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Abstract

The significance of multi-view learning in effectively mit-
igating the intricate intricacies entrenched within heteroge-
neous data has garnered substantial attention in recent years.
Notwithstanding the favorable achievements showcased by
recent strides in this area, a confluence of noteworthy chal-
lenges endures. To be specific, a majority of extant method-
ologies unceremoniously assign weights to data points view-
wisely. This ineluctably disregards the intrinsic reality that
disparate views confer diverse contributions to each individ-
ual sample, consequently neglecting the rich wellspring of
sample-level structural insights harbored within the dataset.
In this paper, we proposed an effective Augmented La-
grangian MethOd for fiNe-graineD (ALMOND) multi-view
optimization. This innovative approach scrutinizes the inter-
play among multiple views at the granularity of individual
samples, thereby fostering the enhanced preservation of lo-
cal structural coherence. The Augmented Lagrangian Method
(ALM) is elaborately incorporated into our framework, which
enables us to achieve an optimal solution without involv-
ing an inexplicable intermediate variable as previous meth-
ods do. Empirical experiments on multi-view clustering tasks
across heterogeneous datasets serve to incontrovertibly show-
case the effectiveness of our proposed methodology, corrob-
orating its preeminence over incumbent state-of-the-art alter-
natives.

Introduction
The proliferation of multi-view data sources has accentu-
ated the need for methodologies that can distill valuable
insights from a multitude of vantage points. For example,
autonomous driving requires both RGB videos and cor-
responding dense 3D point clouds to construct more ac-
curate real-time traffic information (Huang et al. 2018).
Disease diagnosis takes health history data, physical ex-
ams as well as blood tests into consideration (Wang et al.
2020). Meanwhile, the image dataset can be described by
multiple distinctive descriptors (Gao et al. 2015), such as
LBP (Ojala, Pietikainen, and Maenpaa 2002), SIFT (Lowe
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2004), and HOG (Dalal and Triggs 2005). However, tradi-
tional single-view clustering methods, proficient at segre-
gating data within isolated modalities, frequently fall short
in encapsulating the comprehensive knowledge embedded
across multiple perspectives.

Among all existing multi-view clustering (MVC) tech-
niques, graph-based methods have drawn the most attention
due to their effectiveness and ease of implementation. Nor-
mally, graph-based MVC approaches first learn a similarity
graph S(v) for each view, and then deploy different fusion
strategies on these view-oriented graphs to obtain an opti-
mal consensus graph S, which can be further processed by
two mainstream techniques. One is to restrict the rank of S
to be n− k, where n is the number of data points, while k is
the cluster number. Since there are now exactly k connected
components respecting k clusters in the optimal consensus
graph S, no post-processing is needed to acquire the cluster-
ing result. The other one is followed by conducting spectral
clustering or k-means on the obtained consensus graph S to
produce the final result.

By taking advantage of the diffusion process, (Tang et al.
2020) proposed a parameter-free MVC method via cross-
view graph diffusion. Since the original graph could be noisy
or incomplete and is not directly applicable, (Pan and Zhao
2021) proposed a multi-view contrastive graph clustering
method to learn a consensus graph. In (Huang et al. 2021,
2022b), they proposed to leverage the multi-view consis-
tency and the multi-view diversity in a unified framework
yielding a pure graph for each view. Multi-view anchor
graph clustering could be extremely difficult since anchors
are not consistent in feature dimensions. To this end, (Si-
wei et al. 2022) proposed the generalized and flexible anchor
graph fusion framework. To utilize the multi-view informa-
tion, (Wang, Pei, and Zhan 2022) designed a specific graph
learning method by introducing graph regularization and lo-
cal structure fusion patterns. In order to simultaneously con-
sider the similarity of inter-view and intra-view, (Xia et al.
2023) proposed a variance-based de-correlation anchor se-
lection strategy for bipartite construction. To extract high-
level view-common information and reduce this influence
of non-homophilous edges, (Ling et al. 2023) proposed dual
label-guided graph refinement for multi-view graph cluster-
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ing. (Liu et al. 2023) proposed a novel kernel function based
on the emerging contrastive learning framework to capture
complementary information across views better.

