
On the Role of Server Momentum in Federated Learning

Jianhui Sun1*, Xidong Wu2*, Heng Huang3, Aidong Zhang1

1Computer Science, University of Virginia, VA, USA
2Electrical and Computer Engineering, University of Pittsburgh, PA, USA

3Computer Science, University of Maryland College Park, MD, USA
js9gu@virginia.edu, xidong_wu@outlook.com, heng@umd.edu, aidong@virginia.edu

Abstract
Federated Averaging (FedAvg) is known to experience con-
vergence issues when encountering significant clients system
heterogeneity and data heterogeneity. Server momentum has
been proposed as an effective mitigation. However, existing
server momentum works are restrictive in the momentum for-
mulation, do not properly schedule hyperparameters and fo-
cus only on system homogeneous settings, which leaves the
role of server momentum still an under-explored problem. In
this paper, we propose a general framework for server mo-
mentum, that (a) covers a large class of momentum schemes
that are unexplored in federated learning (FL), (b) enables a
popular stagewise hyperparameter scheduler, (c) allows het-
erogeneous and asynchronous local computing. We provide
rigorous convergence analysis for the proposed framework.
To our best knowledge, this is the first work that thoroughly
analyzes the performances of server momentum with a hy-
perparameter scheduler and system heterogeneity. Extensive
experiments validate the effectiveness of our proposed frame-
work. Due to page limit, we leave all proofs to the full version
https://arxiv.org/abs/2312.12670.

1 Introduction
Federated Averaging (FedAvg) (McMahan et al. 2017), which
runs multiple epochs of Stochastic Gradient Descent (SGD)
locally in each client and then averages the local model up-
dates once in a while on the server, is probably the most
popular algorithm to solve many federated learning (FL)
problems, mainly due to its low communication cost and
appealing convergence property.

Though it has seen great empirical success, vanilla FedAvg
experiences an unstable and slow convergence when encoun-
tering client drift, i.e., the local client models move away
from globally optimal models due to client heterogeneity
(Karimireddy et al. 2020). On the server side, FedAvg is in
spirit similar to an SGD with a constant learning rate one and
updates the global model relying only on the averaged model
update from the current round, thus extremely vulnerable to
client drift. Note that in non-FL settings, SGD in its vanilla
form has long been replaced by some momentum scheme
(e.g. heavy ball momentum (SHB) and Nesterov’s acceler-
ated gradient (NAG)) in many tasks, as momentum schemes

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

achieve an impressive training time saving and generalization
performance boosting compared to competing optimizers
(Sutskever et al. 2013; Wilson et al. 2017), which promises a
great potential to apply momentum in FL settings as well. In-
corporating server momentum essentially integrates historical
aggregates into the current update, which could conceptually
stabilize the global update against dramatic local drifts.

Though various efforts have been made to understand the
role of server momentum in FL, e.g. (Hsu, Qi, and Brown
2019; Rothchild et al. 2020), it is still largely an under-
explored problem due to the following reasons:

(1) Lack of diversity in momentum schemes. Most existing
server momentum works only focus on SHB (e.g. FedAvgM
(Hsu, Qi, and Brown 2019)). It is unclear whether many mo-
mentum schemes that outperformed SHB in non-FL settings
can also perform better in FL, and there is no unified analysis
for momentum schemes other than SHB.

(2) No hyperparameter schedule. Properly scheduling hy-
perparameters is key to train deep models more efficiently
and an appropriate selection of server learning rate ηt is also
important in obtaining optimal convergence rate (Yang, Fang,
and Liu 2021). Existing works either still employ a constant
server learning rate one or consider a ηt schedule that is un-
commonly used in practice, e.g., polynomially decay (i.e.,
ηt ∝ 1

tα) (Khanduri et al. 2021). Moreover, it is known that
increasing momentum factor β is also a critical technique in
deep model training (Sutskever et al. 2013; Smith, Kinder-
mans, and Le 2018), while to our best knowledge, there is no
prior work considering time-varying β in FL.

(3) Ignoring client system heterogeneity. Existing works
make unrealistic assumptions on system homogeneity and
client synchrony, e.g., clients are sampled uniformly at ran-
dom, all participating clients synchronize at each round t, and
all clients run identical number of local epochs, none of which
holds in most cross device FL deployments (Kairouz et al.
2021). System heterogeneity (i.e., the violation of above as-
sumptions), alongside with data heterogeneity, is also a main
source client drift (Karimireddy et al. 2020). Thus, ignoring
it would provide an incomplete understanding of the role of
server momentum.

To address the above limitations, we propose a novel for-
mulation which we refer to as Federated General Momentum
(FedGM). FedGM includes the following hyperparameters,
learning rate η, momentum factor β, and instant discount fac-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15164

tor ν. With different specifications of (η, β, ν), FedGM sub-
sumes the FL version of many popular momentum schemes,
most of which have never been explored in FL yet.

We further incorporate a widely used hyperparameter
scheduler “constant and drop” (a.k.a. “step decay”) in
FedGM. We refer to this framework as multistage FedGM.
Specifically, with a prespecified set of hyperparameters
{ηs, βs, νs}Ss=1 and training lengths {Ts}Ss=1, the training
process is divided into S stages, and at stage s, FedGM with
{ηs, βs, νs} is applied for Ts rounds. Compared to many un-
realistic schedule in existing works, “constant and drop” is
the de-facto scheduler in most model training (Sutskever et al.
2013; He et al. 2016; Huang et al. 2017). Multistage FedGM
is extremely flexible, as it allows the momentum factor to
vary stagewise as well, and subsumes single-stage training as
a special case. We provide the convergence analysis of multi-
stage FedGM. Our theoretical results reveal why stagewise
training can provide empirically faster convergence.

Furthermore, in order to understand how server momentum
behaves in the presence of system heterogeneity, we propose
a framework that we refer to as Autonomous Multistage
FedGM, in which clients can do heterogeneous and asyn-
chronous computing. Specifically, we allow each client to (a)
update local models based on an asynchronous view of the
global model, (b) run a time-varying, client-dependent num-
ber of local epochs, and (c) participate at will. We provide
convergence analysis of Autonomous Multistage FedGM.
Autonomous Multistage FedGM is a more realistic character-
ization of real-world cross-device FL applications.

