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Abstract

Offline reinforcement learning (RL) aims to learn an effective
policy from a pre-collected dataset. Most existing works are
to develop sophisticated learning algorithms, with less em-
phasis on improving the data collection process. Moreover,
it is even challenging to extend the single-task setting and
collect a task-agnostic dataset that allows an agent to per-
form multiple downstream tasks. In this paper, we propose
a Curiosity-driven Unsupervised Data Collection (CUDC)
method to expand feature space using adaptive temporal dis-
tances for task-agnostic data collection in multi-task offline
RL. To achieve this, CUDC estimates the probability of the k-
step future states being reachable from the current states, and
adapts how many steps into the future that the dynamics model
should predict. With this adaptive reachability mechanism in
place, the feature representation can be diversified, and the
agent can navigate itself to collect higher-quality data with
curiosity. Empirically, CUDC surpasses existing unsupervised
methods in efficiency and learning performance in various
downstream offline RL tasks of the DeepMind control suite.

Introduction
Deep reinforcement learning has achieved remarkable break-
throughs in various fields, such as games, robotics, and nav-
igation in virtual environments (Kiran et al. 2021; Singh,
Kumar, and Singh 2022; Sun, Qian, and Miao 2022a). How-
ever, real-time interaction with the environment under online
RL settings may not always be feasible due to cost, safety, or
ethical concerns (Kiran et al. 2021; Singh, Kumar, and Singh
2022). As a result, offline RL has gained popularity in recent
years to cope with limited interactions, where agents learn a
policy exclusively from a previously-collected dataset. The
popular offline RL benchmarks such as D4RL (Fu et al. 2020)
and RL Unplugged (Gulcehre et al. 2020) combine data from
supervised online RL training runs with expert demonstra-
tions, exploratory agents, and hand-coded controllers. How-
ever, collecting expert data can be time-consuming and ex-
pensive, and it may not always be available. In such cases,
unsupervised methods, such as those described by ExORL
(Yarats et al. 2022), can be used to collect data as a distinct
contribution for offline RL (Prudencio, Maximo, and Colom-
bini 2022). These methods aim to explore the environment
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and learn from the intrinsic rewards generated by the agent,
without the need for supervision, to collect diverse data.

Despite the popularity of offline RL, existing works have
mainly focused on model-centric practices, continually de-
veloping new algorithms (Kumar et al. 2020, 2022). These
algorithms are typically evaluated on the same task for which
the dataset was collected, and the learned policy can be
pessimistic in out-of-distribution states and actions, lead-
ing to poor generalization in unseen downstream tasks. Re-
cently, data-centric approaches have become emerging, em-
phasizing the importance of training data quality over al-
gorithmic advances (Motamedi, Sakharnykh, and Kaldewey
2021; Patel et al. 2022). To improve training data quality,
researchers have explored selecting the most critical samples
or re-weighting (Wu et al. 2021) all samples in the offline
RL algorithms. However, these methods are restricted to a
single training data distribution and cannot be applied to
multi-task settings with distribution shifts. To address this
challenge, we propose to improve the data collection process
directly through feature space expansion, where the distribu-
tions naturally span during diverse exploration. This approach
is applicable to the multi-task setting, enabling us to obtain
more diverse and high-quality data for offline RL.

Upon analyzing the current challenges faced in offline RL,
the benchmark ExORL (Yarats et al. 2022) has shown that
unsupervised RL methods are more effective than supervised
methods in collecting datasets that allow the vanilla off-policy
RL algorithm to learn and acquire different skills as an offline
RL agent. However, we discovered that all these methods rely
on a fixed temporal distance k between current and future
states during data collection. This practice is sub-optimal and
restricts the diversity of the learned feature representation,
as illustrated in Figure 1 (left). To address this limitation,
we propose to adapt the temporal distance as a simple yet
effective way to enhance the feature representation, as it has
a direct connection with the feature space.

