

• Co-Authorship Graphs. Coauthor CS and Coauthor
Physics are co-authorship graphs based on the Microsoft
Academic Graph from the KDD Cup 2016 challenge.
Here, nodes are authors, that are connected by an edge
if they co-authored a paper. Node features represent pa-
per keywords for each author’s papers, and class labels
indicate the most active fields of study for each author.

Baseline Methods We compare AMGC against six state-
of-the-art attribute-complete deep graph clustering meth-
ods, including SDCN (Bo et al. 2020), GDCL (Zhao et al.
2021), AGCN (Peng et al. 2021), AGC-DRR (Gong et al.
2022b), HSAN (Liu et al. 2023), and CCGC (Yang et al.
2023). In addition, we report the performance of two non-
graph attribute-missing clustering methods (i.e., IMKAM
(Liu 2021) and DIMVC (Xu et al. 2022)) and three graph
counterparts (i.e., SAT (Chen et al. 2022), ITR (Tu et al.
2022), and SVGA (Yoo et al. 2022)).

Implementation Details To ensure a fair comparison, the
reported results of AMGC1 and all compared methods were
conducted on the same device and under identical configura-
tion settings. In our attribute-missing settings, we randomly

1https://github.com/WxTu/AMGC
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Dataset Metric SDCN GDCL AGCN AGC-DRR HSAN CCGC AMGC
WWW 20 IJCAI 21 MM 21 IJCAI 22 AAAI 23 AAAI 23 Ours

Cora

ACC 34.61±2.32 24.76±1.84 39.88±3.18 43.26±7.09 57.94±1.27 37.93±2.68 66.65±2.04
NMI 12.56±4.95 4.74±2.21 19.16±1.43 23.26±8.51 42.01±1.24 22.37±3.03 47.99±1.67
ARI 6.38±4.74 0.74±1.04 14.09±3.75 16.23±8.41 33.14±1.78 11.45±2.81 43.40±1.90
F1 21.78±4.23 7.82±2.16 33.96±2.64 31.09±8.21 58.77±0.89 36.91±4.12 61.02±2.38

Citeseer

ACC 39.16±1.32 27.39±2.19 42.22±2.78 30.95±4.26 44.22±0.52 39.63±1.95 60.92±2.01
NMI 16.19±1.41 7.53±2.38 19.01±1.74 13.26±3.41 22.29±1.39 17.13±1.34 32.93±1.71
ARI 7.29±2.37 2.25±1.08 13.31±2.17 2.35±3.43 13.32±1.08 11.83±2.34 33.73±2.25
F1 33.14±3.09 12.16±4.02 37.22±1.67 29.10±5.26 42.18±2.54 38.88±2.54 57.33±2.05

Pubmed

ACC 48.69±3.21 47.00±0.39 41.85±2.28 60.71±1.72

OOM

42.7±1.49 64.56±1.50
NMI 4.99±2.78 10.84±0.49 0.93±1.08 16.26±2.14 2.43±1.75 24.58±2.21
ARI 5.00±2.80 7.39±0.27 1.37±1.18 17.35±2.44 1.24±0.87 24.19±2.39
F1 38.78±5.65 28.36±10.56 36.05±0.79 59.80±2.43 34.28±3.16 64.52±1.26

Co.CS

ACC 48.85±2.56 40.18±1.63 52.13±5.88 59.08±2.26

OOM

64.88±1.51 72.61±1.08
NMI 45.65±3.66 41.67±1.29 49.51±5.30 64.16±1.97 63.21±0.82 73.91±0.39
ARI 38.39±3.64 15.32±1.68 41.44±7.43 49.27±2.86 55.08±2.22 64.62±0.66
F1 23.59±2.38 3.62±2.78 25.02±5.54 45.09±1.41 54.17±2.76 68.34±1.88

Co.Physics

ACC 66.59±5.87

OOM

63.64±4.06

OOM OOM OOM

77.68±3.78
NMI 40.22±8.84 34.98±7.68 62.77±1.46
ARI 41.75±14.36 43.94±6.91 69.00±6.25
F1 44.15±6.04 43.19±6.61 67.58±2.68