Finally, we conduct extensive experiments that validate,
(a) FedGM is a much more capable momentum scheme com-
pared with existing FedAvgM in both with and without sys-
tem heterogeneity settings; and (b) multistage hyperparame-
ter scheduler further improves FedGM effectively.

Our main contributions can be summarized as follow,

• We propose FedGM, which is a general framework for
server momentum and covers a large class of momentum
schemes that are unexplored in FL. We further propose
Multistage FedGM, which incorporates a popular hyperpa-
rameter scheduler to FedGM.

• We show the convergence of multistage FedGM in both
full and partial participation settings. We also empirically
validate the superiority of multistage FedGM. To our best
knowledge, this is the first work that provides convergence
analysis of server-side hyperparameter scheduler.

• We propose Autonomous Multistage FedGM, which re-
quires much less coordination between server and workers
than most existing algorithms, and theoretically analyze its
convergence. Our work is the first to study the interplay
between server momentum and system heterogeneity.

The rest of the paper is organized as follows. In Section
2, we formally introduce federated optimization. In Section
3, we introduce Federated General Momentum (FedGM),
followed by multistage FedGM and its convergence analysis
in Section 4. In Section 5, we introduce Autonomous multi-
stage FedGM and provide its convergence analysis. Section
6 presents the experimental results. Due to the page limit, we

Algorithm 1: FedOPT (Reddi et al. 2020): A Generic
Formulation of Federated Optimization

Input: Number of clients n, objective function
f(x) = 1

n

∑n
i=1 fi(x), initialization x0,

Number of communication rounds T , local
learning rate ηl, local number of updates K,
global hyperparameters H;

1 for t ∈ {1, ..., T} do
2 Randomly sample a subset St of clients
3 Server sends xt to subset St of clients
4 for each client i ∈ St do
5 ∆i

t = LocalOPT (i, ηl,K, xt)
6 end
7 Server aggregates ∆t =

1
|St|

∑
i∈St

∆i
t

8 xt+1 = ServerOPT (xt,∆t,H)
9 end

10 return xT

Algorithm 2: LocalOPT (i, ηl,K, xt)

Input: client index i, data distribution Di, local
learning rate ηl, local updating number K,
round t, global model xt;

1 Initialize xi
t,0 ← xt

2 for k ∈ {0, 1, ...,K − 1} do
3 Randomly sample a batch ξit,k from Di

4 Compute git,k = ∇fi(xi
t,k, ξ

i
t,k)

5 Update xi
t,k+1 = xi

t,k − ηlg
i
t,k

6 end
7 ∆i

t = xt − xi
t,K return ∆i

t

leave related work, all proofs, and additional experimental
results to extended version https://arxiv.org/abs/2312.12670.

2 Background: FedOPT and FedAvg
Many FL tasks can be formulated as solving the following
optimization problems,

min
x∈Rd

f(x) ≜
1

n

n∑
i=1

fi(x), where fi(x) = Eξ∼Di
fi(x, ξ).

(1)
where n is the total number of clients, x is the model param-
eter with d dimension. Each client i has a local data distribu-
tionDi and a local objective function fi(x) = Eξ∼Difi(x, ξ).
The global objective function is the averaged objective among
all clients. Di can be very different from Dj when i ̸= j.

FedAvg (McMahan et al. 2017) and its variants are a spe-
cial case of a more flexible formulation, FedOPT (Reddi et al.
2020), which is formalized in Algorithm 1. Suppose the total
number of rounds is T , and the global model parameter is
{xt}Tt=1. At each round t, the server randomly samples a sub-
set of clients St and sends the global model xt to them. Upon
receiving xt, each participating client would do LocalOPT
(Algorithm 2). Specifically, each client i would initialize their

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15165

local model at xt, run K steps of local SGD with local ηl
and updated locally to xi

t,K . The client then sends the local
model update ∆i

t = xt − xi
t,K back to the server. The server

aggregates by averaging, i.e. ∆t =
1

|St|
∑

i∈St
∆i

t, and then
triggers server-side optimization ServerOPT, which takes
xt, ∆t, and a hyperparameter set H as input, and outputs the
next round’s global model xt+1.

In FedAvg, ServerOPT is simply xt+1 = xt −∆t, which
is in spirit identical to SGD with a constant learning rate one
if viewing ∆t as a pseudo gradient.

3 FedGM: Federated Learning with General
Momentum Acceleration

Partially due to its equivalence of constant learning rate SGD,
FedAvg has two main limitations, (a) it is extremely vulner-
able to client drift, as FedAvg relies entirely on its current
aggregate ∆t and ignores historical directions; (b) FedAvg
may not be the best option in many applications, e.g. training
large-scale vision or language models (Devlin et al. 2018;
Dosovitskiy et al. 2021) where its counterpart SGD is known
to be inferior to momentum or adaptive optimizers in non-FL
settings (Wilson et al. 2017; Zhang et al. 2020).

Note that in FedOPT, ServerOPT could in principle be any
type of gradient-based optimizers. In non-FL settings, the
momentum scheme is known to not only exhibit convincing
acceleration in training, it has also achieved better general-
izability in many tasks than adaptive optimizers like Adam
(Wilson et al. 2017; Cutkosky and Mehta 2020), which pro-
vides a strong motivation to incorporate server momentum.

Moreover, server-side momentum integrates historical ag-
gregates into the current update and thus could potentially
make the global model more robust to drastic local drifts.

Existing server momentum works mostly focus on one
specific type of momentum, i.e. stochastic heavy ball momen-
tum (SHB) (Hsu, Qi, and Brown 2019; Rothchild et al. 2020;
Khanduri et al. 2021), while ignoring many other momentum
schemes that outperform SHB in many non-FL settings.

