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Abstract

Federated Learning (FL) is a promising privacy-preserving
distributed learning paradigm but suffers from high communi-
cation cost when training large-scale machine learning models.
Sign-based methods, such as SignSGD, have been proposed
as a biased gradient compression technique for reducing the
communication cost. However, sign-based algorithms could
diverge under heterogeneous data, which thus motivated the de-
velopment of advanced techniques, such as the error-feedback
method and stochastic sign-based compression, to fix this
issue. Nevertheless, these methods still suffer from slower
convergence rates, and none of them allows multiple local
SGD updates like FedAvg. In this paper, we propose a novel
noisy perturbation scheme with a general symmetric noise
distribution for sign-based compression, which not only al-
lows one to flexibly control the bias-variance tradeoff for the
compressed gradient, but also provides a unified viewpoint
to existing stochastic sign-based methods. More importantly,
the proposed scheme enables the development of the very first
sign-based FedAvg algorithm (z-SignFedAvg) to accelerate
the convergence. Theoretically, we show that z-SignFedAvg
achieves a faster convergence rate than existing sign-based
methods and, under the uniformly distributed noise, can enjoy
the same convergence rate as its uncompressed counterpart.
Extensive experiments are conducted to demonstrate that the
z-SignFedAvg can achieve competitive empirical performance
on real datasets and outperforms existing schemes.

Introduction
We consider the Federated Learning (FL) network with one
parameter server and n clients (McMahan et al. 2017; Li et al.
2020), with the focus on solving the following distributed
learning problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where fi(·) is the local objective function for the i-th client,
for i = 1, . . . , n. Throughout this paper, we assume that each
fi is smooth and possibly non-convex. The local objective
functions are generated from the local dataset owned by each
client. When designing distributed algorithms to solve (1), a
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crucial aspect is the communication efficiency since a mas-
sive number of clients need to transmit their local gradients
to the server frequently (Li et al. 2020). As one of the most
popular FL algorithms, the federated averaging (FedAvg)
algorithm (McMahan et al. 2017; Konečnỳ et al. 2016) con-
siders multiple local SGD updates with periodic communi-
cations to reduce the communication cost. Another way is
to compress the local gradients before sending them to the
server (Li et al. 2020; Alistarh et al. 2017; Reisizadeh et al.
2020). Among the existing compression methods, a simple
yet elegant technique is to take the sign of each coordinate
of the local gradients, which requires only one bit for trans-
mitting each coordinate. For any x ∈ R, we define the sign
operator as: Sign(x) = 1 if x ≥ 0 and −1 otherwise.

It has been shown recently that optimization algorithms
with the sign-based compression can enjoy a great communi-
cation efficiency while still achieving comparable empirical
performance as uncompressed algorithms (Bernstein et al.
2018; Karimireddy et al. 2019; Safaryan and Richtárik 2021).
However, for distributed learning, especially the scenarios
with heterogeneous data, i.e., fi ̸= fj for every i ̸= j, a
naive application of the sign-based algorithm may end up
with divergence (Karimireddy et al. 2019; Chen et al. 2020;
Safaryan and Richtárik 2021).

A counterexample for sign-based distributed gradient
descent. Consider the one-dimensional problem with two
clients: minx∈R (x−A)2 + (x+A)2, where A > 0 is some
constant. For any x ∈ [−A,A], the averaged sign gradient
at x is Sign(x− A) + Sign(x+ A) = 0, i.e., the algorithm
never moves. Similar examples are also discussed by (Chen
et al. 2020; Safaryan and Richtárik 2021). The fundamental
reason for this undesirable result is the uncontrollable bias
brought by the sign-based compression.

There are mainly two approaches to fixing this issue in the
existing literature. The first one is the stochastic sign-based
method, which introduces stochasticity into the sign oper-
ation (Jin et al. 2020; Safaryan and Richtárik 2021; Chen
et al. 2020), and the second one is the Error-Feedback (EF)
method (Karimireddy et al. 2019; Vogels, Karimireddy, and
Jaggi 2019; Tang et al. 2019). However, these works are still
unsatisfactory. Specifically, on one hand, both the theoret-
ical convergence rates and empirical performance of these
algorithms are still worse than uncompressed algorithms like
(Ghadimi and Lan 2013; Yu, Yang, and Zhu 2019). On the
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other hand, none of them allows the clients to have multiple
local SGD updates within one communication round like the
FedAvg, which thereby are less communication efficient.
This work aims at addressing these issues and closing the
gaps for sign-based methods.