To facilitate adaptation, exploiting reachability to more
distant future states is desired. Reachability-based methods
in RL aim to learn safe and efficient policies by considering
reachable states under the current policy or value function
(Savinov et al. 2019; Péré et al. 2018; Ivanovic et al. 2019;
Yu et al. 2022), but these approaches are not directly applica-
ble. For example, Savinov et al. (2019) only consider binary
reachability, and extensively compares to stored embeddings
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Figure 1: Curiosity-driven Unsupervised Data Collection (CUDC): The left diagram depicts the relationship between fixing
(existing works) and adapting (CUDC) temporal distance in feature space. The middle diagram outlines the CUDC framework,
measuring reachability between k-step future and current states using the agent’s internal belief. It generates mixed intrinsic
rewards for diverse exploration and curiosity weight to adapt temporal distance, regulating the RL backbone. This process
continues until the capacity is reached. The right diagram illustrates how the agent assesses and updates its internal belief
regarding the probability of k-step future states being reachable from current states.

in memory. Additionally, the reachability in goal space ex-
ploration (Péré et al. 2018) often requires kernel density
estimation, which can increase computational cost substan-
tially. Different from these, we propose a Curiosity-driven
Unsupervised Data Collection (CUDC) method with a novel
reachability module. Inspired by the fact that human curiosity
can foster learning and is driven by novel knowledge beyond
one’s perception (Markey and Loewenstein 2014; Sun, Qian,
and Miao 2022b; Sun and Miao 2022), CUDC facilitates
data collection curiously without any task-specific reward. In
particular, the reachability module estimates the probability
of a k-step future state being reachable from the current state,
with no episodic memory or feature space density model-
ing required. This module enables the agent to adaptively
determine how many steps into the future that the dynam-
ics model should predict, allowing for an enhanced feature
representation to be learned. Compared with the existing un-
supervised methods, it refrains from learning a fixed feature
space. With this enhanced representation, CUDC utilizes a
mixed intrinsic reward that encourages the agent to curiously
explore meaningful state-action spaces and under-learned
states. As a result, the collected dataset can lead to improved
computational efficiency, sample efficiency, and learning per-
formances in various downstream offline RL tasks.

Our contributions can be summarized as follows. 1) We
are the first to introduce reachability for improving data col-
lection in offline RL, which is defined in a more efficient
way and can enable the agent to navigate curiosity-driven
learning coherently. 2) We point out a common drawback
of fixing the temporal distance in existing approaches, and
empirically show that adapting the temporal distance in the
reachability analysis can enhance feature representation by
expanding the feature space.3) With the enhanced representa-
tions, CUDC additionally incentivizes the agent to explore
diverse state-action space as well as the under-learned states
with high prediction errors through a mixed intrinsic reward
and regularization. 4) Under the ExORL benchmark setting
(Yarats et al. 2022), CUDC outperforms other unsupervised
methods when collecting the task-agnostic dataset that can be

used for offline learning in multiple downstream tasks from
the DeepMind control suite (Tassa et al. 2018).

Related Works
Reachability in RL Savinov et al. (2019) devised a reach-
ability network to estimate how many environment steps to
take for reaching a particular state. It intrinsically rewards
the agent to explore the state that is unreachable from other
states in memory. However, this approach only considers the
binary case of reachability, potentially being inefficient when
comparing with stored states. In goal exploration tasks, Péré
et al. (2018) defined the reachability of a goal with an esti-
mated density and proposed to sample increasingly difficult
goals to reach during exploration. While this approach can
learn the goal space in an unsupervised manner, its sampling
process requires a kernel density estimator, which can sub-
stantially increase computational cost. Following the similar
idea, BARC (Ivanovic et al. 2019) adapts the initial state
distribution gradually from easy-to-reach to challenging-to-
reach goals with physical priors in hard robotic control tasks.
Recently, RCRL (Yu et al. 2022) shows that leveraging reach-
ability analysis can help learn an optimal safe policy by
expanding the limited conservative feasible set to the largest
feasible set of the state space. Different from these works,
CUDC is efficient and easy to implement, as it directly adapts
the temporal distance to perform increasingly challenging
reachability analysis without extensive comparisons, kernel
density estimation or physical priors.

Curiosity-Driven RL Curiosity-driven RL is essential for
encouraging agents to explore tasks in a human-like man-
ner, especially when task-specific rewards are sparse or ab-
sent (Sun, Qian, and Miao 2022b). The main approach to
curiosity-driven RL involves incorporating intrinsic rewards
that motivate agents to explore based on different aspects of
the state, including novelty, entropy (Seo et al. 2021; Liu and
Abbeel 2021b), reachability (Savinov et al. 2019), prediction
errors (Pathak et al. 2017), complexity (Campero et al. 2020),
and uncertainty (Pathak, Gandhi, and Gupta 2019). Another
approach is to prioritize experience replay towards under-
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explored states (Jiang, Grefenstette, and Rocktäschel 2021).
Curiosity can also be used to explore other components of
RL, as seen in CCLF (Sun, Qian, and Miao 2022a). CUDC
is the first method to curiously adapt the temporal distance
to explore more distant future states in offline RL, which
enhances the learned representation space with increasingly
challenging prediction. In addition, CUDC also regularizes
Q-learning with a curiosity weight as the sample importance
to focus more on under-learned tuples.

