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Abstract

Data valuation is concerned with determining a fair valuation
of data from data sources to compensate them or to identify
training examples that are the most or least useful for predic-
tions. With the rising interest in personal data ownership and
data protection regulations, model owners will likely have to
fulfil more data deletion requests. This raises issues that have
not been addressed by existing works: Are the data valuation
scores still fair with deletions? Must the scores be expensively
recomputed? The answer is no. To avoid recomputations, we
propose using our data valuation framework DeRDaVa up-
front for valuing each data source’s contribution to preserving
robust model performance after anticipated data deletions.
DeRDaVa can be efficiently approximated and will assign
higher values to data that are more useful or less likely to be
deleted. We further generalize DeRDaVa to Risk-DeRDaVa
to cater to risk-averse/seeking model owners who are con-
cerned with the worst/best-cases model utility. We also em-
pirically demonstrate the practicality of our solutions.

1 Introduction
Data is essential to building machine learning (ML) models
with high predictive performance and model utility. Model
owners source for data directly from their customers or from
collaborators in collaborative machine learning (Nguyen
et al. 2022a). For example, a credit card company can train
an accurate ML model to predict the probability of default
based on consumers’ income and payment history data (Tsai
and Chen 2010). As another example, a healthcare firm can
train an ML model to predict the progression of diabetes
based on patients’ health data (TCFOD 2019). As the qual-
ity of data contributed by multiple data sources may vary
widely, several works (Fan et al. 2022; Tay et al. 2022; Xu
et al. 2021) have recognized the importance of data valua-
tion to help model owners compensate data sources fairly, or
identify data that are most or least useful for predictions.

Data valuation studies how much data is worth and pro-
poses how rewards associated with the ML model can be
fairly allocated to each data source (Sim, Xu, and Low
2022). Several existing data valuation techniques (Ghorbani
and Zou 2019; Jia et al. 2019; Yang et al. 2019) have adopted

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparison of Data Shapley vs. the deletion-
robustified DeRDaVa and Risk-DeRDaVa scores with Shap-
ley prior for a game with 2 interchangeable sources. ⋆ and
■ stay with probability 1 and .7 respectively. ⋆ and ■ have
equal Data Shapley score but ⋆ has higher DeRDaVa and
Risk-averse DeRDaVa scores. This is because Data Shapley
(Eq. (1)) considers only the initial support set {⋆,■} while
DeRDaVa (Eq. (8)) and Risk-averse DeRDaVa (Eq. (10))
also consider the worst-case support set {⋆}. Further ex-
planation is included in App. A.1.

the use of semivalues from cooperative game theory. Re-
cent works (Sim et al. 2020; Tay et al. 2022; Zhang, Wu,
and Pan 2021) have also developed various reward alloca-
tion schemes based on semivalues. The core intuition behind
semivalues is that a data source should be fairly valued rela-
tive to other data sources (i.e., based on the averaged model
utility improvement it contributes to each sub-coalition of
other data sources). Moreover, these works have justified the
use of semivalues by fairness axioms such as Interchange-
ability — assigning the same valuation score to two data
sources di and dj with the same model utility improvement
to every sub-coalition (e.g., ⋆ and ■ in Fig. 1).

Data deletion refers to the deletion of data and their im-
pact from trained ML models. Due to the recent introduction
of data protection legislation, such as General Data Protec-
tion Regulation (GDPR) in the European Union and Califor-
nia Consumer Privacy Act (CCPA) in the United States, data
deletions are expected to occur more frequently. These laws
legally assert that data are properties of their owners and data
owners have the right to be forgotten (Shastri, Wasserman,
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and Chidambaram 2019). This mandates model owners to
delete the data and their impact from trained models with-
out undue delay (Magdziarczyk 2019) upon request or after
a stipulated time (Ong 2018). While these regulations have
led to intensive research on machine unlearning (Bourtoule
et al. 2021; Chen et al. 2021; Sekhari et al. 2021) to effi-
ciently remove the impact of deleted data from trained mod-
els, to our knowledge, no work has considered the impact of
data deletions on data valuation.