Main contributions. Our contributions are summarized
as follows.
(1) A unified family of stochastic sign operators. We show

an intriguing fact: The bias brought by the sign-based
compression can be flexibly controlled by injecting a
proper amount of random noise before the sign opera-
tion. In particular, our analysis is based on a novel noisy
perturbation scheme with a general symmetric noise
distribution, which also provides a unified framework
to understand existing stochastic sign-based methods
including (Jin et al. 2020; Safaryan and Richtárik 2021;
Chen et al. 2020).

(2) The first sign-based FedAvg algorithm. In contrast
to the existing sign-based methods which do not allow
multiple local SGD updates within one communica-
tion round, based on the proposed stochastic sign-based
compression, we design a novel family of sign-based
federated averaging algorithms (z-SignFedAvg) that can
achieve the best of both worlds: high communication
efficiency and fast convergence rate.

(3) New theoretical convergence rate analyses. By lever-
aging the asymptotic unbiasedness property of the
stochastic sign-based compression, we derive a series of
theoretical results for z-SignFedAvg and demonstrate its
improved convergence rates over the existing sign-based
methods. In particular, we show that by injecting a suf-
ficiently large uniform noise, z-SignFedAvg can have
a matching convergence rate with the uncompressed
algorithms.

Notations. For any x ∈ Rd, we denote x(j) as the j-th
element of the vector x. We define the ℓp-norm for p ≥ 1

as ∥x∥p = (
∑d

j=1 |x(j)|p)
1
p . We denote that ∥ · ∥ = ∥ · ∥2,

and ∥x∥∞ = maxj∈{1,...,d} |x(j)|. For any function f(x),
we denote f (k)(x) as its k-th derivative, and for a vec-
tor x = [x(1), ..., x(d)]⊤ ∈ Rd, we define Sign(x) =
[Sign(x(1)), ..., Sign(x(d))]⊤.

Related Works
Stochastic sign-based method. Our proposed algorithm
belongs to this category. Among the existing works (Safaryan
and Richtárik 2021; Jin et al. 2020; Chen et al. 2020), the
setting considered by (Safaryan and Richtárik 2021) is clos-
est to ours since the latter two consider gradient compression
not only in the uplink but also in the downlink. Despite of
this difference and the use of different convergence metrics,
the algorithms therein achieve the same convergence rate
O(τ−

1
4 ), where τ is the total number of gradient queries to

the local objective function. Compared to existing works, our
proposed z-SignFedAvg requires a slightly stronger assump-
tion on the minibatch gradient noise, but achieves a faster
convergence rate O(τ−

1
3 ) or even O(τ−

1
2 ), with the standard

squared ℓ2-norm of gradients as the convergence metric.

Error-Feedback method. The error-feedback (EF)
method is first proposed by (Seide et al. 2014) and later the-
oretically justified by (Karimireddy et al. 2019). Then, (Vo-
gels, Karimireddy, and Jaggi 2019; Tang et al. 2019, 2021a)
further extended this EF method into distributed and adap-
tive gradient schemes. The key idea of the EF-based meth-
ods is to show that the sign operator scaled by the gradient
norm is a contractive compressor, and the error induced by
the contractive compressor can be compensated. However,
such EF-based methods cannot deal with partial client par-
ticipation otherwise the error residuals cannot be correctly
tracked. Besides, the EF-based methods have a convergence
rate O(τ−

1
2 + d2τ−1), where d is the dimension of the gra-

dients, and therefore is not competitive for high-dimension
problems.

Unbiased quantization method. Apart from the sign-
based gradient compression, another popular way of compres-
sion is the unbiased stochastic quantization method adopted
by (Alistarh et al. 2017; Reisizadeh et al. 2020; Haddadpour
et al. 2021; Vargaftik et al. 2021). A key assumption made
by this category of methods is that the quantization error is
bounded by the norm of the input, which however does not
hold for sign-based compression, and therefore the existing
convergence results therein do not apply to sign-based meth-
ods. Besides, as shown in (Alistarh et al. 2017; Reisizadeh
et al. 2020; Vargaftik et al. 2021), these unbiased methods
usually have degraded convergence speed when compared to
the uncompressed algorithms.