In order to systematically understand the role of server
momentum schemes in FL, we propose a new algorithm
which we refer to as Federated General Momentum (FedGM).
FedGM replaces the ServerOPT xt+1 = xt −∆t in FedAvg
with the following,

dt+1 = (1− β)∆t + βdt, ht+1 = (1− ν)∆t + νdt+1,

xt+1 = xt − ηht+1.
(2)

where the hyperparameter set H = {η, β, ν}. η is server
learning rate, β and ν are two hyperparameters which we call
momentum factor and instant discount factor.

By setting ν as 0, FedGM becomes FedAvg with two-sided
learning rates (Yang, Fang, and Liu 2021), i.e., choices of η
other than 1 is allowed, which we refer to as FedSGD.

By setting ν = 1, FedGM becomes FedAvgM (Hsu, Qi,
and Brown 2019) (or FedSHB), which essentially applies
server SHB, i.e. we update the model by a “momentum buffer”
dt+1. β controls how slowly the momentum buffer is updated.
FedGM could be interpreted as a ν-weighted average of the

Algorithm 3: Multistage FedGM
Input:
Initialization x0, number of rounds T , local learning
rate ηl, local updating number K;
Number of stages S, stage lengths {Ts}Ss=1;
Stagewise hyperparameters {ηs, βs, νs}Ss=1;

1 for s ∈ {1, ..., S} do
2 for t in stage s do
3 Randomly sample a subset St of clients
4 Server sends xt to subset St of clients
5 for each client i ∈ St do
6 ∆i

t = LocalOPT (i, ηl,K, xt)
7 end
8 Server aggregates ∆t =

1
|St|

∑
i∈St

∆i
t

9 dt+1 = (1− βs)∆t + βsdt
10 ht+1 = (1− νs)∆t + νsdt+1

11 Update xt+1 = xt − ηsht+1

12 end
13 end
14 return xT

FedAvgM update step and the plain FedAvg update step. ν is
thus referred to as instant discount factor.

FedGM leverages the general formulation of QHM (Ma
and Yarats 2019; Sun et al. 2021, 2022) and is much more
general than just FedAvg and FedAvgM. It subsumes many
other momentum variants. For example, if ν = β, FedGM
becomes a new algorithm which can be naturally referred to
as FedNAG, i.e. application of the popular optimizer Nes-
terov’s accelerated gradient (NAG) to FL. Specifically, we
update model by xt+1 = xt−η [(1− β)∆t + βdt+1], where
dt+1 is the momentum buffer. FedGM could further recover
the FL version of many other momentum schemes, e.g.,
SNV (Lessard, Recht, and Packard 2014), PID (An et al.
2018), ASGD (Kidambi et al. 2018), and Triple Momentum
(Van Scoy, Freeman, and Lynch 2018), with different η, β, ν.
Therefore, FedGM describes a family of momentum schemes,
most of which have never been studied in FL.

4 Multistage FedGM and Convergence
4.1 Proposed Algorithm: Multistage FedGM
One major limitation in FedGM (2) is that all server-side
hyperparameters are held constant, which are inconsistent
with common practice. Adaptively adjusting hyperparame-
ters throughout the training is key to the success of many
optimizers. Learning rate scheduling has been thoroughly
studied in non-FL settings, e.g., (Krizhevsky, Sutskever, and
Hinton 2012; He et al. 2016; Goyal et al. 2017; Smith 2017).
Scheduling other hyperparameters (e.g. momentum factor
and batch size) is also shown to be very effective in many
settings. For example, (Sutskever et al. 2013; Smith and Le
2018; Smith, Kindermans, and Le 2018) show a slowly in-
creasing schedule for the momentum factor β is crucial in
training deep models faster.

We focus on a simple yet effective hyperparameter sched-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15166

uler, “constant and drop” (a.k.a. “step decay”). In its non-FL
SGD version (a.k.a. multistage SGD), with a prespecified
set of learning rates {ηs}Ss=1 and training lengths {Ts}Ss=1
(measured by number of iterations/epochs), the training pro-
cess is divided into S stages, and SGD with ηs is applied for
Ts iterations/epochs at s-th stage, where {ηs}Ss=1 is usually
a non-increasing sequence 1. We concentrate on “constant
and drop” as it is the de-facto learning rate scheduler in
most large-scale neural networks (Krizhevsky, Sutskever, and
Hinton 2012; Sutskever et al. 2013; He et al. 2016; Huang
et al. 2017), and has been theoretically shown to achieve
near-optimal rate in non-FL settings (Ge et al. 2019; Wang,
Magnússon, and Johansson 2021).

The intuition behind “constant and drop” is straightfor-
ward: a large learning rate is held constant for a reasonably
long period to take advantage of faster convergence until it
saturates, and then the learning rate is dropped by a constant
factor for more refined training.

We extend “constant and drop” to FedGM in Algorithm
3, which we refer to as Multistage FedGM. In Multistage
FedGM (Algorithm 3), each stage has length Ts (T =∑S

s=1 Ts), and has its triplet of stagewise hyperparameters
{ηs, βs, νs}Ss=1. The convergence analysis in Sec 4.2 also
applies to single-stage FedGM by S = 1.

To our best knowledge, there is no prior work giving defini-
tive theoretical guarantee or empirical performances of any
hyperparameter schedule in FL, especially considering multi-
stage FedGM is an extremely flexible framework that allows
both learning rate and momentum factor to evolve.

4.2 Convergence Analysis of Multistage FedGM
We now analyze the convergence of Algorithm 3 under both
full and partial participation settings.

We aim to optimize objective (1). Each local loss fi (and
therefore f) may be general nonconvex function. We study
the general non-i.i.d. setting, i.e. Di ̸= Dj when i ̸= j. We
state the assumptions that are needed in the analysis.
Assumption 1 (Smoothness). Each local loss fi(x) is dif-
ferentiable and has L-Lipschitz continuous gradients, i.e.,
∀x, x′ ∈ Rd, we have ∥∇fi(x)−∇fi(x′)∥ ≤ L ∥x− x′∥.
And f∗ ≜ minx f(x) exists, i.e., f∗ > −∞.
Assumption 2 (Bounded Local Variance). ∀t, i, LocalOPT
can access an unbiased estimator git,k = ∇fi(xi

t,k, ξ
i
t,k) of

true gradient∇fi(xi
t,k), where git,k is the stochastic gradient

estimated with minibatch ξit,k. And each stochastic gradient
on the i-th client has a bounded local variance, i.e., we have

E
[∥∥∥git,k −∇fi(xi

t,k)
∥∥∥2] ≤ σ2

l .