It is our view that data deletions challenge existing
semivalue-based data valuation techniques. The existing
(pre-deletion) semivalue may not preserve the fairness ax-
ioms after data deletions. For example, if data sources di
and dj only make the same model utility improvement to
every sub-coalitions after deletions, they may have been
assigned different pre-deletion semivalues (which violates
the Interchangeability axiom) (see App. A). At first glance,
one may think of recomputing the semivalue after every
deletion to address the challenge. However, the recomputa-
tions are computationally expensive and data owners (and
legislators) may not tolerate the uncertainty and fluctua-
tions in valuation (e.g., having to return monetary com-
pensation). Thus, we propose new deletion-robustified fair-
ness axioms and a more proactive approach that anticipates
and accounts for data deletions: the model owner should
assign higher deletion-robust data valuation (DeRDaVa)
scores upfront to data sources with higher probability of
staying (and thus contribute to deletion-robustness, i.e., ro-
bustly preserving model performance after deletions). We
show that DeRDaVa satisfies our deletion-robustified fair-
ness axioms (Sec. 3.1) and can be efficiently approximated
(Sec. 3.3). Lastly, to cater to model owners who are only
concerned with the expectation of worst-cases model util-
ity (i.e., a risk-averse model owner) or best-cases model util-
ity (i.e., a risk-seeking model owner), we generalize DeR-
DaVa to Risk-DeRDaVa (Sec. 3.4). In Sec. 4, we empiri-
cally demonstrate and compare the behaviour of DeRDaVa
with semivalues after data deletions on real-world datasets.

2 Background and Related Works
2.1 Semivalue-Based Data Valuation
Machine learning can be viewed as a cooperative game
among multiple data sources in order to gain the highest
model performance, where each data source can be a single
data point or a smaller dataset. Semivalue (Dubey, Neyman,
and Weber 1981) is a concept from cooperative game theory
(CGT) that measures the contribution of each data source in
such a cooperative game. To formalize this, we define such
a cooperative game as a pair ⟨D, v⟩, where the support set
D =

⋃n
i=1{di} represents the set of n data sources di in-

dexed by i in the collaboration and the model utility function
v : P(D) → R maps each coalition of data sources in the
power set of D to its utility. Specifically, the utility v(S) of a
coalition S of data sources can represent the prediction per-
formance (e.g., validation accuracy) of model trained with
data from S. For example, v({d0, d1, d2}) = 0.9 may rep-
resent that we use data from the three data sources d0, d1
and d2 to train a model and obtain an accuracy of 0.9 when

evaluated on a validation set.
Let Gn represent the set of all cooperative games with re-

spective support set D sized n. To measure the contribution
of each data source, we want to find an n-sources data valu-
ation function ϕn : Gn → Rn that assigns each data source
di a real-valued valuation score ϕn

i (⟨D, v⟩) abbreviated as
ϕn
i (v). To ensure the fairness of data valuation functions,

a common approach in CGT is axiomatization, where a list
of axioms is provided to be fulfilled by data valuation func-
tions. There are four important axioms that are commonly
agreed to be fair (Covert, Lundberg, and Lee 2021; Ridaoui,
Grabisch, and Labreuche 2018; Sim, Xu, and Low 2022):
Linearity, Dummy Player, Interchangeability and Mono-
tonicity (refer to App. A for their respective definition and
connection to fairness). Here, we define semivalue, a unique
form of data valuation functions that fulfils the four axioms
concurrently below1:

Definition 1. [Semivalue (Dubey, Neyman, and Weber
1981)] An n-sources data valuation function ϕn : Gn → Rn

is called a semivalue if the valuation score ϕn
i (v) assigned

to any data source di ∈ D satisfies

ϕn
i (v) =

∑
S⊆D\{di}

w|S| ·MaCv(di|S)/
(
n−1
|S|

)
, (1)

where w|S| ≥ 0 is a weighting term associated with all
coalitions S of size s = |S|, satisfying

∑n−1
s=0 ws = 1;

MaCv(di|S) = v(S ∪ {di})− v(S) is the marginal contri-
bution of data source di to coalition S under model utility
function v, representing the additional model utility brought
by di to S measured by v.

Interpretation. Semivalues can be interpreted as a weighted
sum of marginal contribution of di to each coalition S.
Moreover, since a support set with n data sources has

(
n−1
s

)
coalitions sized s excluding data source di, Eq. (1) can be re-
interpreted as the expectation of the average marginal con-
tribution of di to coalitions sized 0, 1, · · · , n− 1 over some
categorical distribution Ws, where Ws(s = s) = ws. This
offers model owners freedom to place more focus on larger
or smaller coalitions. For example, Leave-One-Out (LOO)
only considers di’s marginal contribution to the largest pos-
sible coalition excluding di and sets wn−1 = 1 and other
ws = 0. Beta Shapley (Kwon and Zou 2022) sets Ws to
be a beta-binomial distribution with two parameters α and
β such that model owners can put more weights on smaller
coalitions by setting a larger α and on larger coalitions by
setting a larger β.