As mentioned, some of the existing sign-based methods
like (Chen et al. 2020; Safaryan and Richtárik 2021) do
not adopt the standard squared ℓ2-norm of gradients as the
metric for the convergence rate analysis. Thus, it is tricky
to make a fair comparison between them and the proposed
z-SignFedAvg. We provide a detailed discussion in the Ap-
pendix to summarize the convergence rates of some represen-
tative algorithms.

Sign Operator with Symmetric and Zero-Mean
Noise

In this section, we introduce a general noisy perturbation
scheme for the sign-based compression and analyze the
asymptotic unbiasedness of compressed gradients. The re-
sults serve as the foundation for the proposed algorithms in
subsequent sections.

Key observation. Let ξ be a random variable that is sym-
metric, zero-mean and has the p.d.f p(t). If p(0) ̸= 0 and p(t)
is continuous and uniformly bounded on (−∞,+∞), then it
can be verified that

lim
σ→+∞

σ

2p(0)
E[Sign(x+ σξ)] = x. (2)

In other words, the perturbed sign operator is an asymptoti-
cally unbiased estimator of the input x when σ → ∞. Further-
more, assume that p(t) is uniformly bounded on (−∞,+∞)
and differentiable for an arbitrary order. Then, with the Tay-
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lor’s expansion, we can have

σ

p(0)

∫ x
σ

0

p(t)dt = x+
1

p(0)

+∞∑
k=1

p(k)(0)xk+1

(k + 1)!σk

= x+
+∞∑
k=1

p(k)(0)O
(
σ−k

)
.

Therefore, suppose that K is the largest integer such that
p(1)(0) = 0, ..., p(K)(0) = 0. The LHS of (2) will converge
to x with the order O(σ−(K+1)). This observation motivates
us to find a distribution with p(i)(0) = 0 for all i ≤ z, given a
positive integer z ∈ Z+, which leads to the following family
of noise distribution parameterized by z.
Definition 1 (z-distribution). A random variable ξz is said
to follow the z-distribution if its p.d.f is

pz(t) =
1

2ηz
e−

t2z

2 , (3)

where ηz = 2
1
2z Γ

(
1 + 1

2z

)
and Γ(z) =

∫ +∞
0

tz−1e−tdt is
the Gamma function.

It can be verified that pz(t) in (3) is a valid p.d.f. When
z = 1, it corresponds to the standard Gaussian distribution. In
addition, one can also show that pz(t) converges to the p.d.f
of the uniform distribution when z → +∞, as summarized
in Lemma 1 below.
Lemma 1. The z-distribution weakly converges to uniform
distribution on [−1, 1] when z → +∞.

This z-distribution has a nice property that can be lever-
aged to bound the bias caused by the sign-based compression,
as stated in the following lemma.
Lemma 2. For any x ∈ Rd and σ > 0,

∥ηzσE [Sign(x + σξz)]− x∥2 ≤
∥x∥4z+2

4z+2

4(2z + 1)2σ4z
, (4)

where ξz(1), ..., ξz(d) follow the i.i.d. z-distribution.
Remark 1. One can see that the RHS of (4) involves the term
(∥x∥4z+2/σ)

4z . Thus, as long as σ > ∥x∥∞, the LHS of (4)
converges to zero when z → +∞. Since Lemma 1 implies
that ξ∞ follows the i.i.d uniform distribution on [−1, 1], we
obtain σE [Sign(x + σξ∞)] = x as long as σ > ∥x∥∞. It
is interesting to remark that the stochastic sign operators
proposed in (Jin et al. 2020; Safaryan and Richtárik 2021)
are exactly the sign operator injected by the uniform noise,
and (Chen et al. 2020) also considered the use of a symmetric
noise for gradient perturbation. Thus, sign-based compres-
sion with the z-distribution offers a unified perspective to
understand the relationship among the existing stochastic
sign-based methods.

z-SignFedAvg Algorithm
In this section, we propose the following sign-based FedAvg
algorithm, termed as z-SignFedAvg. While FedAvg-type al-
gorithms with gradient compression are also presented in
(Haddadpour et al. 2021), they require unbiased compression

and are not applicable to sign-based methods. The details
of z-SignFedAvg are presented in Algorithm 1. A promi-
nent difference between the proposed z-SignFedAvg and the
existing sign-based methods lies in that the clients are al-
lowed to perform multiple SGD updates per communication
round (E > 1) before applying the stochastic sign-based
compression. Like the FedAvg algorithm, it is anticipated
that z-SignFedAvg can greatly benefit from this and has a
significantly reduced communication cost.