Unsupervised Data Collection The ExORL benchmark
(Yarats et al. 2022) evaluates 9 unsupervised data collec-
tion algorithms, demonstrating superiority over supervised
methods for multi-task offline learning. These methods in-
clude knowledge-driven models like ICM (Pathak et al. 2017),
Disagreement (Pathak, Gandhi, and Gupta 2019), and RND
(Burda et al. 2019), which encourage exploration by maxi-
mizing prediction errors. Data-driven models like APT (Liu
and Abbeel 2021b) and ProtoRL (Yarats et al. 2021) in-
centivize agents to uniformly explore the entire state space.
Competence-based models like DIAYN (Eysenbach et al.
2019), SMM (Lee et al. 2019), and APS (Liu and Abbeel
2021a) encourage agents to learn diverse skills by leverag-
ing prior information. However, all of these methods were
originally designed for online pretraining and fine-tuning
(Laskin et al. 2021), not tailored for data collection. In con-
trast, CUDC is a novel method that gradually expands the
feature space by exploiting reachability into more distant fu-
ture states, rather than a fixed temporal distance. Additionally,
CUDC exploits importance weights to focus more on under-
learned tuples, which is not considered in Explore2Offline
(Lambert et al. 2022), another recent method that leverages
intrinsic model predictive control for simulating trajectories.

Curiosity-Driven Unsupervised Data Collection
(CUDC)

Problem Setting
We consider the problem of multi-task offline learning, which
consists of three main steps: data collection, reward relabel-
ing, and downstream offline learning, as described in both
ExORL (Yarats et al. 2022) and Explore2Offline (Lambert
et al. 2022). In the data collection phase, the exploratory
agent (data collector) has access to a Markov Decision Pro-
cess (MDP) environment with a state s ∈ S , an action a ∈ A
based on a policy π(s), a transition probability p(s′|s, a)
mapping from the current state s and action a to the next
state s′, a reward r, and a discount factor γ ∈ [0, 1) weight-
ing future rewards. The exploratory agent collects a dataset
D of unlabeled tuples (s, a, s′) by interacting with the envi-
ronment. The second phase is to relabel the collected dataset
D using the given reward function rτ (s, a) about the down-
stream task τ for each tuple. It transfers information from
task-agnostic exploration to downstream tasks. The last step
is to perform multiple downstream tasks with an offline RL
agent on the labeled dataset, without interacting with the en-
vironment to collect additional experiences. In this paper, we
focus on the most challenging part of this problem, which is
the task-agnostic data collection and we evaluate the quality
of the collected dataset D in multiple downstream tasks.

Framework Overview
In Figure 1 (mid), we present our Curiosity-driven
Unsupervised Data Collection (CUDC) method, employing
DDPG (Lillicrap et al. 2015) as the base RL algorithm for the
exploratory agent. To foster diverse exploration, our novel
reachability module (Figure 1 right) calculates the likelihood
of reaching a future state k steps ahead. The exploratory agent
is incentivized to curiously explore through a mixed intrinsic
reward, simultaneously regularizing the critic-actor update
to prioritize under-learned tuples. Most importantly, the tem-
poral distance of k-step between current and future states is
adaptively increased to incorporate the dynamics information
in the learned feature representation. This adaptation leads
to a more diverse exploration and improved data collection
quality. Further details are outlined in Algorithm 1.

The Reachability Module
In ExORL (Yarats et al. 2022), existing unsupervised meth-
ods are limited by fixing the temporal distance k = 3 between
current and future states, as illustrated in Figure 1 (left). To
overcome this limitation and expand the feature space for
improved representation learning, an intuitive approach is
to employ reachability analysis for adaptive adjustment of
k. However, existing reachability implementations are not
desired due to limited binary classification of reachable states
(Savinov et al. 2019) or their reliance on costly density es-
timation of goal space (Péré et al. 2018). To address these
issues, we propose a self-supervised reachability estimation
method in CUDC, which estimates the probability of a k-step
future state sti+k being reachable from the current state sti
without requiring expensive density estimation or manual
labeling. Consequently, our method can effectively enhance
feature representation by expanding the feature space through
an adaptive k-step. This approach has also been demonstrated
to be effective in other works on reachability, such as con-
strained RL (Yu et al. 2022) and robotics (Ivanovic et al.
2019).