2.2 Data Deletion and Machine Unlearning
Due to new data protection regulations, model owners must
delete data sources’ data from their datasets and erase their
impact from their trained models upon request. Machine un-
learning works (Nguyen et al. 2022b) have studied how to
erase data effectively and efficiently and proposed model-
agnostic methods (such as decremental learning (Ginart
et al. 2019) and differential privacy (Gupta et al. 2021)),

1In Sec. 3.1, we will explain how the axioms should be robusti-
fied with anticipated data deletions.
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model-intrinsic methods (for linear models (Izzo et al. 2021)
and Bayesian models (Nguyen, Low, and Jaillet 2020)), and
data-driven methods (such as data partitioning (Bourtoule
et al. 2021) and data augmentation (Huang et al. 2021)). Our
work complements machine unlearning: model owners fore-
see future data source deletions (and changes in model per-
formance), and thus require a new data valuation approach
to value a data source based on its contribution to model per-
formance both before and after anticipated data deletions.

In our problem setting, the main challenge is how we can
adapt and extend the (C1) fairness axioms and (C2) con-
cept of semivalues to cases where data deletion occurs.
Assume that the model owner and data sources in the col-
laboration decide to use the data valuation function ϕn for
valuation when there is no deletion. Our solution should be
derived from this jointly-agreed semivalue ϕn and satisfy
some deletion-robustified fairness axioms2.

3 Methodology
In Sec. 3.1, we define a random cooperative game to model
the situation where data sources may be deleted and the cor-
responding deletion-robustified fairness axioms to address
(C1). In Sec. 3.2, we describe the null-player-out consis-
tency property to extend the jointly-agreed semivalue ϕn

to the sub-games after data deletions to address (C2). In
Sec. 3.3, we define our deletion-robust data valuation tech-
nique, DeRDaVa, based on our solutions to (C1) and (C2)
and discuss its efficient approximation via sampling. Lastly,
in Sec. 3.4, we describe a generalization of DeRDaVa for
risk-averse or risk-seeking model owners.

3.1 Random Cooperative Game and
Deletion-Robustified Fairness Axioms

Let Dn denote the initial set of n data sources before data
deletions. In Sec. 2, we model the problem as a coopera-
tive game ⟨Dn, v⟩ with data valuation function ϕn. When
data deletion occurs, the support set Dn shrinks to a smaller
set D′ ⊆ Dn but the same model utility function v still
maps any subset of the new support set D′ to its utility. In
this section, we further consider a random cooperative game
⟨D, v⟩ to account for deletions. The random staying set D
is a subset of Dn and follows some probability distribution
PD (e.g., in Fig. 1, PD is a categorical distribution with pa-
rameters .7 and .3).

In practice, the model owner sets PD by
• estimating the independent probability Pr[Idi = 1] each

data source di stays in the collaboration from their sur-
veys/histories, where Idi is an indicator variable which
evaluates to 1 when di stays (not delete) and 0 otherwise;

• weighing the emphasis of having only |D′| data sources
staying out of Dn (e.g., if the model owner intends to re-
compute the valuation scores when there are ≥ 30 dele-
tions, it should place higher probability on larger D′ with
|D′| > n− 30);

2App. G.1 discusses why DeRDaVa is superior to the simpler
alternative of multiplying the pre-deletion semivalue score of each
data source di with its staying probability.

• using the normalized “reputation” score of data source di
or subset D′ (i.e., how unlikely di or D′ is malicious and
deletion-worthy in upcoming data audits)3.
Instead of expensively recomputing semivalues every

time a deletion happens, we seek a deletion-robust data val-
uation function τ that acts on the random cooperative game
⟨D, v⟩. The function assigns each data source di a fair val-
uation score τi(v) that accounts for anticipated deletions
once/upfront. To ensure the fairness of τ , we examine and
“robustify” each of the previously mentioned axioms Lin-
earity, Dummy Player, Interchangeability and Monotonicity
with minimal changes such that the robustified versions are
desirable in our problem setting.

The Linearity axiom is a very important requirement for
any cooperative game and valuation scheme (Shapley 1953)
since it provides a way to formally analyze games with lin-
ear algebra. Moreover, it ensures that if the marginal con-
tribution of data source di to each coalition S doubles, then
the valuation score assigned to di shall also double; if a data
source brings zero marginal contribution to all coalitions,
then its valuation score shall be zero. This property is clearly
still desirable in our problem setting:
Axiom 1. [Robust Linearity] Given a random support set
D ⊆ Dn and any two model utility functions v and w, a fair
data valuation function τ shall satisfy