Note that in practice we only consider z = 1 and z = +∞
for the z-SignFedAvg since they correspond to the Gaussian
distribution and uniform distribution, respectively. Never-
theless, we are interested in the convergence properties of
z-SignFedAvg for a general positive integer z as it provides
better insights on the role of z for the convergence rate.

Algorithm 1: z-SignFedAvg (or z-SignSGD when E = 1)
Require: Total communication rounds T , number of local steps E,

number of clients n, clients stepsize γ, server stepsize η, noise
coefficient σ, parameter of noise distribution z.

1: Initialize x0.
2: for t = 1 to T do
3: On Clients:
4: for i = 1 to n do
5: xi

t−1,0 = xt−1

6: for s = 1 to E do
7: git−1,s = gi(x

i
t−1,s−1), where gi(·) is the minibatch

gradient oracle of the i-th client.
8: xi

t−1,s = xi
t−1,s−1 − γgit−1,s.

9: end for
10: Sample ξz ∈ Rd from the distribution pz(t) i.i.d.

11: ∆i
t−1 = Sign

(
xt−1−xi

t−1,E

γ
+ σξz

)
.

12: Send ∆i
t−1 to the server.

13: end for
14: On Server:
15: xt = xt−1 − ηγ 1

n

∑n
i=1 ∆

i
t−1.

16: Broadcast xt to the clients.
17: end for

We first state some standard assumptions for problem (1).

Assumption 1. We assume that each fi(x) has the following
properties:

A.1 The minibatch gradient is unbiased and has bounded vari-
ance, i.e., E[gi(x)] = ∇fi(x) and

E[∥gi(x)−∇fi(x)∥22] ≤ ζ2.

A.2 Each fi is smooth, i.e., for any x, y ∈ Rd, there exists
some non-negative constants L1, . . . , Ld, such that

f(y)−f(x) ≤ ⟨∇f(x), y−x⟩+
∑d

j=1 Lj (y(j)− x(j))
2

2
.

A.3 f is lower bounded, i.e., there exists some constant f∗

such that f(x) ≥ f∗, ∀x ∈ Rd.
A.4 There exists a constant G ≥ 0 such that ∥∇fi(x)∥ ≤ G,

∀i = 1, ..., n, and x ∈ Rd.

Assumption A.2 is a more fine-grained assumption on the
function smoothness than the commonly used one and is also
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used by (Bernstein et al. 2018; Safaryan and Richtárik 2021).
For the convergence rate analysis, we consider two cases,
namely, the case with z < +∞ and the case of z = ∞.

Case 1: z < +∞
As we can see from Lemma 2, there always exists some
gradient bias when z < +∞. In order to bound it, we further
assume that a higher order moment of the minibatch gradient
noise is bounded.

Assumption 2. There exists a constant Qz ≥ 0 such that for
any x ∈ Rd, we have

E[∥gi(x)−∇fi(x)∥4z+2
4z+2] ≤ Qz. (5)

Theorem 1. Suppose that Assumption 1 and 2 hold. Denote
x̄t,s = 1

n

∑n
i=1 x

i
t,s and Lmax = maxj Lj . Then, for η =

ηzσ, γ ≤ 1
Lmax

and z < +∞ in Algorithm 1, we have

E

[
1

TE

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]

≤ 2E[f(x0)− f∗]

TEγ
+

γζ2Lmax

n
+

4γ2(E − 1)EL2
max(ζ

2 +G2)

3︸ ︷︷ ︸
(a) Standard terms in FedAvg

(6a)

+
22z+1E2z

√
Qz +G4z+2G√

2(2z + 1)σ2z
+

γ24zE4z+1(Qz +G4z+2)Lmax

2(2z + 1)2σ4z︸ ︷︷ ︸
(b) Bias terms

(6b)

+
4η2

zγσ
2 ∑d

j=1 Lj

En︸ ︷︷ ︸
(c) Variance term

. (6c)

When is the bound non-trivial? Since we assume that
the ℓ2-norm of gradient is bounded by G, all the terms in
the RHS of (6) should be no larger than G2. For example, to
have the first term in (6b) less than G2, one requires σ to be

greater than 21+
1
4z E

(
Qz/G

2 +G4z
) 1

4z /(2z + 1)
1
2z .