Assumption 3 (Bounded Global Variance). The local loss
{fi(x)} across all clients have bounded global variance, i.e.,
∀x, we have 1

n

∑n
i=1 ∥∇fi(x)−∇f(x)∥

2 ≤ σ2
g .

Assumption 1-3 are standard assumptions in nonconvex
optimization and FL research, and have been universally
adopted in most existing works (Reddi, Kale, and Kumar

1The name “constant and drop” refers to learning rate is dropped
by some constant factor after each stage.

2018; Li et al. 2020b; Reddi et al. 2020; Yang, Fang, and
Liu 2021; Wang, Lin, and Chen 2022; Wu et al. 2023a,b).
σ2
g = 0 in Assumption 3 corresponds to the i.i.d. setting.

And we do not require the restrictive bounded gradient as-
sumption (Reddi, Kale, and Kumar 2018; Avdiukhin and
Kasiviswanathan 2021; Wang, Lin, and Chen 2022).

Recall T =
∑S

s=1 Ts is the number of rounds. Denote

the expected gradient square as {Gt ≜ E
[
∥∇f(xt)∥2

]
}t≤T .

Define the average expected gradient square at s-th stage
as Ḡs ≜ 1

Ts
ΣT1+···+Ts

t=T1+···+Ts−1+1Gt and the average expected

gradient square across S stages as Ḡ ≜ 1
S

∑S
s=1 Ḡs. Bound-

ing Ḡ generalizes from bounding 1
T

∑T
t=1 E

[
∥∇f(xt)∥2

]
in

single-stage to multistage setting.
To reflect the common hyperparameter scheduling prac-

tice that is adopted by existing works e.g. (Sutskever et al.
2013; Smith, Kindermans, and Le 2018; Liu, Gao, and Yin
2020), We request the stagewise hyperparameters fulfill the
following constraints,

ηS ≤ ηS−1 ≤ · · · ≤ η1 β1 ≤ β2 ≤ · · · ≤ βS < 1

W1 ≡
ηsβsνs
1− βs

and W2 ≡ Tsηs
(3)

where W1 and W2 are two constants. Constraint (3) essen-
tially requires learning rate to be non-increasing and momen-
tum factor to be non-decreasing at a similar rate, which is
consistent with common practice, e.g. for SHB and NAG,
(Sutskever et al. 2013; Smith, Kindermans, and Le 2018; Liu,
Gao, and Yin 2020) propose a scheduler for β to increase
and close to 1 for faster convergence. And it is also natural
for (3) to require Tsηs as a constant. As the learning rate
is decaying, more rounds in later stages are necessary for
sufficient refined training.

We now state the convergence guarantee of the multistage
training regime in FL framework.

Full Participation If all clients are required to participate
in each round, i.e. St = {1, 2, . . . , n}, we have,
Theorem 4.1. We optimize f(x) with Algorithm 3 (Full Par-
ticipation) under Assumptions 1-3. Denote η̄ ≜ 1

S

∑S
s=1 ηs

as the average server learning rate and Cη ≜ η1

ηS
. Under the

condition 2 ηl ≤ min

{
1

8KL ,
1

KSCη(Lη̄+1+L2W 2
1 Cη)

}
, we

would have:

Ḡ ≜
1

S

S∑
s=1

1

Ts

T0+···+Ts−1∑
t=T0+···+Ts−1

E
[
∥∇f(xt)∥2

]
≤ 64

17

f(x0)− f∗

SW2ηlK
+Ψlσ

2
l +Ψgσ

2
g

where Ψl ≜ 32
17

L2W 2
1 T η̄ηl

nW2
+ 32

17
Lη̄ηl

n + 32
17

ηl

n + 160
17 η2l L

2K,
and Ψg ≜ 960

17 η2l L
2K2.

2The condition could be fulfilled by typical value assignment,
and would recover the typical ηl ≤ min

{
1

8KL
, 1
KLη

}
constraint

in FedAvg analysis (Yang, Fang, and Liu 2021), by setting S = 1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15167

Corollary 4.2 (Convergence Rate of Multistage FedAvg).
Suppose νs = 0, i.e., the FedAvg algorithm that allows learn-
ing rate vary across S stages. By setting η̄ = Θ

(√
nK

)
and

ηl = Θ
(

1√
TK

)
, W2 = Θ

(
T
√
nK
S

)
, i.e. T η̄ equally divided

into S stages. W1 = 0 as νs = 0. Suppose T is sufficiently
large, i.e. T ≥ nK, we have aO

(
1√

TKn

)
convergence rate.

Remark 4.3 (Why Multistage Helps?). Corollary 4.2 indi-
cates multistage FedAvg recovers the best-known rate for
general FL nonconvex optimization approaches, e.g. SCAF-
FOLD (Karimireddy et al. 2020) and FedAdam (Reddi et al.
2020). Note single-stage FedAvg with two-sided learning
rates also achieves the same rate (Yang, Fang, and Liu 2021).
However, we do observe multistage FedAvg empirically con-
verges much better than single-stage. We can obtain insights
from Theorem 4.1 why multistage helps. We note that Ψl is
only related to average learning rate η̄ (instead of initial learn-
ing rate η1). At initial rounds, the first term with f(x0)− f∗

dominates, and thus we could select a relatively large η1 to
ensure a more dramatic decay of this term. At later rounds,
when f(xt)− f∗ plateaus, we could enable smaller learning
rate to control η̄. Thus, Theorem 4.1 indicates a less stringent
reliance on η1, which enables us to flexibly select suitable
η depending on which training stage we are in, that can still
guarantee convergence.
Corollary 4.4 (Convergence Rate of Multistage FedGM).
Suppose S > 1, i.e. the multistage regime, by setting
η̄ = Θ

(√
nK

)
, ηl = Θ

(
1√
TK

)
, W2 = Θ

(
T
√
nK
S

)
. Let

W 2
1 = O

(√
nK
S

)
3. When T ≥ Kn, we have a O

(
1√

TKn

)
convergence rate.