∀di ∈ Dn [τi(v) + τi(w) = τi(v + w)]. (2)
The Dummy Player axiom defines a specific type

of data source called dummy player, whose marginal
contribution is always equal to its own utility (i.e.,
∀S ⊆ Dn \ {di} [MaCv(di|S) = v({di})]). The axiom
states that the valuation score assigned to a dummy player
shall be equal to its own utility since its marginal contri-
bution is equal to its own utility in all cases. However,
in our problem setting, consider two dummy players DPi
and DPj with equal own utility, where DPi always stays in
the collaboration while DPj stays or deletes with a 50-50
chance. Although their contributions to pre-deletion model
performance are the same, DPi contributes more to model
performance after anticipated data deletions (i.e., deletion-
robustness) than DPj . Therefore, the original Dummy Player
axiom is no longer desirable. Instead, our data valuation
function should only reward a dummy player for cases
where it stays in D:
Axiom 2. [Robust Dummy Player] A data source DP is
called a dummy player if its marginal contribution is al-
ways equal to its own utility. For any dummy player DP, a
fair data valuation function τ shall satisfy

τDP(v) = ED∼PD
[v({DP}) · I[DP ∈ D]] , (3)

where I[DP ∈ D] is an indicator variable that equates to 1
when DP is present in D and vice versa.

The Interchangeability axiom defines that two data
sources are interchangeable if their marginal contributions
to any coalition S are always equal. It states that two in-
terchangeable data sources shall receive the same valua-
tion score. However, in a random cooperative game, two in-
terchangeable data sources that have different probabilities

3App. G.2 further discusses how to set PD.
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of staying contribute differently to deletion-robustness, and
their valuation scores should not be equal (e.g., ⋆ and ■ in
Fig. 1). Therefore, we add a further constraint to this axiom:
Axiom 3. [Robust Interchangeability] Two data sources di
and dj are said to be robustly interchangeable (di ∼= dj)
if their marginal contribution to any coalition S ⊆ Dn is
always equal and their probability of staying alongside oth-
ers sources D′ ⊆ Dn \ {di, dj} are also equal. The valu-
ation scores assigned to any two robustly interchangeable
data sources shall be equal:

di ∼= dj ⇒ τi(v) = τj(v). (4)

Finally, the Monotonicity axiom states that if every data
source makes a non-negative marginal contribution to every
coalition (i.e., model utility function v is monotone increas-
ing), then their valuation scores shall be non-negative. This
is still valid in a random cooperative game because if v is
monotone increasing, then the marginal contribution of any
data source is at least 0 even if it quits the collaboration.
Therefore, we keep the original version of this axiom:
Axiom 4. [Robust Monotonicity] If model utility function v
is monotone increasing, then the valuation score assigned to
any data source shall be non-negative:

∀S, T ⊆ Dn [S ⊆ T ⇒ v(S) ≤ v(T )]

⇒ ∀di ∈ Dn [τi(v) ≥ 0]. (5)

With the formalization of Axioms 1 to 4, we proceed to
find a solution that satisfies these axioms.

3.2 Null-Player-Out (NPO) Consistency and
Extension

After data deletions, the number of data sources will be
< n. Thus, we can no longer directly apply the n-sources
data valuation function ϕn. Instead, we need to derive a se-
quence of semivalues Φ = ⟨ϕk : k = 1, 2, · · · , n⟩ to value
every game with support set sized k ranging from 1 to n.
We address this challenge by considering a post-deletion
model utility function ν which maps each coalition of data
sources to the model utility of the staying subset of D′,
e.g., ν(Dn) = v(D′). In the cooperative game ⟨Dn, ν⟩, any
deleted data source is a null player (van den Brink 2007):
Definition 2. [Null player] A data source in a cooperative
game ⟨D, ν⟩ is said to be a null player (NP) if its marginal
contribution to every coalition S is always equal to zero, i.e.,

∀S ⊆ D \ {NP} [MaCν(NP|S) = 0]. (6)

A null player NP, e.g., an empty data source, should be
assigned a valuation score ϕn

NP(ν) of zero.
Consider the case where some data sources have quit

Dn and only a subset D′ ⊂ Dn stays as the support set.
Intuitively, the value assigned by ϕn to an undeleted data
source di in the cooperative game ⟨Dn, ν⟩ (using the post-
deletion model utility function) should be the same as its
value assigned by ϕ|D′| in the cooperative game ⟨D′, v⟩ (as
though Dn \ D′ never joined the collaboration) (‡). This
condition requires us to select the sequence of semivalues
Φ = ⟨ϕk : k = 1, · · · , n− 1⟩ to be NPO-consistent:

Definition 3. [NPO-consistency] Consider a set of data
sources Dn =

⋃n
i=1{di} and a natural number k ≤ n such

that only data sources in Dk = {di : 1 ≤ i ≤ k} are non-
null players in the cooperative game ⟨Dn, ν⟩. Two semival-
ues ϕn : Gn → Rn and ϕk : Gk → Rk are NPO-consistent
if the presence of null players (e.g., empty data sources) do
not affect the values of the non-null players (who contribute
valid datasets):

∀di ∈ Dk [ϕn
i (ν) = ϕk

i (ν)] (7)

holds for all such Dn and Dk with fixed n and k. Moreover,
a sequence of semivalues Φ is NPO-consistent if every pair
of semivalues in Φ is NPO-consistent.