Although promising results have been demonstrated in
above mentioned works, it is noteworthy that existing graph-
based MVCs mainly focus on obtaining the consensus graph
by fusing multiple view-oriented similarity graphs in a
view-level manner. Hardly of them have considered the in-
tersections of the heterogeneous information from a fine-
grained view, let alone construct a self-consistent model,
which shouldn’t introduce any inexplicable intermediate
variable. In this paper, we proposed an effective Augmented
Lagrangian MethOd for fiNe-graineD (ALMOND) multi-
view optimization. Instead of integrating diverse informa-
tion view-wisely, which would lead to an overlap of redun-
dancies, resulting in a less precise shared cluster structure,
we decided to go more fine-grained. Given that the align-
ment between multiple views is evident in the generally con-
gruent local structures, with the divergent patterns being a
minority, we delve deeper into the intersections of these per-
spectives at the sample level. This approach enhances the
preservation of cross-view consistency. Furthermore, an ef-
fective augmented lagrangian method was introduced into
our model so that no inexplicable intermediate variable ex-
ists, which preserves the self-consistency of our model. Note
that the fine-grained fusion framework we proposed in this
paper consists of several features that are distinct from ex-
isting methods.

• Rather than obtaining the consensus graph by fusing mul-
tiple similarity graphs view-wisely, we developed a fine-
grained fusion strategy, which considered the fusion pro-
cess at the sample level.

• Our method is self-consistent, which means an effec-
tive Augmented Lagrangian Method was introduced into
our model such that it can achieve an optimal solution
without involving an inexplicable intermediate variable
as previous methods do. Therefore, the self-consistency
can be better maintained.

• Extensive experiments on several benchmark datasets
and corresponding results have proved the superiority of
our proposed method.

Related Work

Multi-view Subspace Clustering

Multi-view subspace clustering has attracted widespread at-
tention in recent years. It is based on the assumption that
each data point can be expressed as a linear combination
of other data points, which reduces the dimension of fea-
ture space. For multi-view data {X(v)}mv=1, where X(v) ∈
Rdv×n denotes the v-th view data with dv dimension. There-
fore, a standard multi-view subspace clustering framework

Notation Definition
n Amount of samples
m Amount of views
dv Dimension of v-th view

X(v) ∈ Rdv×n Data matrix
Z(v) ∈ Rn×n Subspace representation
Z̃ ∈ Rm×n×n Concatenation of all Z(v)

Z̃i ∈ Rm×n i-th frontal slice of Z(v)

α, β, γ Balance parameters

Table 1: Mainly used notations

can be expressed as follow:

min
Z(v),S

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+ αg

(
Z(v)

)
+ϕf

(
S,Z(v)

)
s.t. Z(v) ≥ 0, diag

(
Z(v)

)
= 0,

(1)

where α and ϕ are balance parameters, Z(v) is the learned
subspace corresponding to each view, while g (·) and f (·)
represent the penalty term and customized graph fusion
strategy respectively. Hence final results can be reached by
performing spectral clustering on the consensus graph S.

Based on the multi-view subspace clustering framework,
a plethora of works that have promising results were pro-
posed. (Wang et al. 2021) proposed a novel subspace clus-
tering method that jointly conducted anchor selection and
subspace graph construction into a unified optimization for-
mulation. To address the problem that most anchor-based
multi-view subspace clustering methods adopt fixed anchor
points separating from the subsequential anchor graph con-
struction, (Liu et al. 2022) combined anchor learning and
graph construction into a uniform framework to boost clus-
tering performance. Meanwhile, (Tan et al. 2023b) proposed
to integrate metric learning and graph learning for multi-
view clustering so that noise and diverse relationships within
data can be tackled, to list a few.

Graph Fusion Strategy
How to combine diverse and rich information from multi-
ple views has played a significant role in multi-view clus-
tering. (Gao et al. 2015) conducted multi-view graph fusion
by imposing consensus graph S to be an approximation of
learned subspaces Z(v) as follows:

min
Z(v)

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+ α

∥∥∥Z− Z(v)
∥∥∥2
F

s.t. Z(v) ≥ 0, diag
(
Z(v)

)
= 0.