Bias-variance trade-off. An interesting observation from
Theorem 1 is that there exists a trade-off between the bias and
variance terms. One can see that the terms in (6b) is caused
by the gradient bias of the sign operation (see (4)) and is
an infinitesimal of σ with O

(
σ−2z

)
, while the term in (6c)

is due to the injected noise and is in the order of O
(
γσ2

)
.

Specifically, the first term in (6b) only depends on the noise
scale σ and mostly affects the final objective. Meanwhile, the
variance term in (6c) mainly affects the convergence speed
because a smaller stepsize is required for it to diminish.

Theoretically, we can choose an iteration-dependent noise
scale σ so as to make the algorithm converge to a stationary
solution. To see this, let us denote τ = TE as the total num-
ber of gradient queries per client, and present the following
corollary.

Corollary 1 (Informal). Let σ = (nτ)
1

4z+2 and γ =

min{n
z

2z+1 τ−
z+1
2z+1 , L−1

max} in Theorem 1, and let E ≤

n− 3z
4z+2 τ

z+2
4z+2 . We have

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
= O

(
(nτ)−

z
2z+1

)
. (7)

Achieveing linear speedup. From Corollary 1, we can
see that the z-SignFedAvg needs (nτ)

3z
4z+2 communication

rounds to achieve a linear-speedup convergence rate. Par-
ticularly, when z = 1, the corresponding convergence rate
is O((nτ)−

1
3 ) and the required communication rounds is

(nτ)
1
2 . To the best of our knowledge, the previous works

have never shown the sign-based method can achieve a linear-
speedup convergence rate.

Relationship to (Chen et al. 2020). The work (Chen et al.
2020) also considered the use of a symmetric and zero-mean
noise for the sign-based compression and proved that the
algorithm has a convergence rate O(τ−

1
4 ). However, their

results have three differences from our z-SignFedAvg and
Theorem 1. First, (Chen et al. 2020) considered gradient com-
pression both in the uplink and downlink communications. In
addition, the convergence metric they used is not the standard
squared ℓ2-norm of gradients and is hard to interpret. Sec-
ond, their analysis is rooted in the median-based algorithm,
whereas we judiciously exploit the property of the sign oper-
ation and hence provide a general analysis framework for the
stochastic sign-based methods. Last but not the least, unlike
our z-SignFedAvg, (Chen et al. 2020) cannot allow multiple
local SGD updates.

Case 2: z = +∞
When z = +∞, the injected noise ξz in the z-SignFedAvg is
uniformly distributed on [−1, 1]. From Remark 1, we have
learned that the gradient bias can vanish as long as the noise
scale σ is sufficiently large. To quantify this threshold, we
need the following assumption which is a limit form of As-
sumption 2.

Assumption 3. There exists a constant Q∞ ≥ 0 such that
for any x ∈ Rd, with probability 1,

∥gi(x)−∇fi(x)∥∞ ≤ Q∞. (8)

Theorem 2. (Informal) Suppose that Assumption 1 and 3
hold. For γ = min{n 1

2 τ−
1
2 , L−1

max}, η = σ, z = +∞, E ≤
n− 3

4 τ
1
4 and σ > E(G+Q∞) in Algorithm 1 we have

E

[
1

τ

T∑
t=1

E∑
s=1

∥∇f(x̄t−1,s−1)∥2
]
= O

(
(nτ)−

1
2

)
. (9)

However, if σ ≤ E(G+Q∞), there exists a problem instance
for which Algorithm 1 cannot converge.