Note that the null players Dn \ Dk in ⟨Dn, ν⟩ corre-
spond to deleted data sources. As data sources in Dk stays
undeleted, v(S) = ν(S) for all S ⊆ Dk and the values
ϕk
i (ν) = ϕk

i (v). The NPO-consistent property guarantees
that ϕn

i (ν) equals ϕk
i (v), thus, achieving (‡).

We then construct a sequence of semivalues Φ = ⟨ϕk :
k = 1, 2, · · · , n⟩ that is NPO-consistent with the following
NPO-extension process:
Theorem 1. [NPO-extension] Every semivalue ϕn : Gn →
Rn can be uniquely extended to a sequence of semivalues
Φ = ⟨ϕk : k = 1, 2, · · · , n⟩ that is NPO-consistent through
the following unified NPO-extension process:
1. From the weighting term ws in Definition 1, calculate the

quantity wn
s = ws/

(
n−1
s

)
, which is sometimes referred

to as weighting coefficient (Carreras and Freixas 2000).

2. Calculate the weighting coefficients wn−1
s of ϕn−1 using

the formula wn−1
s = wn

s + wn
s+1. We can therefore con-

struct ϕn−1 by setting the weighting term ws in ϕn−1 to
be wn−1

s ·
(
n−2
s

)
for each s = 0, 1, · · · , n− 2.

3. Repeat Steps 1 and 2 until we have constructed every
semivalue in Φ.

Intuition behind NPO-extension. Consider the cooperative
game ⟨D, ν⟩ with |D| = n with one null player NP. The
marginal contribution of any non-null data source di ̸= NP
to any coalition S without the null player (i.e., NP /∈ S)
is always equal to its marginal contribution to S ∪ {NP}
(i.e., MaCν(di|S) = MaCν(di|S ∪ {NP}). For ϕn−1 to be
NPO-consistent with ϕn, the total weights on MaCν(di|S)
must be equal in ϕn−1 and ϕn. Hence, the weighting coeffi-
cient wn−1

s must equal the sum of the weighting coefficients
of the above two marginal contribution terms (wn

s + wn
s+1)

(Domenech, Giménez, and Puente 2016). In App. B, we for-
mally prove the validity and uniqueness of the result in The-
orem 1 and the NPO-consistent property of Φ defined using
common semivalues such as Data Shapley (Ghorbani and
Zou 2019; Jia et al. 2019), Beta Shapley (Kwon and Zou
2022) and Data Banzhaf (Wang and Jia 2023).

3.3 DeRDaVa and Its Efficient Approximation
Let Φ = {ϕk : k = 1, 2, · · ·n} be the sequence of semi-
values derived from ϕn using NPO-extension. Each data
source’s contribution to model performance and deletion-
robustness can be regarded as an aggregate of its contri-
bution (measured by ϕ|D′| ∈ Φ) to every possible staying
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set D′ ⊆ Dn. Hence, we take the expectation of valuation
scores ϕ

|D|
i (v) over the probability distribution PD and re-

gard di as making 0 contribution when di /∈ D′. This leads
to the formal definition of DeRDaVa:

Definition 4. [DeRDaVa] Let ⟨D, v⟩ be a random coopera-
tive game with random support set D over some probability
distribution PD where the maximal support set Dn contains
n data sources. Suppose also that ϕn : Gn → Rn is the
jointly-agreed semivalue and Φ = {ϕk : k = 1, 2, · · ·n}
is the sequence of semivalues derived from ϕn using NPO-
extension. The DeRDaVa score with ϕnϕnϕn prior assigned to
data source di, τi(v), is given by

τi(v) = ED∼PD

[
I[di ∈ D] · ϕ|D|

i (v)
]

=
∑

D′⊆Dn

(
PD(D = D′) · I[di ∈ D′]·

∑
S⊆D′\{di}

w
|D′|
|S| ·MaCv(di|S)

)
, (8)

where I[di ∈ D] is an indicator variable that equates to
1 only when di stays present, ϕ|D| ∈ Φ is the semivalue
from NPO-extension, and w

|D′|
|S| is the weighting coefficient

to coalition S in ϕ|D′| defined in Theorem 1.