Remark 4.5 (Why Momentum Helps?). We attribute the em-
pirically superior performances of momentum to two reasons.
(a) When clients are dynamically heterogeneous, historical
gradient information has regularization effect to avoid the
search direction from going wild. (b) Server learning rate
η acts like a multiplier to client learning rate ηl in FedAvg,
i.e. η > 1 effectively enhances the reliance on current round
gradient. Due to the same reason as in (a), such reliance can
harm convergence. In contrast, in FedGM, β and ν act as
a buffer that could to some extent absorb the impact from
a large η. We empirically observe in Appendix, with same
ηl, FedGM could sustain a much larger η, while FedAvg
diverges very easily with a moderately large η.

Partial Participation Full participation rarely holds in re-
ality, thus we further analyze multistage FedGM in partial
participation setting 4.
Theorem 4.6. We optimize f(x) with Algorithm 3 (Partial
Participation) under Assumptions 1-3. Denote η̄ and Cη

3It holds by setting an infinitesimal β or ν at early stages when

η is large, but β or ν can go to 1 when η is reduced to o
(4√

nK√
S

)
.

4In each round t, the server samples a subset of clients St (sup-
pose |St| = m < n) uniformly at random without replacement, i.e.
P {i ∈ St} = m

n
and P {i, j ∈ St} = m(m−1)

n(n−1)
.

as in Theorem 4.1. Under the condition ηl ≤ 1
8KL , and

ηl
(
Cη + Lη̄Cη + L2W 2

1Cη

)
SK ≤ min

{
m(n−1)
n(m−1) ,

17m
282

}
,

we would have:

Ḡ ≤ 64

17

f(z0)− f∗

SW2ηlK
+Ψlσ

2
l +Ψgσ

2
g

where Ψl ≜
ηl

mΦ+
15(n−m)K2L3η3

l

m(n−1) Φ+ 160
17 η2l L

2K, Ψg ≜
90(n−m)K3L3η3

l

m(n−1) Φ + 3ηl(n−m)K
m(n−1) Φ + 960

17 η2l L
2K2, and Φ ≜

32T η̄+32LT η̂2+32L2W 2
1 T η̄

17W2
.

Corollary 4.7 (Convergence Rate of Multistage FedGM).
Suppose S > 1, i.e. the multistage regime, by setting
η̄ = Θ

(√
mK

)
, η̂2 = Θ(mK), ηl = Θ

(
1√
TK

)
, W2 =

Θ
(

T
√
mK
S

)
and W 2

1 = O
(√

mK
)

, we have convergence

rate as O
(√

K
Tm

)
.

Remark 4.8. O
(√

K
Tm

)
recovers the best known conver-

gence rate for FL nonconvex optimization (Yang, Fang, and
Liu 2021). Similar to Remark 4.3, Theorem 4.6 shows an
reliance on average learning rate, which explains why multi-

stage scheme helps empirically.O
(√

K
Tm

)
indicates a slow-

down effect from more local computation, which is supported
by some existing works (Li et al. 2020b), while others ob-
serve a different effect of K (Lin et al. 2020). The exact
impact of K on convergence warrants further investigation.

5 Momentum with System Heterogeneity
5.1 Autonomous Multistage FedGM
For a simplified abstraction of real world settings, most FL
algorithms make the assumption that, all clients synchro-
nize with the same global model and they conduct identical
number of local updates at any given round. Though the
assumption has been adopted in most existing works (McMa-
han et al. 2017; Hsu, Qi, and Brown 2019; Li et al. 2020a;
Karimireddy et al. 2020; Reddi et al. 2020; Wang, Lin, and
Chen 2022), it rarely holds in reality.

In light of the limitations of existing works, we propose a
general framework called Autonomous Multistage FedGM
that enables the following three features, i.e. heterogeneous
local computing, asynchronous aggregation, and flexible
client participation, which is formalized in Algorithm 4.

Autonomous Multistage FedGM could effectively mitigate
straggler effect and poor convergence issue in highly hetero-
geneous cross-device deployments. We leave a more detailed
discussion of Algorithm 4 to Appendix due to space limit.

Specifically, in Autonomous Multistage FedGM, the client
decides when to participate in the training, and idling between
rounds or even completely unavailable are both allowed.
Once it decides to participate at round t, it retrieves current
global model xµ from the server and conduct Kt,i local steps
to update to xi

µ,Kt,i
. Note in vanilla FedAvg, Kt,i = K for

any i and t. In contrast, we allow Kt,i to be time-varying and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15168

Algorithm 4: Autonomous Multistage FedGM
Input: Same as Algorithm 3

1 for s ∈ {1, ..., S} do
2 for t in stage s do
3 At Each Client (Concurrently)
4 Once decided to participate in the training,

retrieve xµ from the server and its timestamp,
set xi

µ,0 = xµ.
5 Select a number of local steps Kt,i, which is

time-varying and device-dependent.
6 ∆i

µ = LocalOPT (i, ηl,Kt,i, xµ)

7 Normalize and send ∆i
µ =

∆i
µ

Kt,i

8 At Server (Concurrently)
9 Collect m local updates {∆i

t−τt,i , i ∈ St}
returned from the clients to form set St,
where τt,i is the random delay of the client
i’s local update, i ∈ St

10 Aggregate ∆t =
1

|St|
∑

i∈St
∆i

t−τt,i

11 dt+1 = (1− βs)∆t + βsdt
12 ht+1 = (1− νs)∆t + νsdt+1

13 Update xt+1 = xt − ηsht+1

14 end
15 end
16 return xT

device-dependent. The client then normalizes the model up-
date by Kt,i to avoid model biased towards clients with more
local updates. Concurrently, the server collects the model
updates from the clients. As every client may participate
in training at a different round, the collected model update
∆i

t−τt,i may be from a historic timestamp, i.e. τt,i away from
current time t. The server triggers global update whenever it
collects m model updates and we denote the set of m respon-
sive clients as St. The global update is same as multistage
FedGM (i.e. Lines 11-13). Note that server optimization is
concurrent with clients, i.e., the global update happens when-
ever m model updates are collected, regardless of whether
there are still some clients conducting local computation, thus
ensuring there is no straggler.