Remark 2. Note that Theorem 2 implies that ∞-SignFedAvg
has a matching convergence rate as the uncompressed Fe-
dAvg. The reason why ∞-SignFedAvg cannot converge when
σ ≤ E(G + Q∞) is simply that the uniform noise has a
finite support and cannot always change the sign of gradi-
ents. For example, if σ < A for some A > 0, then we have
Sign(x+ σξ∞) = Sign(x) for any x ≥ A.
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Relationship to (Jin et al. 2020; Safaryan and Richtárik
2021). As mentioned in Remark 1, both the stochastic sign
operators in (Jin et al. 2020; Safaryan and Richtárik 2021) are
equivalent to the sign operator injected by the uniform noise.
Nevertheless, there are still two distinctions when compared
with our ∞-SignFedAvg. First, while (Safaryan and Richtárik
2021) shows their algorithm has a O(τ−

1
4 ) convergence rate,

it is based on the ℓ2-norm of gradients and cannot imply the
same rate as that in (9) (see Appendix for more details). Sec-
ond, although (Safaryan and Richtárik 2021) does not need
Assumption 3, it relies on an input-dependent noise scale
which, unfortunately, often slows the algorithm convergence
in practice especially when the problem dimension is large.

Case Rate Threshold
on σ

Assumption

1 O(τ− z
2z+1 ) Õ

((
Qz

G2 +G4z
) 1

4z

)
Asp. 2

2 O(τ− 1
2 ) Õ(Q∞ +G) Asp. 3

Table 1: Comparison of Case 1 and Case 2.

More theoretical results and proofs are relegated to Ap-
pendix. Below, we have two more remarks.

Remark 3. (Bounded minibatch gradient noise) While both
Assumption 2 and 3 are slightly stronger than the commonly
used second-order condition on the minibatch gradient noise,
they are still justifiable since unbounded minibatch gradient
noise is rarely to happen in practice.

Remark 4. (Minibatch gradient noise works as noise per-
turbation) When the minibatch gradient is used as the input
of the sign operator in (2), the minibatch gradient noise it-
self may function as the perturbation noise. In particular, as
shown in (Chen, Wu, and Hong 2020) the minibatch gra-
dient noise approximately follows a symmetric distribution.
Therefore, in practice, one may not need to inject as large
noises as suggested by Theorem 2 since the minibatch gradi-
ent noise can also help mitigate the bias due to sign-based
compression. This also explains why a small noise scale is
sufficient for z-SignFedAvg to achieve good performance in
the experiment section.

Comparison of Case 1 and Case 2
We summarize the results of Case 1 and Case 2 in Table
1, where Õ(·) hides some constants that do not affect the
comparison. Especially, we can see that when the mini-batch
gradient noise has a long tail such that Qz/G

2 ≪ Q4z
∞, Case

1 requires a less amount of noise than Case 2 for guaranteeing
convergence. Despite of the difference in theory, we will see
in the experiment section that z-SignFedAvg under Case 1
and Case 2 have almost the same behavior in practice.

Experiments
In this section, we present the experiment results on both
synthetic and real problems, and all the figures in this section

are obtained by 10 independent runs and are visualized in the
form of mean±std.

Noise scale as a hyperparameter. Although we explicitly
characterize how the performance of z-SignFedAvg depends
on the noise scale σ in the previous section, we treat σ as a
tunable hyperparameter in the experiments. This is because,
on one hand, the theoretical lower bound for σ are difficult to
compute since it is impossible to access the moment condition
of the minibatch gradient noise. On the other hand, as we
have discussed in Remark 4, owing to the presence of the
minibatch gradient noise, we can use a much smaller noise
scale than the theoretical one in practice.

A Simple Consensus Problem
In this section, we verify our previous theoretical results by
considering the simple consensus problem with 10 clients:
minx∈Rd

1
2

∑10
i=1 ∥x− yi∥2, where y1, ..., y10 ∈ Rd are gen-

erated using i.i.d standard Gaussian distribution, and d is
the problem dimension. We implemented the following al-
gorithms: GD (Gradient descent), Sto-SignSGD (Safaryan
and Richtárik 2021), SignSGD (Algorithm 1 with z = 1,
E = 1 and σ = 0), 1-SignSGD (Algorithm 1 with z = 1
and E = 1.), ∞-SignSGD (Algorithm 1 with z = +∞ and
E = 1). For all the algorithms, we considered the full gra-
dient (no minibatch SGD), and used the same stepsize 0.01
and initialization by a zero vector.