Given a batch of unlabeled tuples (sti , ati , sti+k, k)
n
i=1,

existing methods in ExORL benchmark (Yarats et al. 2022)
simply fix the temporal distance k = 3 throughout the data
collection. In contrast, CUDC considers k as a parameter and
incorporates it explicitly into the tuples. We start by encod-
ing the state features zsti = ϕs(sti), zsti+k

= ϕs(sti+k),
and the action feature zati

= ϕa(ati) using a state encoder
ϕs(·) and an action encoder ϕa(·). We then perform one-
hot encoding for the temporal distance k. To enable reach-
ability analysis, we construct a forward dynamic network
ẑsti+k

= fs(zsti , zati
, k; θs) that takes as input zsti , zati

,
and the encoded k to predict the future state feature ẑsti+k,
fully utilizing dynamics information. The network can be
trained by minimizing the l2 norm loss ||zsti+k

− ẑsti+k
||2.

To quantify the reachability, CUDC enforces ẑsti+k
to

match with its own zsti+k
as much as possible, while keeping

apart from the other future states within the same batch. This
contrastive intuition is that each future state should be most
reachable from its own current state, and it can quantify the
reachability in a simple and efficient way. Self-supervised
contrastive learning has been shown to be capable of learning
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rich representations with more semantic latents in RL (Srini-
vas, Laskin, and Abbeel 2020; Liu and Abbeel 2021b), and
CUDC follows this intuition to estimate the probability li of
sti+k being reachable from sti by:

li =
sim(ẑsti+k

,msti+k
)

sim(ẑsti+k
,msti+k

)+
∑n

j=1,j ̸=i sim(ẑsti+k
,mstj+k

) , (1)

where sim(a, b) = exp(h(a)TWh̄(b)), n is the batch size,
h(·) is a deterministic projection function, W is a hidden
weight to compute the similarity between the two projections,
and h̄(·) as well as m(·) are respectively the momentum-
based moving average of the projection and state feature
to ensure consistency and stability (He et al. 2020). The
reachability network is updated by minimizing the contrastive
loss function Lreach = −

∑n
i=1 log li in a self-supervised

manner, without manual labeling.
To further improve representation learning, the reachabil-

ity module includes two inverse models for predicting action
feature ẑati

and temporal distance k̂. Similar to ICM (Pathak
et al. 2017) and Disagreement (Pathak, Gandhi, and Gupta
2019), we define ẑati

= fa(zsti , zsti+k
, k; θa) with a back-

ward loss of ||zati
−ẑati

||2. This loss ensures that the encoded
features are robust to environment variations that are uncon-
trollable by the agent. For the inverse model of the k-step,
k̂ = fk(zsti , zsti+k

; θk) characterizes the prediction with a
distribution P(k). The inverse model is updated through a
cross-entropy loss, which enables the encoders to capture the
dynamics information in the encoded features.

By updating its internal belief in a self-supervised way, the
agent can learn without the expensive labeling required in
supervised learning. Additionally, the proposed reachability
module allows the k-step temporal distance to adapt during
learning, rather than relying on a fixed value in many existing
unsupervised methods. This adaptability is important, as the
feature representations of both states and actions become
more informative and robust when adjusting the temporal
distance of k-step.

The reachability module also computes a curiosity weight
wi for each tuple i as wi = 1 − li ∈ [0, 1], where li is the
contrastive loss defined in Equation 1. Intuitively, a large
value of wi means that the agent does not believe the true
future state is reachable from the current state, which induces
high curiosity due to the conflict with current internal belief.
It further indicates that this under-learned transition tuple
contains novel information, and the encoders are not capable
of extracting meaningful features yet. With this reachability
module in place, we can seamlessly enable the agent to per-
form the task-agnostic dataset collection in a curious manner,
which shall be illustrated in the next subsection.

Curiosity-Driven Learning
To clarify, prior works on reachability such as (Savinov et al.
2019) only incorporate reachability as an intrinsic reward
to encourage diverse exploration. In contrast, our proposed
CUDC leverages reachability in multiple stages of learn-
ing to promote curiosity-driven learning coherently. Firstly,
it adapts the temporal distance, i.e. k-step, to expand the
feature space and enhance feature representation with the

prediction of future states. Secondly, it incorporates a mixed
intrinsic reward to encourage effective exploration in under-
learned state-action space with the enhanced representation.
Lastly, it regularizes the critic-actor update for the backbone
DDPG algorithm by utilizing the curiosity weights to focus
more on under-learned tuples. Unlike the eight existing meth-
ods evaluated in ExORL that only utilize intrinsic rewards
as curiosity, our CUDC extends curiosity-driven learning
to different RL components, improving task-agnostic data
collection coherently.