Autonomous multistage FedGM, i.e. Algorithm 4, will
recover multistage FedGM, i.e. Algorithm 3, if we set
Kt,i = K and τt,i = 0 for ∀t, i. Please note that varying
Kt,i and nonzero τt,i bring nontrivial extra complexity to the
theoretical analysis as can be seen in our proof.

5.2 Convergence Analysis
We state the convergence guarantee of autonomous multistage
FedGM as follows,

Theorem 5.1. We optimize f(x) with Algorithm 4 under
assumptions 1-3. Suppose the maximum delay is bounded, i.e.
τt,i ≤ τ <∞ for any i ∈ St and t ∈ {0, 1, . . . , T − 1}. Un-

der the condition ηl ≤ min

{
1

8Kt,maxL
,
√

1
120L2CητK2

t,max

}
,

where Kt,max = maxi∈St
Kt,i. And further assume each

0 100 200 300 400 500

Rounds

0.2

0.4

0.6

0.8

1.0

T
r
a
in

 A
c
c
u

r
a
c
y

FedSGD

FedAvgM

FedGM

0 100 200 300 400 500

Rounds

0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t

A
c
c
u

r
a
c
y

FedSGD

FedAvgM

FedGM

0 100 200 300 400 500

Rounds

0.2

0.4

0.6

0.8

1.0

T
e
s
t

A
c
c
u

r
a
c
y

Autonomous FedSGD

Autonomous FedGM

FedGM (Ideal)

0 100 200 300 400 500

Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
e
s
t

A
c
c
u

r
a
c
y

Autonomous FedSGD

Autonomous FedGM

FedGM (Ideal)

Figure 1: 1(a) Training and 1(b) Testing Curves for
FedGM (ResNet on CIFAR-10). FedGM outperforms Fe-
dAvg/FedAvgM. 1(c) Training and 1(d) Testing for Au-
tonomous FedGM (ResNet on CIFAR-10).

client is included in St with probability m
n uniformly and in-

dependently. With necessary abbreviation for ease of notation
5, we would have:

Ḡ ≤ 4 (f(x0)− f∗)

SW2ηl
+Φlσ

2
l +Φgσ

2
g

Φl ≜ 20η2
l L

2T η̄
W2

ϕ1 +
4L2τ2η̂3η2

l T
mW2

ϕ3 +
2L2W 2

1 η̄ηlT
mW2

ϕ3 +
2η̄ηlT
mW2

ϕ3 +
2Lη̂2ηl

mW2
ϕ3, and Φg ≜ 120η2

l L
2T η̄ϕ2

W2
.

Corollary 5.2 (Convergence Rate). Suppose an identical
K for all t and i. By appropriately setting η̄, ηl, W1, W2,
we have the convergence rate as, O

(
1√

mKT

)
+O

(
τ2

T

)
+

O
(

K2

T

)
.

Remark 5.3. Corollary 5.2 indicates τ brings a slowdown
in convergence. Fortunately, with a sufficiently large T (e.g.

T ≥ mK5) and a manageable τ (e.g. τ ≤ T
1
4

(mK)
1
4

), au-

tonomous multistage FedGM obtains a O
(

1√
mKT

)
rate.

Note that we make an additional assumption that each client
is included in St with probability m

n uniformly and inde-
pendently, which is necessary as the following Corollary
5.4 indicates if without such assumption, the rate has a non-

5We denote η̄ ≜ 1
S

∑S−1
s=0 ηs (average server learning rate),

η̂2 ≜ 1
S

∑S−1
s=0 η2

s , η̂3 ≜ 1
S

∑S−1
s=0 η3

s , 1
Kt

= 1
m

∑
i∈St

1
Kt,i

,

K̄t ≜ 1
m

∑
i∈St

Kt,i, K̂2
t ≜ 1

m

∑
i∈St

K2
t,i, ϕ1 ≜ 1

T

∑T−1
t=0 K̄t,

ϕ2 ≜ 1
T

∑T−1
t=0 K̂2

t , and ϕ3 ≜ 1
T

∑T−1
t=0

1
Kt

, for ease of notation.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15169

convergent O
(
σ2
g

)
term that we cannot avoid (the lower

bound is Ω
(
σ2
g

)
).

Corollary 5.4 (Convergence Rate w/o Uniform Sampling
Assumption). Suppose an identical K for all t and i. By
appropriately setting η̄, ηl, W1, W2, we have the convergence
rate as, O

(
1√

mKT

)
+O

(
τ2

T

)
+O

(
K2

T

)
+O

(
σ2
g

)
, and

the non-vanishing O
(
σ2
g

)
is unavoidable. 6

6 Experimental Results
In this section, we present empirical evidence to verify
our theoretical findings. We train ResNet (He et al. 2016)
and VGG (Simonyan and Zisserman 2015) on CIFAR10
(Krizhevsky 2009). To simulate data heterogeneity in CIFAR-
10, we impose label imbalance across clients, i.e. each client
is allocated a proportion of the samples of each label accord-
ing to a Dirichlet distribution (Hsu, Qi, and Brown 2019;
Yurochkin et al. 2019). The concentration parameter α > 0
indicates the level of non-i.i.d., with smaller α implies higher
heterogeneity, and α→∞ implies i.i.d. setting. Unless speci-
fied otherwise, we have 100 clients in all experiments, and the
partial participation ratio is 0.05, i.e., 5 out of 100 clients are
picked in each round, non-i.i.d. is α = 0.5, and local epoch is
3. We defer many more results and details of hyperparameter
settings to Appendix.