The fairness and uniqueness of DeRDaVa are guaranteed
with the following theorem:

Theorem 2. [Fairness and uniqueness of DeRDaVa] Given
a random cooperative game ⟨D, v⟩ with the same notations
PD, Dn, n = |Dn| and ϕn : Gn → Rn as in Definition
4, the DeRDaVa function τ defined in Definition 4 uniquely
satisfies Axioms 1, 2, 3 and 4 defined in Sec. 3.1.

In App. C, we prove the (F) fairness and (U) uniqueness of
DeRDaVa. (F) involves verifying that DeRDaVa satisfies our
four robustified axioms. Let V (·) denote the random utility
function that maps each coalition S ⊆ Dn to the random
utility after deletions, i.e., V (S) = v(S ∩D). (U) involves
identifying the static dual game ⟨Dn,E[V (·)]⟩ to our ran-
dom cooperative game ⟨D, v⟩ and proving that the original
axioms of semivalues for the static dual game are equivalent
to the four robustified axioms for any random cooperative
game. The uniqueness of DeRDaVa then follows from the
uniqueness of semivalues.

From Eq. (8), we need to consider every possible pair
⟨S,D′⟩ of subset S and staying set D′ such that S ∪ {di} ⊆
D′ ⊆ Dn. Each data source dj ̸= di has exactly three
states: (i) It is in neither S nor D′ (State 0); (ii) It is in D′

but not in S (State 1); (iii) It is in both S and D′ (State
2). Thus, the total number of unique state combinations or
pairs ⟨S,D′⟩ needed to exactly compute DeRDaVa scores
is O (3n). Exact computation is intractable when the num-
ber of data sources is large. Thus, model owners should effi-
ciently approximate DeRDaVa scores based on Monte-Carlo
sampling and additionally use our 012-MCMC algorithm
when it is hard to estimate/sample from PD.

Monte-Carlo Sampling DeRDaVa scores can be alterna-
tively viewed as the expectation of marginal contribution
MaCv(di|S) over some distribution of staying set D′ (i.e.,
PD) and coalition S. Therefore, it is natural to use Monte-
Carlo sampling when it is tractable to sample from PD di-
rectly. For example, for the special case where data sources
decide to stay/delete independently, we sample whether each
data source stays to determine staying set D′, the size s of
coalition S (using the weighting coefficients) and lastly, s
data sources out of D′. In App. D.1, we prove that the num-
ber of samples needed to approximate DeRDaVa with (δ, ϵ)-
error is O( 2r

2n
ϵ2 log 2n

δ ), where r is the range of model uility
function v.

012-MCMC When direct Monte-Carlo sampling is hard,
we propose to repeatedly sample the state for each source in
Dn \ {di} from the uniform distribution over {0, 1, 2}. For
the t-th sample, we construct S(t) = {dj : state(dj) = 2}
and D′

(t) = {dj : state(dj) ̸= 0}∪{di}. Thus, we enforce
S(t)∪{di} ⊆ D′

(t). The DeRDaVa score of source di, τi(v),
is then approximated by importance sampling and taking the
average of T samples:

1
T

T∑
t=1

(
PD(D=D′

(t))
1/3(n−1) · w|D′

(t)|
|S(t)| ·MaCv(di|S(t))

)
. (9)

By using importance sampling, we avert computing PD

for every subset. Instead, we use the known probability
PD

(
D = D′

(t)

)
for each sampled staying set D′

(t).
In practice, we construct M parallel Markov chains of

samples and use the Gelman-Rubin statistic (Gelman and
Rubin 1992) to assess the convergence of the approxima-
tion. The threshold for the Gelman-Rubin statistic is usually
set around 1.1 (Vats and Knudson 2021), but we set it to
≤ 1.005 for higher approximation precision. The time com-
plexity of our 012-MCMC algorithm depends on the num-
ber of samples generated which is significantly smaller than
O(3n). The justification and pseudocode for 012-MCMC al-
gorithm are included in App. D.2.

3.4 Risk-DeRDaVa: A Variant for Different Risk
Attitudes

In Sec. 3.3, the DeRDaVa scores are equivalent to the values
assigned by ϕn on the static dual game ⟨Dn,E[V (·)]⟩. The
model owner considers each data source’s marginal contri-
bution to the expected utility of each coalition S. The model
owner is risk-neutral and indifferent between (R1) a con-
stant random utility function V (·) or (R2) a varying V (·)
with a worse worst-case (with equal expected values).

In practice, model owners may strictly prefer R1 or R2.
Risk-averse model owners would prefer R1 with a higher
worst-case model utility and thus highly value data sources
that have higher marginal contributions to the worst-case
model utility. In contrast, risk-seeking model owners would
prefer R2 with a higher best-case model utility and thus
value those data sources that have higher marginal con-
tributions to the best-case model utility. In Fig. 2, we il-
lustrate and contrast how the risk-neutral, risk-averse and
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(a) Risk-neutral. (b) Risk-averse. (c) Risk-seeking.