Enhance Feature Representation with Adaptive Temporal
Distances It is worth noting that the eight methods evalu-
ated in ExORL limit the autonomy of the feature space by
requiring the agent to reach future states exactly three steps
away, i.e., (sti , ati , sti+3)

n
i=1. Recent online pre-training RL

methods, such as SPR (Schwarzer et al. 2020) and SGI
(Schwarzer et al. 2021), predict the agent’s own latent state
representations multiple steps into the future, improving sam-
ple efficiency. However, these methods require iterative pre-
dictions by calling the forward dynamic network k times. In
contrast, our proposed CUDC enables automatic adjustment
of the temporal distance k and performs k-step future state
estimation directly, without substantially increasing compu-
tational complexity. The key idea is to keep the reachability
estimation increasingly challenging with an adaptive k-step,
thereby expanding the feature space to learn more meaningful
reachability information.

In our approach, we dynamically adjust k to impose
more challenging reachability predictions, by leveraging the
agent’s level of curiosity. Specifically, we increase k by 1 if
the agent’s curiosity level is low in the current reachability
analysis, and we define a threshold Cw for low curiosity and
a threshold Ck for the proportion of tuples with low curiosity.
Thus, the agent adapts k when the average value of wi is
below Cw for more than Ck of the tuples in the batch, as
represented by:

1
n

∑n
i 1wi<Cw > Ck. (2)

The rationale behind this approach is that when the agent can
estimate the current k-step reachability well for the majority
of tuples in the batch, it should be encouraged to explore
further. By expanding the feature space to learn the dynamics
of more distant future states, the feature representation can
be enhanced, leading to more informative and diverse task-
agnostic data collection. It is worth noting that there are
other possible ways to vary the k-step, such as by sampling
from a probabilistic distribution. To validate the effectiveness
of our proposed curiosity-driven method compared to other
sampling-based methods, we conduct an ablation study in
Figure 4.

Incorporate a Mixed Intrinsic Reward CUDC utilizes a
mixed intrinsic reward that combines state-action entropy and
prediction error of future states. While previous methods like
APT (Liu and Abbeel 2021b) and RE3 (Seo et al. 2021) have
demonstrated that particle-based k-nearest neighbors state
entropy can encourage agents to explore the state space more
uniformly, we believe that exploration should not be limited
to the state space alone, but should also extend to the action
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space. To achieve this, CUDC expands state embedding to
state-action embedding and shows that entropy maximization
can be applied to the k-nearest neighbor entropy estimation
in the state-action representation space in Lemma 0.1. This
approach encourages the agent to explore both the state and
action spaces more diversely, leading to more effective and
informative data collection.
Lemma 0.1. Let u = (zs, za) represent the state-action rep-
resentation. The particle-based entropy H(u) is proportional
to a K-nearest neighbor (K-NN) distance,

H(u) ∝
n∑

i=1

log ||ui − uK-NN
i ||2.

Proof. A proof is provided in Appendix1 B.

We build on the idea of treating each tuple as a particle
(Liu and Abbeel 2021b; Seo et al. 2021) and propose an
intrinsic reward to estimate particle-based entropy, defined
as rH(sti , ati) = log( 1

NK

∑
||ui − uK-NN

i ||2 + 1), where
ui = (ϕs(sti), (ϕa(ati)), NK is the number of K-NN, and
ϕs and ϕa are state and action encoders respectively. Since
the encoded features are constantly updated to capture the
dynamics of more distant future states in the reachability
module, the proposed rH promotes diverse state-action space
exploration. This is consistent with the entropy maximization
principle (Singh et al. 2003) and has been shown to be effec-
tive in the state space using the state-of-the-art off-policy RL
algorithm SAC (Haarnoja et al. 2018).

Additionally, we integrate prediction error of future states
as another component of the intrinsic reward to incentivize
the agent to explore surprising states beyond its expectations
(Pathak et al. 2017; Burda et al. 2018). Specifically, we use
rE(sti , ati) = ||zsti+k

− ẑsti+k
||2, where the reachability

module is conveniently re-used without additional networks.
Finally, the mixed intrinsic reward in CUDC is given by

ri(sti , ati) = rH(sti , ati) + αrE(sti , ati) + β, (3)

where α prioritizes under-learned state exploration and β is a
constant for numerical stability.