Results. As we can see from Figure 1, the vanilla SignSGD
fails to converge to the optimal solution whereas the others
can. Besides, 1-SignSGD and ∞-SignSGD have roughly the
same convergence speed which is slightly slower than the un-
compressed GD. It is also observed that the input-dependent
noise scale adopted by (Safaryan and Richtárik 2021) could
slow the convergence when the problem dimension is high.

(a) d = 10 (b) d = 100

(c) d = 1000

Figure 1: Performance of tested algorithms under different
problem dimensions. The x-axis is communication rounds
and the y-axis is the objective values.

Figure 2 displays the results of 1-SignSGD and ∞-
SignSGD with various noise scales. We can see that there is
a clear bias-variance trade-off for different noise scales and
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(a) 1-SignSGD (b) ∞-SignSGD

Figure 2: z-SignSGD under various noise scales.

it corroborates our analysis after Theorem 1. It is also worth
mentioning that the best choice of σ for Algorithm 1 shown
in Figure 2 is much smaller than the one predicted by the
theorems.

(a) Training Loss (b) Test Accuracy

(c) Test Accuracy w.r.t bits

Figure 3: Performance of various SignSGD algorithms on
non-i.i.d MNIST. x-axis: Communication rounds for (a) (b),
Logarithmic of bits for (c).

z-SignSGD on Non-i.i.d MNIST
In this section, we consider an extremely non-i.i.d setting with
the MNIST dataset (Deng 2012). Specifically, we split the
dataset into 10 parts based on the labels and each client has
the data of one digit only. A simple two-layer convolutional
neural network (CNN) from Pytorch tutorial (Paszke et al.
2017) was used. The following algorithms were implemented:
SGDwM (Distributed SGD (Ghadimi and Lan 2013) with mo-
mentum), EF-SignSGDwM (Distributed SignSGD with error-
feedback and momentum (Karimireddy et al. 2019; Vogels,
Karimireddy, and Jaggi 2019)), and Sto-SignSGDwM (Sto-
SignSGD with momentum (Safaryan and Richtárik 2021)).
For each of the algorithms, we selected its best hyperparam-
eters, including the stepsize, momentum coefficient and the
noise scale, via grid search (see Appendix).

Results. One can observe from Figure 3a-3b that again
the vanilla SignSGD does not converge well. The proposed
1-SignSGD and ∞-SignSGD clearly outperform the existing

EF-SignSGDwM and Sto-SignSGDw, and perform closely
to the uncompressed SGDwM. The reason for the slow con-
vergence of Sto-SignSGDw is that the injected noise is too
large due to the input-dependent noise scale. Figure 3c fur-
ther displays the testing accuracy of all methods versus the
accumulated number of bits transmitted from the clients to
the server. One can see that the proposed algorithms achieve
the state-of-the-art performance on this task. More results for
1-SignSGD and ∞-SignSGD under different noise scales are
presented in Appendix.

(a) Training Loss (b) Test Accuracy

(c) Test Accuracy w.r.t bits

Figure 4: Performance of FedAvg and 1-SignFedAvg on
the EMNIST dataset. x-axis: Logarithmic of communication
rounds for (a) (b), Logarithmic of bits for (c).

z-SignFedAvg on EMNIST and CIFAR-10
In this section, we evaluate the performance of our proposed
z-SignFedAvg on two classical datasets: EMNIST(Cohen
et al. 2017) and CIFAR-10 (Krizhevsky and Hinton 2010).
In particular, the proposed z-SignFedAvg with z = 1 and
z = ∞ are benchmarked against the uncompressed FedAvg
(McMahan et al. 2017; Yu, Yang, and Zhu 2019). Since 1-
SignFedAvg and ∞-SignFedAvg behave similarly, we only
report the results of 1-SignFedAvg in this section and relegate
the others to Appendix. For EMNIST, we use the same 2-
layer CNN as the one in last experiment. For CIFAR-10, we
used the ResNet18 (He et al. 2016) with group normalization
(Wu and He 2018).