Table 2: Performance comparison among six attribute-complete deep graph clustering methods and the proposed AMGC. The
average clustering results of ten runs on five graph datasets are reported. “OOM” means the out-of-memory failure on 24GB
RTX 3090 GPU and 64G RAM. The best and runner-up results are shown in bold and underline, respectively.

select 40% of the nodes with complete attributes from the
raw graph, while removing all attributes from the remaining
60% of nodes. For baseline methods, we use their source
code and report the reproduced performance. For AMGC,
we first train the model for at least 100 epochs until conver-
gence using an Adam optimizer, and then perform K-means
over the graph embedding matrix learned by fC . Please note
that the graph encoder fE could be pre-trained with only the
edge reconstruction lossLE before it is trained together with
other components of the model. According to the results of
hyper-parameter sensitivity testing, we set the nearest neigh-
bors K and the edge-masking ratio re as 2 and 0.7, respec-
tively. Moreover, the learning rate, the latent dimension, the
dropout rate, and the weight decay are set to 1e-3, 256, 0.4,
and 5e-4 as default, respectively. To alleviate the adverse in-
fluence of randomness, we repeat each experiment 10 times
and report the average value with standard deviation.

Clustering Metrics We adopt four widely-used cluster-
ing metrics to evaluate all compared methods, i.e., Accu-
racy (ACC), Normalized Mutual Information (NMI), Aver-
age Rand Index (ARI), and macro F1-score (F1) (Wang et al.
2022a; Wan et al. 2022, 2023; Li et al. 2022a, 2023b).

Performance Comparison
Table 2 and Table 3 report the node clustering performance
of twelve methods on five datasets. From these results, some
significant observations can be summarized: 1) taking the
results on Co.CS for example, AMGC significantly outper-
forms AGC-DRR and CCGC by 13.53% and 7.73% ACC,

respectively. These results verify that AMGC can effectively
learn clustering-friendly graph embedding in the attribute-
missing scenario; 2) AMGC consistently outperforms SAT,
SVGA, and ITR, with margins going up to 31.04% and
25.01% ACC on Cora and Pubmed. These improvements
demonstrate the effectiveness of alternately promoting clus-
tering and imputation into a unified optimization framework;
3) compared to IMKAM and DIMVC, our method achieves
very promising performance. This is because instead of sim-
ply integrating clustering and imputation, AMGC effectively
filters noisy connections and enhances the most reliable ones
by incorporating clustering information into the data impu-
tation process. In turn, it leverages the imputed information
to facilitate well-separated clusters through model optimiza-
tion; and 4) on Co.Physics, most baseline methods suffer
from out-of-memory failure while ours does not, verifying
its potential efficiency in large-scale cases. Moreover, the
clustering results of SVGA are more stable than ours, pos-
sibly attributed to imposing strict Gaussian distribution as-
sumptions on the latent variables. However, this would make
it hard for the model to accurately reflect the true data distri-
bution, leading to biased graph embedding and inferior per-
formance.

T-SNE Visualization
We compare T-SNE (der Maaten and Hinton 2008) visu-
alization results of seven methods on Cora and Co.CS. In
Fig. 2, the samples with different colors indicate different
categories predicted by methods. As seen, AMGC presents
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Dataset Metric IMKAM ∗ DIMVC ∗ SAT SVGA ITR AMGC
TPAMI 21 AAAI 22 TPAMI 22 WWW 22 IJCAI 22 Ours

Cora

ACC 23.06±1.72 29.58±3.57 49.87±1.2 40.87±1.92 35.61±0.76 66.65±2.04
NMI 2.98±0.95 9.93±2.34 30.82±0.53 26.49±2.58 17.72±0.75 47.99±1.67
ARI 0.33±1.44 5.33±1.96 23.49±0.84 14.39±1.51 3.44±0.29 43.40±1.90
F1 16.04±1.68 24.22±4.13 49.53±0.76 37.91±3.96 31.12±0.99 61.02±2.38