(2)

It is obvious that the above approach equally treats each in-
dividual subspace and ignores the different contributions of
different views. Thus, (Nie, Li, and Li 2016; Nie et al. 2017)
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proposed the auto-weighted framework for multiple graph
learning, which can be concluded as:

min
Z(v)

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+ α(v)

∥∥∥Z− Z(v)
∥∥∥2
F

s.t. Z(v) ≥ 0, diag
(
Z(v)

)
= 0,

(3)

where

α(v) =
1

2
∥∥Z− Z(v)

∥∥ . (4)

Aiming at achieving the learning of each view graph matrix
and the learning of the unified graph matrix in a mutual re-
inforcement manner, (Wang, Yang, and Liu 2019) proposed
graph-based multi-view clustering as the following form:

min
{Sv},U

m∑
v=1

n∑
i,j=1

∥∥xv
i − xv

j

∥∥2
2
svij + β

m∑
v=1

n∑
i

∥svi ∥
2
2

+
m∑

v=1

wv ∥U− Sv∥2F

s.t. ∀v, svii = 0, svij ≥ 0,1T svi = 1,

uij ≥ 0,1Tui = 1, rank (LU ) = n− c.

(5)

This approach seems to take sample-wise information into
account. Nevertheless, it still signs weights to multiple
graphs in a view-wise manner.

A great number of multi-view graph-base clustering
methods based on these fusion strategies including a vari-
ety of their variants, have been proposed afterward. (Tan
et al. 2023a) integrated topological manifold learning with
sample-level graph fusion, which effectively exploited the
local structure of data, but still didn’t overcome the prob-
lem of the inexplicable variable. (Yu et al. 2023) pro-
posed sample-level weights learning for multi-view cluster-
ing on spectral rotations, which is essentially a two-stage
method. (Wang, Pei, and Zhan 2022) proposed to consider
the sample-wise fusion strategy. Yet, it failed to build a self-
consistent model, which has introduced an inexplicable in-
termediate variable to its object function.

Therefore, none of the existing work has contributed a
self-consistent fine-grained fusion strategy that integrates
sample-wise graph fusion and multi-view subspace cluster-
ing seamlessly.

The Proposed Method
An intuitive idea of implementing ALMOND graph fusion
is signing weight to every instance in each view. As shown in
Figure.1, in traditional fusion strategy, the consensus graph
can be regarded as the linear combination of multiple latent
representations with respect to different views. On the con-
trary, our fine-grained fusion strategy emphasizes the consis-
tency of heterogeneous information mainly lay in the gen-
erally same local structure. Therefore, the weight of each
sample in every view is given to calculate a more accurate
consensus graph sample-wisely so that the inconsistency in-
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Figure 1: Our proposed ALMOND fusion strategy versus
traditional coarse-grained fusion pattern.

troduced by view-wise fusion can be suppressed. Conse-
quently, the fine-grained fusion strategy can be modeled as:

min
S

n∑
i=1

β

2

∥∥∥sTi −wT
i Z̃i

∥∥∥2
2
+

γ

2
∥S∥2F

s.t. S ≥ 0,S1 = 1,wT
i 1 = 1,

(6)

where si is the i-th row of S, wi is the weight vector cor-
responding to the i-th sample. Meanwhile, Z̃ ∈ Rm×n×n

is a tensor which is concatenated by all {Z(v)}mv=1 and
Z̃i ∈ Rm×n is the i-th frontal slice of Z̃. Thereby, the con-
sensus graph S that can depict more underlying structure of
data is now obtained. Furthermore, with the help of multi-
view subspace learning in Eq. (1), our proposed model can
finally be formulated as:

min
Z(v),J(v),W,S,Y(v)

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+

α

2

∥∥∥Z(v)
∥∥∥2
F

+
β

2

n∑
i=1

∥∥∥sTi −wT
i Z̃i

∥∥∥2
2
+

γ

2
∥S∥2F

s.t. Z(v) ≥ 0,S ≥ 0,wi ≥ 0,S1 = 1,wT
i 1 = 1.

(7)
Note that Z(v) and Z̃ have intersections on a certain sam-
ple in a particular view which makes them highly coupled.
Hence, it is impossible to optimize Z(v) nor Z̃ by adapting
traditional alternative optimization procedures. In the next
section, we propose to develop an effective Augmented La-
grangian MethOd for the fiNe-graineD (ALMOND) multi-
view optimization, which delicately passes around the issue
of inconsistency inherently and overcomes the difficulty of
optimizing these two variables.