Figure 2: Model owners with different risk attitudes will map
the random utility function V (S) evaluated at coalition S to
a deterministic value differently. The risk-neutral owner (2a)
takes expectation (blue) over all possible utilities. A risk-
averse (2b)/ risk-seeking (2c) owner takes expectation over
the lower/worst 0.6-tail and upper/best 0.6-tail respectively.

risk-seeking model owners will transform the random util-
ity function V (·) to a static dual game.

To quantify risks, we use discrete Conditional Value-at-
Risk (CVaR) (Uryasev et al. 2010) to define Coalitional
Conditional Value-at-Risk (C-CVaR) in our problem set-
ting. There are two types of C-CVaR, namely Risk-Averse
C-CVaR (C-CVaR−) and Risk-Seeking C-CVaR (C-CVaR+),
which corresponds to the expectation within the lower tail
(Fig. 2b) and upper tail (Fig. 2c) respectively. For example,
consider the V (S) given in Fig. 2b. The C-CVaR− at level
α = 0.6 is the expectation of V (S) in the blue shaded re-
gion (i.e., the lower 60% tail): C-CVaR−

0.6[V (S)] = 0.2
0.6 ×

1+ 0.3
0.6 ×2+ 0.1

0.6 ×3 = 11
6 . A formal definition of C-CVaR−

and C-CVaR+ is included in App. E. Therefore, to provide
a suitable solution for risk-averse/seeking model owners, we
consider the static prior game

〈
Dn,C-CVaR∓

α [V (·)]
〉

whose
data valuation function is ϕn and define Risk-DeRDaVa:
Definition 5. [Risk-DeRDaVa] Given a random cooperative
game ⟨D, v⟩ with the same notations PD, Dn, n = |Dn| and
ϕn : Gn → Rn as in Definition 4, first define for any coali-
tion S ⊆ Dn the random utility function V (S) = v(S∩D).
Let vrisk(S) = C-CVaR∓

α [V (S)]. The Risk-DeRDaVa score
with ϕnϕnϕn prior at level ααα for risk averse/seeking model own-
ers is defined as

ρi(v) =
∑

S⊆Dn\{di}
w|S| ·MaCvrisk

(di|S)/
(
n−1
s

)
, (10)

where w|S| is the weighting term associated with all coali-
tions S of size s = |S| given by ϕn.

Note that α = 1 recovers the DeRDaVa scores. In prac-
tice, it is more common for model owners to be risk-averse,
so we default Risk-DeRDaVa to refer to the risk-averse ver-
sion. As C-CVaR is non-additive (see App. E), we approx-
imate Risk-DeRDaVa scores by sampling S and using the
Monte-Carlo CVaR algorithm (Hong, Hu, and Liu 2014).

4 Experiments
Our experiments use the following [model-dataset] combi-
nations: [NB-CC] Naive Bayes trained on Credit Card (Yeh
and Lien 2009), [NB-Db] Naive Bayes trained on Diabetes
(Carrion, Dustin 2022), [NB-Wd] Naive Bayes trained on
Wind (Vanschoren, Joaquin 2014), [SVM-Db] Support Vec-
tor Machine trained on Diabetes, and [LR-Pm] Logistic Re-
gression trained on Phoneme (Grin, Leo 2022). More exper-
imental details are included in App. F.

(a) [SVM-Db]. (b) [NB-CC].

(c) Synthetic dataset. (d) Data similarity.

Figure 3: DeRDaVa accounts for data deletions. (3a) (11
data sources) and (3b) (21 data sources) show the effect of
staying probability on DeRDaVa scores with Beta Shapley
and Data Banzhaf prior; (3c) and (3d) show when DeRDaVa
score of a redundant data source exceeds its Banzhaf score.

4.1 Measure of Contribution to Model
Performance and Deletion-Robustness

DeRDaVa is designed to measure each data source’s contri-
bution to both model performance and deletion-robustness.
By creating data sources with different contributions and
comparing their DeRDaVa scores, we can verify the em-
pirical behaviour of DeRDaVa. We analyse the three main
factors that affect the contribution of data sources (staying
probability, data similarity and data quality) below.

Staying Probability We repeat 50 runs of creating data
sources with equal number of randomly sampled training
examples, assigning different independent staying probabili-
ties and computing their semivalue and corresponding DeR-
DaVa scores. From Fig. 3a and 3b, we observe that data
sources with higher staying probability receive higher DeR-
DaVa scores as they contribute more to model performance
after anticipated deletions.