Settings. For both the experiments on EMNIST and
CIFAR-10, we followed a setting similar to (Reddi et al.
2020). We also considered the scenario with partial client
participation. For the EMNIST dataset, there are 3579 clients
in total and 100 clients were uniformly sampled in each
communication round to upload their compressed gradients.
For the CIFAR-10 dataset, the training samples are parti-
tioned among 100 clients, and each client has an associated
multinomial distribution over labels drawn from a symmetric
Dirichlet distribution with parameter 1. In each communica-
tion round, 10 out of 100 clients were uniformly sampled.
We fixed the client stepsize as 0.05 and 0.1 for EMNIST
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dataset and CIFAR-10 dataset respectively. For both dataset,
we set the local batchsize as 32. The same noise scales for
1-SignFedAvg and ∞-SignFedAvg were used: σ = 0.01 for
EMNIST and σ = 0.0005 for CIFAR-10. More details about
the hyperparameters are referred to Appendix.

Results. We can see from Figure 5 that both uncompressed
FedAvg and 1-SignFedAvg can benefit from multiple local
SGD steps. More surprisingly, 1-SignFedAvg can even out-
perform the uncompressed FedAvg. This is probably because
the EMNIST dataset is less heterogeneous than the one we
used in the non-i.i.d MNIST. The results on the performance
of 1-SignFedAvg and ∞-SignFedAvg under various choices
of noise scales are relegated to Appendix, which are also
consistent with our theoretical claims.

(a) Training Loss (b) Test Accuracy

(c) Test Accuracy w.r.t bits

Figure 5: Performance of FedAvg and 1-SignFedAvg on the
CIFAR-10 dataset. x axis is the same as Figure 3.

Comparison with Unbiased Stochastic Quantization
Method
Aside from the experiments presented in this section, we also
compare our algorithm to another popular family of unbiased
stochastic compressed FL algorithms, namely, the FedPAQ
in (Reisizadeh et al. 2020) and also the Drive+ in (Vargaftik
et al. 2021).

As we have shown that z-SignFedAvg with the Gaussian
noise and uniform noise behave very closely, here we only
consider 1-SignFedAvg for comparison.

Setting. Again, we consider the two FL datasets used
in previous experiments. Specifically, we compare 1-
SignFedAvg with FedPAQ on EMNIST and CIFAR-10. For
all the algorithms, the client’s stepsize and batchsize are
set to the same values used in previous experiment. For
the number of local steps, we set E = 20 for EMNIST
and E = 5 for CIFAR-10. For 1-SignFedAvg, we reuse
the previously found optimal hyperparameters. For FedPAQ
and Drive+, we tune the server stepsize via grid search on
[1, 0.5, 0.1, 0.05, 0.01, 0.005]. The chosen hyperparameter
FedPAQ and Drive+ under three datesets are presented in
Appendix.

Results. First, our result in Figure 6 is consistent to the
result reported in (Vargaftik et al. 2021) on the EMNIST
dataset, where Drive+ can slightly outperform the uncom-
pressed algorithm FedAvg. Secondly, our algorithm is supe-
rior to Drive+ and the FedPAQ with low precision region
(1 bit to 8 bits) on all datasets, more importantly, it domi-
nates all the algorithms by a large margin particularly on the
CIFAR-10 dataset. These results again, as (Bernstein et al.
2018; Karimireddy et al. 2019) did, show that the biased
compressor, or more specifically the sign-based compressor,
can be a strong competitor to those unbiased quantizer due
to reduced variance.

(a) EMNIST - loss (b) CIFAR-10 - loss

(c) EMNIST - Acc (d) CIFAR-10 - Acc

Figure 6: Performance of FedAvg, 1-SignFedAvg, FedPAQ,
Drive+ on EMNIST/CIFAR-10.

Conclusion
In this work, we have proposed the z-SignFedAvg: a FedAvg-
type algorithm with the stochastic sign-based compression.
Thanks to the novel noisy perturbation scheme in Lemma 2,
the proposed z-SignFedAvg provides a unified viewpoint to
the existing sign-based methods as well as a general frame-
work for convergence rate analysis. Through both theoretical
analyses and empirical experiments, we have shown that the
z-SignFedAvg can perform nearly the same, sometimes even
better, than the uncompressed FedAvg and enjoy a significant
reduction in the number of bits transmitted from clients to
the server. As a final remark, the stochastic sign-based com-
pression proposed in this work can be of independent interest
and can be conveniently combined with other adaptive FL
algorithms or gradient sparsification techniques such as those
in (Karimireddy et al. 2020; Reddi et al. 2020; Basu et al.
2019), to further improve the communication efficiency.
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