Optimization
It’s easy to see that Z̃i is dependent on all {Z(v)}mv=1 and
Z(v) in the first term cannot be broken down to sample form
due to its multiplication with X(v). Inspired by Augmented
Lagrangian Method (ALM) (Andreani et al. 2008), we first
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convert it to the following equivalent problem by introduc-
ing an auxiliary variable J(v) for each view:

min
Z(v),J(v),W,S

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+

α

2

∥∥∥Z(v)
∥∥∥2
F
+

β

2

n∑
i=1

∥∥∥sTi −wT
i J̃i

∥∥∥2
2
+

γ

2
∥S∥2F

s.t. Z(v) ≥ 0,Z(v) = J(v)

S ≥ 0,wi ≥ 0,S1 = 1,wT
i 1 = 1,

(8)

Hence, we can deploy ALM to sort the above problem. The
corresponding augmented lagrangian function is:

min
Z(v),J(v),W,S,Y(v)

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+

α

2

∥∥∥Z(v)
∥∥∥2
F
+

ρ

2

m∑
v=1

∥Z(v) − J(v) +
1

ρ
Y(v)∥2F+

β

2

n∑
i=1

∥∥∥sTi −wT
i J̃i

∥∥∥2
2
+

γ

2
∥S∥2F

s.t. Z(v) ≥ 0,S ≥ 0,wi ≥ 0,S1 = 1,wT
i 1 = 1,

(9)

where ρ is penalty term and Y(v) is Lagrangian multiplier.

Update Z(v):
Fixing all the variables except Z(v), Eq. (6) can be written
as follow:

min
Z(v)

m∑
v=1

∥∥∥X(v) −X(v)Z(v)
∥∥∥2
F
+

α

2

∥∥∥Z(v)
∥∥∥2
F
+

ρ

2

m∑
v=1

∥Z(v) − J(v) +
1

ρ
Y(v)∥2F

s.t. Z(v) ≥ 0.

(10)

Taking the derivative of Eq. (10) and setting it to zero, we
have:

Z(v) =

(
2
(
X(v)

)T

X(v) + (α+ ρ) I

)−1

(
2
(
X(v)

)T

X(v) + ρJ(v) −Y(v))

) (11)

Update J(v):
In order to solve J(v), the Eq. (6) reduces to:

min
J(v)

ρ

2

m∑
v=1

∥Z(v) − J(v) +
1

ρ
Y(v)∥2F+

β

2

n∑
i=1

∥∥∥sTi −wT
i J̃i

∥∥∥2
2
,

(13)

Algorithm 1: Augmented Lagrangian MethOd fiNe-
graineD(ALMOND) Multi-view Clustering

Require: Multi-view data X(v). (v = 1,2,...,m) Parameter
α, β and γ.

Ensure: Clustering result.
1: repeat
2: Update Z(v) according to Eq. (11).
3: Update J(v) by solving Eq. (15).
4: Update W according to Eq. (18).
5: Update S according to Eq. (21).
6: Update Lagrangian multiplier Y(v) by:

Y
(v)
t+1 = Y

(v)
t + ρ

(
Z(v) − J(v)

)
(12)

7: until converge
8: Conduct the standard spectral clustering on the optimal

graph S to obtain the final clustering result.

which obviously can be rewritten in a sample-wise form as:

min
J(v)

ρ

2

n∑
i=1

∥Z̃i − J̃i +
1

ρ
Ỹi∥2F +

β

2

∥∥∥sTi −wT
i J̃i

∥∥∥2
2
.

(14)
We take the first order derivative of J̃i. Therefore we have:

J̃i =
(
βwiw

T + ρI
)−1

(
βwis

T
i + ρZ̃i + Ỹi

)
(15)

Update W:
As we optimize the weight matrix W, Eq. (6) becomes:

min
W

β

2

n∑
i=1

∥∥∥sTi −wT
i J̃i

∥∥∥2
2

s.t. wi ≥ 0,wT
i 1 = 1.

(16)

By letting Ki =
(
1sTi − J̃i

)
∈ Rm×n, for each sample,

Eq. (16) can be simplified as:

min
W

∥∥wT
i Ki

∥∥2
2

s.t. wi ≥ 0,wT
i 1 = 1.