Citeseer

ACC 21.12±0.29 29.39±3.66 34.55±0.32 44.19±1.47 32.61±1.19 60.92±2.01
NMI 5.12±0.19 7.75±2.49 11.0±0.25 23.45±1.37 15.17±1.59 32.93±1.71
ARI -0.13±0.04† 4.64±2.71 9.01±0.15 13.08±1.23 3.41±0.46 33.73±2.25
F1 14.69±0.61 24.37±4.30 32.01±0.24 42.96±2.22 33.16±1.51 57.33±2.05

Pubmed

ACC

OOM

42.77±1.65 47.89±0.02 39.55±0.16 43.57±0.82 64.56±1.50
NMI 4.75±0.70 12.5±0.01 0.13±0.02 8.2±2.98 24.58±2.21
ARI 1.82±0.41 10.4±0.01 -0.11±0.03† 5.55±2.35 24.19±2.39
F1 38.54±1.86 45.87±0.0 32.15±0.2 30.44±2.75 64.52±1.26

Co.CS

ACC

OOM

27.92±3.14 37.63±0.85 56.56±1.71

OOM

72.61±1.08
NMI 20.82±4.57 40.64±0.24 61.28±0.78 73.91±0.39
ARI 6.68±2.56 26.61±0.26 39.2±1.37 64.62±0.66
F1 11.77±1.73 29.03±0.76 47.48±3.34 68.34±1.88

Co.Physics

ACC

OOM

42.79±3.12

OOM

60.22±0.37

OOM

77.68±3.78
NMI 6.06±2.38 53.61±0.15 62.77±1.46
ARI -2.03±3.52† 39.39±0.17 69.00±6.25
F1 18.12±4.35 64.62±0.27 67.58±2.68

∗ IMKAM and DIMVC are non-graph attribute-missing clustering methods, where we take the attribute-missing matrix and adjacency
matrix as two input views in our settings.
† Note that the range of ARI values is [-1, 1], and negative results indicate poor performance.

Table 3: Performance comparison among six attribute-missing clustering methods. The average clustering results of ten runs on
five graph datasets are reported. “OOM” means the out-of-memory failure on 24GB RTX 3090 GPU and 64G RAM. The best
and runner-up results are shown in bold and underline, respectively.

Figure 2: T-SNE visualization. The first and second rows correspond to the visual results on Cora and Co.CS, respectively. In
our settings, we utilize the T-SNE toolkit to visualize the attribute-complete samples in the raw data space and all samples in
the latent space. The proposed AMGC presents clearer partitions and denser cluster structures than the other six competitors.

clearer partitions and denser cluster structures than its com-
petitors, indicating that AMGC can learn more compact and
discriminative graph embedding for clustering.

Ablation Study
To demonstrate the effectiveness of the proposed CITE
scheme, we compare AMGC with its three variants on five
datasets. Concretely, “w/o LD” and “w/o CI” denote two
AMGC variants with the dual non-contrastive clustering loss
and the cluster-oriented imputation scheme being removed,
respectively. “Base” denotes AMGC without both compo-

nents. As seen in Table 4, we can find that: 1) compared to
“Base”, “w/o LD” and “w/o CI” produce ACC performance
gains of 16.47% / 23.02%, 5.08% / 8.26%, 4.18% / 23.67%,
5.04% / 18.78%, and 4.13% / 6.93% across five datasets, in-
dicating that either the dual non-contrastive clustering loss
or the cluster-oriented imputation scheme plays an essen-
tial role in effectively handling attribute-missing deep graph
clustering; 2) when compared to “w/oLD”, AMGC achieves
4.53% - 21.54% ACC gains on five datasets. Similar ob-
servations can be obtained on other metrics. These results
show that LD effectively leverages the imputed information
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Dataset Metric Base w/o LD w/o CI AMGC