6.1 Results on FedGM
Figure 1 shows the results for ResNet on CIFAR-10 with
FedGM, FedAvgM, and FedAvg. We perform grid search
over η ∈ {0.5, 1.0, 1.5, . . . , 5.0}, β ∈ {0.7, 0.9, 0.95}, and
ν ∈ {0.7, 0.9, 0.95}. We report their respective best results in
Figure 1. We observe that though FedAvgM converges faster
than FedAvg, it is only marginally better in terms of testing.
FedGM, in contrast, outperforms FedAvgM and FedAvg in
both measures. Therefore, a general momentum, instead of
only SHB, is critical empirically. We analyze possible reasons
and leave more results with VGG and different heterogeneity
levels α to Appendix.

6.2 Results on Multistage FedGM
Figure 2 shows the results for ResNet on CIFAR-10 with
multistage vs. single-stage FedGM. The two black vertical
lines at round 143 and 429 mark the end of 1st/2nd stage. For
multistage FedGM, (η1 = 2.0, η2 = 1.0, η3 = 0.5), the β
also changes according to Eq. 3. From Figure 2, we observe
multistage FedGM is better than single-stage FedGM, no
matter what constant η it takes. Specifically, at first stage,
η1 = 2.0 makes the training curve fluctuate dramatically, but
later into 2nd/3rd stage, the training stabilizes with smaller η2
and η3. Multistage FedGM achieves a balance between early
exploration and late exploitation. Multistage is also superior
to its counterpart in testing. We leave more experiments to
Appendix.

6We informally state Corollary 5.4 due to page limit, please refer
to Appendix for a formal statement.

0 200 400 600 800 1000
Rounds

0.2

0.4

0.6

0.8

1.0

T
r
a
in

 A
c
c
u

r
a
c
y

Multistage LR (2.0, 1.0, 0.5)

Single-stage LR 2.0

Single-stage LR 1.0

Single-stage LR 0.5

0 200 400 600 800 1000

Rounds

0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t

A
c
c
u

r
a
c
y

Multistage LR (2.0, 1.0, 0.5)

Single-stage LR 2.0

Single-stage LR 1.0

Single-stage LR 0.5

Figure 2: 2(a) Training and 2(b) Testing Curves for Multi-
stage FedGM vs. Single-stage FedGM.

6.3 Results on Autonomous FedGM
Figure 1 shows the results for ResNet on CIFAR-10 with
Autonomous FedGM (& FedAvg). Please refer to Appendix
for detailed settings. We perform a grid search as in Sec-
tion 6.1. We report their respective best curves. We plot an
ideal FedGM (i.e. synchronous and identical local epochs)
as reference line. We could observe Autonomous FedGM
outperforms Autonomous FedAvg with system heterogeneity.
Though Autonomous FedGM suffers a slowdown compared
to the ideal FedGM, it is within a small margin, which sup-
ports our theory in Corollary 5.2 and validates the effective-
ness of Autonomous FedGM. We leave more experiments to
Appendix.

7 Conclusion
This paper systematically studied how the server momentum
could help alleviate client drift that arises from both data het-
erogeneity and system heterogeneity. We demonstrated the
critical role of momentum schemes and proper hyperparam-
eter schedule by providing a rigorous convergence analysis
and extensive empirical evidence, which pave a way for more
widely and disciplined use of server momentum in the feder-
ated learning research community.

Acknowledgments
This work was partially supported by NSF 2217071, 2213700,
2106913, 2008208, 1955151 at UVA. This work was par-
tially supported by NSF IIS 2347592, 2348169, 2348159,
2347604, CNS 2347617, CCF 2348306, DBI 2405416 at Pitt
and UMD.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15170

References
An, W.; Wang, H.; Sun, Q.; Xu, J.; Dai, Q.; and Zhang, L.
2018. A PID Controller Approach for Stochastic Optimiza-
tion of Deep Networks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8522–8531.
Avdiukhin, D.; and Kasiviswanathan, S. 2021. Federated
Learning under Arbitrary Communication Patterns. In Meila,
M.; and Zhang, T., eds., Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, 425–435. PMLR.
Cutkosky, A.; and Mehta, H. 2020. Momentum Improves
Normalized SGD. In International Conference on Machine
Learning.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learn-
ing Representations.
Ge, R.; Kakade, S. M.; Kidambi, R.; and Netrapalli, P. 2019.
The Step Decay Schedule: A near Optimal, Geometrically
Decaying Learning Rate Procedure for Least Squares. Red
Hook, NY, USA: Curran Associates Inc.
Goyal, P.; Dollár, P.; Girshick, R. B.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He, K.
2017. Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour. CoRR, abs/1706.02677.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 770–778.
Hsu, T.-M. H.; Qi; and Brown, M. 2019. Measuring the Ef-
fects of Non-Identical Data Distribution for Federated Visual
Classification. ArXiv, abs/1909.06335.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely Connected Convolutional Networks.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2261–2269.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K. A.; Charles, Z.; Cormode,
G.; Cummings, R.; D’Oliveira, R. G. L.; Eichner, H.; Rouay-
heb, S. E.; Evans, D.; Gardner, J.; Garrett, Z.; Gascón, A.;
Ghazi, B.; Gibbons, P. B.; Gruteser, M.; Harchaoui, Z.; He,
C.; He, L.; Huo, Z.; Hutchinson, B.; Hsu, J.; Jaggi, M.; Ja-
vidi, T.; Joshi, G.; Khodak, M.; Konecný, J.; Korolova, A.;
Koushanfar, F.; Koyejo, S.; Lepoint, T.; Liu, Y.; Mittal, P.;
Mohri, M.; Nock, R.; Özgür, A.; Pagh, R.; Qi, H.; Ramage,
D.; Raskar, R.; Raykova, M.; Song, D.; Song, W.; Stich, S. U.;
Sun, Z.; Suresh, A. T.; Tramèr, F.; Vepakomma, P.; Wang, J.;
Xiong, L.; Xu, Z.; Yang, Q.; Yu, F. X.; Yu, H.; and Zhao, S.