(17)

We can solve Eq. (17) by taking its derivative with respect
to wi and setting it to zero:

wi =

(
KiK

T
i

)−1
1

1T
(
KiKT

i

)−1
1
. (18)

Update S:

min
S

β

2

n∑
i=1

∥∥∥sTi −wT
i J̃i

∥∥∥2
2
+

γ

2
∥S∥2F

s.t. S ≥ 0,S1 = 1,

(19)
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Method ACC NMI Purity F-score
AWP 61.82 65.77 61.82 49.71
CDG 47.88 55.70 49.15 37.61
mPAC 25.03 26.38 27.21 12.98
Co-reg 56.36 60.30 57.64 41.43

Co-train 53.94 57.90 55.52 38.68
FPMVS 44.24 49.76 46.67 30.45
LMVSC 61.45 61.96 68.24 40.57
MCGC 68.36 70.36 68.55 52.27
MLAN 67.27 68.92 67.27 48.33

MVCTM 70.30 71.54 70.30 56.71
MVGL 62.42 66.14 62.42 47.40
SwMC 58.36 64.82 71.58 46.90
CoMSC 63.58 65.17 70.36 44.35

COMVSC 71.27 71.70 71.33 55.01
Ours 71.52 72.37 71.64 56.40

Table 2: The clustering results on Yale.

Method ACC NMI Purity F-score
AWP 26.96 6.86 28.50 29.55
CDG 33.36 10.79 33.85 31.93
mPAC 37.45 18.21 38.17 31.63

CoMSC 60.37 33.66 61.34 44.42
COMVSC 34.12 7.38 34.67 28.24

Co-reg 35.08 16.14 40.54 28.42
Co-train 52.97 26.91 55.41 38.62
FPMVS 38.06 14.72 42.82 27.89
LMVSC 49.88 24.39 52.96 35.17
MCGC 42.40 21.96 44.80 33.27
MLAN 31.46 5.60 33.00 24.76

MVCTM 51.42 26.67 53.93 37.04
MVGL 28.11 6.41 28.32 30.04
SwMC 40.18 14.34 52.26 29.20
Ours 62.43 35.71 65.66 46.92

Table 3: Clustering performance on dataset Citeseer.

which can be reformulated as:

min
si

(β + γ) sis
T
i − 2βwT

i J̃isi

s.t. si ≥ 0, si1 = 1.
(20)

Thus, we can derive a close form of Eq. (20):

min
si

∥∥∥∥si − β

β + γ
wT

i J̃i

∥∥∥∥2
2

s.t. si ≥ 0, si1 = 1.

(21)

It is obvious that Eq. (21) can be tackled by the optimization
algorithm proposed in (Huang, Nie, and Huang 2015).

Experiment
In the following passage, we present empirical evidence
showcasing the efficacy and superiority of our proposed
methodology on a variety of benchmark datasets. This is
achieved through a comprehensive comparison with alter-
native state-of-the-art multi-view clustering techniques.

Method ACC NMI Purity F-score
AWP 30.76 14.27 38.96 28.17
CDG 43.94 21.02 46.42 35.86
mPAC 45.77 24.45 49.40 34.34
Co-reg 35.41 20.05 43.37 27.44

Co-train 50.95 31.32 56.45 36.64
FPMVS 64.84 40.23 64.84 45.09
LMVSC 43.40 25.33 49.14 31.59
MCGC 48.88 32.89 54.40 36.27
MLAN 32.05 3.91 32.20 29.64

MVCTM 39.00 23.82 46.34 31.18
MVGL 41.29 16.80 43.32 33.14
SwMC 49.97 26.92 66.87 38.47
CoMSC 64.16 46.49 68.67 49.46

COMVSC 34.70 13.79 38.19 29.49
Ours 73.00 53.93 73.31 59.81

Table 4: The clustering results on Cora.

Method ACC NMI Purity F-score
AWP 66.32 43.43 66.32 52.69
CDG 90.06 76.40 90.06 82.65
mPAC 89.74 78.34 89.74 83.51
Co-reg 71.44 51.12 71.44 57.26

Co-train 84.24 66.36 84.68 73.80
FPMVS 48.11 20.75 49.76 38.44
LMVSC 59.65 39.75 66.86 44.08
MCGC 87.54 68.85 87.54 77.56
MLAN 31.86 7.03 32.41 34.67

MVCTM 65.69 47.24 65.69 58.64
MVGL 70.58 58.87 70.58 66.38
SwMC 42.62 6 17.50 5 45.23 0 34.08 1
CoMSC 91.96 77.73 91.96 85.47

COMVSC 53.57 29.40 55.13 41.81
Ours 94.83 84.08 94.83 89.98

Table 5: Clustering performance on dataset BBC.