Cora

ACC 40.70 57.17 63.72 66.65
NMI 27.11 40.97 44.57 47.99
ARI 19.16 35.45 39.87 43.40
F1 38.05 53.50 59.85 61.02

Citeseer

ACC 48.82 53.90 57.08 60.92
NMI 24.83 28.40 29.57 32.93
ARI 24.04 27.77 29.52 33.73
F1 44.82 50.00 53.86 57.33

Pubmed

ACC 38.84 43.02 62.51 64.56
NMI 1.19 6.72 22.48 24.58
ARI 1.45 4.39 21.87 24.19
F1 34.23 42.18 62.63 64.52

Co.CS

ACC 51.40 56.44 70.18 72.61
NMI 56.49 60.27 71.10 73.91
ARI 44.74 47.17 62.60 64.62
F1 42.43 48.40 65.29 68.34

Co.Physics

ACC 69.02 73.15 75.95 77.68
NMI 51.89 58.81 60.41 62.77
ARI 64.81 67.50 66.26 69.00
F1 43.64 49.95 65.03 67.58

Table 4: Ablation study for the CITE scheme. “w/o LD” and
“w/o CI” denote two AMGC variants with the dual non-
contrastive clustering loss and the cluster-oriented imputa-
tion scheme being removed, respectively. “Base” denotes
AMGC without both components.

to promote greater graph encoding capability for clustering
sub-network; and 3) AMGC consistently outperforms “w/o
CI” on all datasets, demonstrating the effectiveness of tak-
ing the learned clustering signals as imputation prompts to
help each attribute-missing sample gather highly correlated
features within its clusters.

Less Attribute-Complete Samples
To further investigate the superiority of AMGC, it is neces-
sary to show whether the proposed method can still achieve
effective clustering performance when less visible attributes
are available. To this end, we compare AMGC with AGCN,
CCGC, and SVGA by varying the attribute-missing ratio ra
from 10% to 90%. From the results in Fig. 3, we can ob-
serve that 1) AMGC consistently performs better than com-
pared baseline methods in all situations on Cora and Co.CS.
For example, AMGC outperforms AGCN by a large margin
in terms of ACC when ra varies from 10% to 90% on Cora.
The observations on Co.CS are similar. These improvements
indicate that AMGC has stronger robustness against severe
data absence; and 2) taking the results on Co.CS for exam-
ple, AMGC with 80% missing attributes can still perform
better than AGCN and SVGA with 10% missing attributes.
These results indicate that AMGC can achieve high-quality
data imputation as well as promising clustering performance
with extremely limited observed signals.

Hyper-Parameter Analysis
We investigate model sensitivity analysis on the number of
nearest neighbors K and the edge-masking ratio re. Firstly,
we evaluate AMGC by varying K from 1 to 5 with a step
size of 1. From the results in Fig. 4, we can see that on

Figure 3: Performance comparison among four methods
with different attribute-missing ratios.

Figure 4: Model sensitivity with the variation of two hyper-
parameters. The X-axis, Y-axis, and Z-axis refer to the K
value, re value, and accuracy performance, respectively.

Co.CS, the performance shows a trend of first rising and then
dropping slightly with the variation of K. This implies that
AMGC needs a proper K to collect and preserve the most
reliable information during the data imputation process. In
addition, the optimal K value falls within the range of [1,
3] on both datasets. This indicates that selecting a relatively
small K is reasonable. Secondly, we measure how the per-
formance is affected by varying re from 0.1 to 0.9 with a
step size of 0.2. As shown in Fig. 4, we get the best results
when re reaches 0.5 or 0.7 on Cora and Co.CS. This indi-
cates that the edge-masking operation is indeed effective for
AMGC, but a proper re is required to balance the visible and
masked edge information. Based on the above observations,
we set the values of K and re to 2 and 0.7, respectively.

Conclusion

In this paper, we investigate a practical yet challenging prob-
lem, i.e., deep graph clustering (DGC) on attribute-missing
graphs. To solve this issue, we propose a novel DGC frame-
work termed AMGC, where the clustering and imputation
processes negotiate with each other through two-step al-
ternate optimization. In our method, the proposed cluster-
oriented imputation scheme and dual non-contrastive clus-
tering loss can help the model learn denser cluster structures
and well-separated clusters for better clustering. Extensive
experiments on five datasets have verified that AMGC can
effectively solve the problem of attribute-missing DGC and
outperform competitors by a large margin. Future work may
leverage the mutual information (MI) to explore the rela-
tionship between visible and missing samples, and extend
the proposed AMGC to an imputation-free version.
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