2021. Advances and Open Problems in Federated Learning.
Found. Trends Mach. Learn., 14(1-2): 1–210.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich,
S.; and Suresh, A. T. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference
on Machine Learning, 5132–5143. PMLR.
Khanduri, P.; Sharma, P.; Yang, H.; Hong, M.; Liu, J.; Ra-
jawat, K.; and Varshney, P. 2021. Stem: A stochastic two-
sided momentum algorithm achieving near-optimal sample
and communication complexities for federated learning. Ad-
vances in Neural Information Processing Systems, 34.
Kidambi, R.; Netrapalli, P.; Jain, P.; and Kakade, S. M. 2018.
On the insufficiency of existing momentum schemes for
Stochastic Optimization. CoRR, abs/1803.05591.
Krizhevsky, A. 2009. Learning Multiple Layers of Features
from Tiny Images.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. 1097–1105.
Lessard, L.; Recht, B.; and Packard, A. 2014. Analysis and
Design of Optimization Algorithms via Integral Quadratic
Constraints. SIAM Journal on Optimization, 26.
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020a. Federated Optimization in Hetero-
geneous Networks. In Dhillon, I.; Papailiopoulos, D.; and
Sze, V., eds., Proceedings of Machine Learning and Systems,
volume 2, 429–450.
Li, X.; Huang, K.; Yang, W.; Wang, S.; and Zhang, Z. 2020b.
On the Convergence of FedAvg on Non-IID Data. In Inter-
national Conference on Learning Representations.
Lin, T.; Stich, S. U.; Patel, K. K.; and Jaggi, M. 2020. Don’t
Use Large Mini-batches, Use Local SGD. In ICLR - Interna-
tional Conference on Learning Representations.
Liu, Y.; Gao, Y.; and Yin, W. 2020. An Improved
Analysis of Stochastic Gradient Descent with Momentum.
arXiv:2007.07989.
Ma, J.; and Yarats, D. 2019. Quasi-hyperbolic momentum
and Adam for deep learning. In International Conference on
Learning Representations.
McMahan, H. B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In International
Conference on Artificial Intelligence and Statistics.
Reddi, S.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.;
Konečnỳ, J.; Kumar, S.; and McMahan, H. B. 2020. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295.
Reddi, S. J.; Kale, S.; and Kumar, S. 2018. On the Conver-
gence of Adam and Beyond. In International Conference on
Learning Representations.
Rothchild, D.; Panda, A.; Ullah, E.; Ivkin, N.; Stoica, I.;
Braverman, V.; Gonzalez, J.; and Arora, R. 2020. FetchSGD:
Communication-Efficient Federated Learning with Sketch-
ing. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15171

Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.
Smith, L. N. 2017. Cyclical Learning Rates for Training
Neural Networks. In 2017 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), 464–472.
Smith, S.; and Le, Q. V. 2018. A Bayesian Perspective on
Generalization and Stochastic Gradient Descent.
Smith, S. L.; Kindermans, P.-J.; and Le, Q. V. 2018. Don’t
Decay the Learning Rate, Increase the Batch Size. In Inter-
national Conference on Learning Representations.
Sun, J.; Huai, M.; Jha, K.; and Zhang, A. 2022. Demystify
Hyperparameters for Stochastic Optimization with Trans-
ferable Representations. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Min-
ing, KDD ’22, 1706–1716. New York, NY, USA: Association
for Computing Machinery. ISBN 9781450393850.
Sun, J.; Yang, Y.; Xun, G.; and Zhang, A. 2021. A Stage-
wise Hyperparameter Scheduler to Improve Generalization.
In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, KDD ’21, 1530–1540.
New York, NY, USA: Association for Computing Machinery.
ISBN 9781450383325.
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013.
On the Importance of Initialization and Momentum in Deep
Learning. In Proceedings of the 30th International Confer-
ence on International Conference on Machine Learning -
Volume 28, ICML’13, III–1139–III–1147.
Van Scoy, B.; Freeman, R. A.; and Lynch, K. M. 2018. The
Fastest Known Globally Convergent First-Order Method for
Minimizing Strongly Convex Functions. IEEE Control Sys-
tems Letters, 2(1): 49–54.
Wang, X.; Magnússon, S.; and Johansson, M. 2021. On the
Convergence of Step Decay Step-Size for Stochastic Opti-
mization. In Beygelzimer, A.; Dauphin, Y.; Liang, P.; and
Vaughan, J. W., eds., Advances in Neural Information Pro-
cessing Systems.
Wang, Y.; Lin, L.; and Chen, J. 2022. Communication-
Efficient Adaptive Federated Learning. In Proceedings of the
39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, 22802–
22838. PMLR.
Wilson, A. C.; Roelofs, R.; Stern, M.; Srebro, N.; and Recht,
B. 2017. The Marginal Value of Adaptive Gradient Methods
in Machine Learning. In Advances in Neural Information
Processing Systems 30, 4148–4158. Curran Associates, Inc.
Wu, X.; Sun, J.; Hu, Z.; Li, J.; Zhang, A.; and Huang, H.
2023a. Federated Conditional Stochastic Optimization. In
Thirty-seventh Conference on Neural Information Processing
Systems.
Wu, X.; Sun, J.; Hu, Z.; Zhang, A.; and Huang, H. 2023b.
Solving a Class of Non-Convex Minimax Optimization in
Federated Learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yang, H.; Fang, M.; and Liu, J. 2021. Achieving Linear
Speedup with Partial Worker Participation in Non-IID Fed-
erated Learning. In International Conference on Learning
Representations.
Yurochkin, M.; Agarwal, M.; Ghosh, S. S.; Greenewald,
K. H.; Hoang, T. N.; and Khazaeni, Y. 2019. Bayesian
Nonparametric Federated Learning of Neural Networks. In
International Conference on Machine Learning.
Zhang, J.; Karimireddy, S. P.; Veit, A.; Kim, S.; Reddi, S.;
Kumar, S.; and Sra, S. 2020. Why are Adaptive Methods
Good for Attention Models? In Larochelle, H.; Ranzato, M.;
Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in Neural
Information Processing Systems, volume 33, 15383–15393.
Curran Associates, Inc.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15172