Method ACC NMI Purity F-score
AWP 74.50 86.02 76.25 65.18
CDG 57.80 73.12 63.42 31.59
mPAC 36.60 53.17 40.68 14.73
Co-reg 61.65 79.38 66.22 51.39

Co-train 61.90 79.23 65.60 50.88
FPMVS 55.45 73.72 59.27 41.02
LMVSC 65.65 80.37 75.00 49.64
MCGC 79.62 90.49 83.42 73.99
MLAN 77.00 87.22 82.75 56.25

MVCTM 63.25 82.47 66.50 57.90
MVGL 59.50 72.58 66.75 23.98
SwMC 61.90 78.73 68.83 49.39
CoMSC 70.15 83.95 76.85 58.98

COMVSC 78.83 89.10 83.42 71.52
Ours 81.75 91.57 85.68 77.10

Table 6: Clustering performance on dataset ORL.

Experiment Setup
As for benchmark datasets, we adopt Yale, ORL, bbc-
seg13of3, Cora, Cornell, and citeseer. Specifically, Yale1

1https://www.kaggle.com/datasets/olgabelitskaya/yale-face-
database
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(a) λ = 700 (b) λ = 800 (c) λ = 900

(d) λ = 1000 (e) λ = 1100 (f) λ = 1200

Figure 2: parameter analysis of our algorithm on ORL dataset.

database contains face images of 15 subjects with different
conditions images in raw pixel. The Olivetti Research Lab-
oratory ORL2 face data set consists of 400 face images in
40 different themes in total. For each subject, the images
are described in three features: facial expressions, facial de-
tails, and lighting. bbcseg13of3 3 is a subset of BBC data
set, which consists of documents from the BBC news web-
site corresponding to stories in five topical areas(business,
entertainment, politics, sport, tech). Cora4 data set consists
of 2708 scientific publications classified into one of seven
classes. Cornellis a subset of WebKB 5 , which is collected
by Cornell University, contains 195 web pages and a web
page is made of 2 views: content features and cites features.
citeseer6 is the citation network extracted from the CiteSeer
digital library, which consists of 3312 scientific publications
classified into one of six classes.

With the aim of conducting a thorough assessment, we

2https://www.kaggle.com/datasets/tavarez/the-orl-database-
for-training-and-testing

3http://mlg.ucd.ie/datasets/bbc.html
4https://relational.fit.cvut.cz/dataset/CORA
5https://starling.utdallas.edu/datasets/webkb/
6https://relational.fit.cvut.cz/dataset/CiteSeer

undertake a comparative analysis of our proposed method
against several competing approaches: Multiview Cluster-
ing via Adaptively Weighted Procrustes (AWP) (Nie, Tian,
and Li 2018), Multi-view Clustering via Cross-view Graph
Diffusion (CGD) (Tang et al. 2020), Multiple Partitions
Aligned Clustering (mPAC) (Kang et al. 2019), Multiview
Subspace Clustering via Co-training (CoMSC) (Liu et al.
2021), Consensus One-step Multi-view Subspace Cluster-
ing (COMVSC) (Zhang et al. 2020), Multi-view Spectral
clustering with Co-reg strategy (Co-reg) (Kumar and Daumé
2011), Multi-view Spectral Clustering with Co-train strat-
egy (Co-train) (Kumar and Daumé 2011), Fast parameter-
free multi-view subspace clustering (FPMVS) (Wang et al.
2021), (LMVSC) (), Multi-view Consensus Graph Clus-
tering(MCGC) (Zhan et al. 2018), Multi-View Cluster-
ing with Adaptive Neighbours (MLAN) (Nie, Cai, and
Li 2017), Multi-view Clustering on Topological Manifold
(MVCTM) (Huang et al. 2022a), Self-weighted Multiview
Clustering (SwMC) (Nie et al. 2017).