Data Similarity We create a synthetic dataset (Fig. 3c)
with 4 data sources. The yellow and blue regions are exclu-
sively owned by 2 different data sources while the red region
is co-owned by 2 data sources RED and REDD. Thus, RED
and REDD data are highly similar. The model utility function
is the accuracy of the trained k-Nearest Neighbours model.
In Fig. 3d, we observe that the RED is assigned a higher
DeRDaVa score (plotted as solid lines) than Banzhaf score
(plotted as a dashed line) when its staying probability is high
and when other data sources do not stay with certainty. This
aligns with our intuition that deletion-robust data valuation
should favour RED, despite its redundancy in the presence
of REDD, when RED is more likely to stay than others.

Data Quality Data sources with poor data quality (e.g.,
with high noise level) make a low contribution to model per-
formance regardless of data deletions. Similar to semivalues,
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(a) Add highest first. (b) Add lowest first.

(c) Remove highest first. (d) Remove lowest first.

Figure 4: Point addition and removal experiments. All exper-
iments are run using [NB-Wd], 100 data sources and Data
Banzhaf prior.

DeRDaVa is also capable of reflecting data quality and thus
can be applied to identify noisy data (see App. F).

4.2 Point Addition and Removal
We perform point addition and removal experiments which
are often used in evaluation of data valuation techniques
(Ghorbani and Zou 2019; Kwon and Zou 2022) with an
adaption to our setting — we measure the expected model
performance after data deletion instead. When data with the
highest scores are added first (Fig. 4a), Random shows a
rapid increase in expected model performance at the begin-
ning as the training curve has not plateaued and almost ev-
ery added point contributes a lot. However, after more addi-
tions, DeRDaVa with Banzhaf prior surpasses all others as
its selected points contribute to preserving high model accu-
racy after anticipated deletions. When data with the lowest
scores are added first (Fig. 4b), DeRDaVa’s expected accu-
racy drops since these data are harmful to both model perfor-
mance and deletion-robustness. When data with the highest
scores are removed first (Fig. 4c), DeRDaVa exhibits a rapid
decrease in expected model performance. This is because
data sources that contribute more to deletion-robustness are
removed. When data with the lowest scores are removed
first (Fig. 4d), DeRDaVa demonstrates a rapid increase in
expected model performance at the beginning and the slow-
est decrease later. This is because data which contributes to
preserving higher model accuracy after anticipated deletions
tend to have higher DeRDaVa scores and are not removed.

4.3 Reflection of Long-Term Contribution
Next, we simulate data deletions and recompute the semi-
value scores to see how the contribution of a data source
changes as data deletion occurs. We then compare these re-
computed scores with the pre-deletion semivalue scores and
DeRDaVa scores to investigate which represent the long-
term contribution better. Fig. 5a and 5b show that the av-
erage of the distribution of recomputed valuation scores is

(a) [LR-Pm]. (b) [NB-Wd].

(c) [LR-Pm]. (d) [NB-Db].

Figure 5: When data sources stay with independent (5a)
and dependent (5b) probabilities, the recomputed semivalue
scores of 10 data sources always converge to DeRDaVa
scores and deviate from pre-deletion scores; (5c) and (5d)
compare Risk-DeRDaVa with DeRDaVa and semivalues.

almost the same as the DeRDaVa scores but deviate signif-
icantly from the pre-deletion scores. Moreover, the recom-
puted semivalues can vary widely (see shaded region) with
different deletion outcomes. This aligns with our motivation
to avert uncertainty and fluctuations in the valuation by effi-
ciently computing DeRDaVa scores upfront.

4.4 Empirical Behaviours of Risk-DeRDaVa
In this section, we observe the empirical behaviours of Risk-
DeRDaVa and investigate how the valuation scores change
as we use C-CVaR− at different levels α, which reflects
model owners with different risk attitudes. We assign a
predetermined independent staying probability to each data
source, where data sources with smaller indices have higher
staying probability. As shown in Fig. 5c and 5d, Risk-
DeRDaVa (risk-averse) assigns even higher scores to data
sources with high staying probability and penalizes data
sources that are likely to delete harder.

5 Conclusion and Discussion
In this paper, we propose a deletion-robust data valuation
technique DeRDaVa and an efficient approximation algo-
rithm to improve its practicality. We also introduce Risk-
DeRDaVa for model owners with different risk attitudes. We
have shown both theoretically and empirically that our pro-
posed solutions have more desirable properties than exist-
ing works when data deletion occurs. Future work can con-
sider other possible applications (e.g., heuristics of active
learning) and address the limitations and negative social im-
pacts raised in App. G.3 such as approximating DeRDaVa
scores more efficiently with guarantees, estimating the stay-
ing probabilities PD more accurately and preventing inten-
tional misreporting of staying probabilities PD or data.
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