RedCore: Relative Advantage Aware Cross-Modal Representation Learning for Missing Modalities with Imbalanced Missing Rates
DOI:
https://doi.org/10.1609/aaai.v38i13.29440Keywords:
ML: Multimodal Learning, ML: Applications, NLP: Language Grounding & Multi-modal NLPAbstract
Multimodal learning is susceptible to modality missing, which poses a major obstacle for its practical applications and, thus, invigorates increasing research interest. In this paper, we investigate two challenging problems: 1) when modality missing exists in the training data, how to exploit the incomplete samples while guaranteeing that they are properly supervised? 2) when the missing rates of different modalities vary, causing or exacerbating the imbalance among modalities, how to address the imbalance and ensure all modalities are well-trained. To tackle these two challenges, we first introduce the variational information bottleneck (VIB) method for the cross-modal representation learning of missing modalities, which capitalizes on the available modalities and the labels as supervision. Then, accounting for the imbalanced missing rates, we define relative advantage to quantify the advantage of each modality over others. Accordingly, a bi-level optimization problem is formulated to adaptively regulate the supervision of all modalities during training. As a whole, the proposed approach features Relative advantage aware Cross-modal representation learning (abbreviated as RedCore) for missing modalities with imbalanced missing rates. Extensive empirical results demonstrate that RedCore outperforms competing models in that it exhibits superior robustness against either large or imbalanced missing rates. The code is available at: https://github.com/sunjunaimer/RedCore.Downloads
Published
2024-03-24
How to Cite
Sun, J., Zhang, X., Han, S., Ruan, Y.-P., & Li, T. (2024). RedCore: Relative Advantage Aware Cross-Modal Representation Learning for Missing Modalities with Imbalanced Missing Rates. Proceedings of the AAAI Conference on Artificial Intelligence, 38(13), 15173-15182. https://doi.org/10.1609/aaai.v38i13.29440
Issue
Section
AAAI Technical Track on Machine Learning IV