Results Analysis
Four criteria were adopted in our experiments to validate
the effectiveness and superiority of our proposed approach.
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Method ACC NMI Purity F-score
AWP 38.97 13.63 49.74 33.72
CDG 51.33 16.72 56.15 45.37
mPAC 50.77 24.67 56.92 44.86

Co-train 41.38 22.36 54.26 34.86
Co-reg 36.26 13.68 47.28 31.98
MLAN 59.28 20.94 59.28 49.84
SwMC 46.67 13.82 52.82 41.51
MCGC 36.41 22.60 53.85 33.79
LRMSC 34.77 8.51 43.95 28.99
SMVSC 48.67 20.61 53.90 42.14
FPMVS 35.90 17.67 53.33 33.20
LMVSC 56.72 30.05 66.62 50.31
CoMSC 63.59 38.75 63.59 57.05

COMVSC 50.51 13.42 53.38 43.90
Ours 56.62 44.64 73.74 52.70

Table 7: Clustering performance on dataset Cornell.

They are Normalized Mutual Information (NMI), Accuracy
(ACC), Purity, and F-Score. The experiment results are dis-
played in Tables.2-7. Note that, our method outperforms
other competitors in most cases. Especially on Cora dataset,
our approach has a significant advantage over the second-
best method by 13.79%, 16.00%, 6.76%, and 20.93%, with
respect to ACC, NMI, Purity, and F-Score. Meanwhile,
our method makes an outstanding improvement on Cite-
seer dataset as well, where the ACC, NMI, Purity, and F-
Score are improved by 3.41%, 6.09%, 7.04%, and 5.63%.
In BBC dataset, 3.12%, 8.17%, 3.12%, and 5.28% improve-
ments have been made with respect to ACC, NMI, Purity,
and F-Score. Whereas, in terms of F-Score on Yale dataset,
MVCTM has the best result, On Cornell dataset, LMVSC
and CoMSC slightly surpassed our method in terms of ACC
and F-Score respectively. Generally, the empirical study has
proven the advantage of our ALMOND for multi-view clus-
tering over other state-of-the-art.

Parameter Analysis

With the purpose of examining how different parameter
settings will affect the results of clustering, we change
the values of α, β and γ in the ranges [30, . . . , 80],[
7e−6, . . . , 4e−5

]
, and [700, . . . , 1200], respectively. Taking

the ORL dataset as an example, we can see the clustering
performance is quite stable with respect to different param-
eter settings within a certain range, as shown in Fig. (2). But
in our extensive experiments, we have also found that the
clustering performance is a little unstable when the param-
eters are chosen in a wider range. This instability is highly
likely brought by the Lagrangian parameter ρ. For simplic-
ity, we set it as 1 from the beginning and didn’t consider it as
a hyper-parameter to search in our experiment. But it grows
exponentially in every iteration according to the ALM prin-
ciple, i.e., ρ ← 1.2ρ. This is the possible reason why the
clustering performance is a little unstable with repect to a
broader parameter settings. In our future work, we will try
different schemes to inherently overcome this problem, such
as graph fusion based on adaptive learning method.
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Figure 3: Convergence curve of our algorithm.

Convergence Analysis
Due to the intrinsic non-convex nature of the optimization
involved in our proposed method, which necessitates the
utilization of an iterative algorithm for its resolution, it be-
comes imperative to meticulously ascertain the convergence
properties exhibited by our model. Therefore, this section
empirically showcases the convergence property and how
fast our algorithm can converge. As shown in Fig. (3), our
optimization framework can easily find a globally optimal
solution within several iterations, which has indicated the
convergence property of our method. However, we also need
to point out that at the early age of iterations, the loss of
our objective function is not very stable and does not drop
smoothly. An intuitive reason for this might be the conflict
between capturing the global information by subspace learn-
ing and exploiting the local structure by fine-grained weight-
ing strategy.

Conclusion
In this paper, we proposed an effective Augmented La-
grangian MethOd for fiNe-grainD (ALMOND) multi-view
optimization. It is distinctive from traditional ways of
weighing the importance of different views on the view
level and self-consistent. Based on the assumption that the
consistency among multi-view information mainly lay in
the generally same local structure, our strategy focuses on
the intersections of different views sample-wisely. Mean-
while, self-consistency is better maintained in our model,
where self-consistency is achieved by developing an ef-
fective ALMOND multi-view optimization. Therefore, we
overcame the problem of no interpretability that exists in
previous work. Furthermore, our method generates outstand-
ing results on several authoritative benchmark datasets and is
proven to outperform current state-of-the-art methods. In the
future, we will study the relationship and conflict between
global structure retrieval and local information preservation,
and how they will influence the convergence property of the
objective function.
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