Regularize the critic-actor update Furthermore, CUDC
utilizes the curiosity weight wi to adaptively regularize the
backbone DDPG algorithm, allowing it to focus more on
under-learned tuples. The weight w = (w1, w2, · · · , wn)
quantitatively characterizes the curiosity weight of each tran-
sition tuple, which can be used to determine sample impor-
tance and regularize both critic and actor updates. Therefore,
the Q-learning in DDPG can be performed by minimizing
the following objective,

E·∼D

[
w (Q(st, at)− (ri(st, at) + γQtarget(st+k, π(st+k))))

2
]
.

(4)
Meanwhile, the policy can be updated by maximizing
E·∼D [wQ(st, π(st))]. In this way, CUDC enables the agent
to adapt its learning process in a self-supervised manner by
using the conceptualized curiosity to exploit sample impor-
tance.

1Full appendix is available at https://arxiv.org/abs/2312.12191.

Algorithm 1: Implementation of the proposed CUDC
Initialize parameters of encoders ϕs and ϕa, forward dynamic
fs, inverse models fa and fk, projection h, critic Q, policy π,
hidden weight W , temporal distance k, batch size n, and an empty
dataset D = ∅

for each time step t do
// COLLECT TRANSITIONS
Interact with the environment using the policy at ∼ π(st) and
observe st+1

D ∪ (st, at, st+1) → D
// UPDATE INTERNAL BELIEF
Sample a minibatch {(sti , ati , sti+k, k)}ni=1 ∼ D
for each tuple i in the minibatch do

Encode the state and action, and predict the ti + k’s future
state feature ẑsti+k

Evaluate the curiosity weight wi = 1− li by Eq. (1)
Compute the intrinsic reward ri using Eq. (3)

end for
Update the internal belief of the reachability module
//ADAPT THE K-STEP TO PREDICT
if 1

n

∑n
i 1wi<Cw > Ck then

Increase the temporal distance by k = k + 1
end if
//REGULARIZE CRITIC-ACTOR UPDATE
Update the critic Q with regularization by Eq. (4)
Update the actor π with regularization
Perform the momentum update for h̄ and m

end for

Experiments
Environments We evaluated on a set of challenging con-
tinuous control tasks with state observations, drawn from
the DeepMind control suite (Tassa et al. 2018). The suite
contains 12 downstream tasks, organized into three main
domains: Walker, Quadruped, and Jaco Arm. Walker is a con-
trollable entity with locomotion-related balancing controls,
where it can learn to walk, run, flip, and stand. Quadruped
is a passively stable body in a more challenging 3D environ-
ment, which requires learning various locomotion skills such
as walking, running, standing, and jumping. Jaco Arm is a
six-degree-of-freedom robotic arm with a three-finger gripper
for object manipulation, where the downstream tasks require
it to reach different positions. Note that the PointMass Maze
task is not included, as most baseline methods in ExORL
have already demonstrated excellent performances on it.

Baseline Models We compare CUDC against state-of-the-
art unsupervised methods across all three categories as bench-
marked in ExORL, i.e., a knowledge-driven baseline of ICM
(Pathak et al. 2017), data-driven baselines of APT (Liu and
Abbeel 2021b) and ProtoRL (Yarats et al. 2021), and a
competence-driven baseline of APS (Liu and Abbeel 2021a).
Meanwhile, a random data collector is also included, which
collects the data by performing randomly sampled actions.
The other four methods discussed in ExORL are excluded
since their performance are less competitive. We use the
same hyperparameters and model architecture as reported
in ExORL to ensure a fair comparison. To demonstrate that
all proposed components play important roles in the perfor-
mance, we also compare four versions of CUDC. CUDCICM

vary
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Figure 2: Learning curves of the offline RL agent on the task-agnostic dataset collected by different methods. CUDC demonstrates
the superior capability of improving the computational efficiency and learning performances of the offline RL agent.

and CUDCAPT
vary : adapting the temporal distance of k-step by

the intrinsic rewards based on the original ICM and APT
methods. CUDCreward: extending to state-action entropy with
a mixed intrinsic reward based on CUDCAPT

vary . CUDCreach:
adding the full reachability module without regularization
based on CUDCreward. The detailed implementation and dif-
ferences from the full model are summarized in Appendix A.

Model Training and Evaluation To ensure model stability
during learning, we have restricted the temporal distance k
to be increased from 3 to 6 and have set upper and lower
bounds for the regularization weights to guarantee stability.
For further details regarding the network implementation and
hyperparameter setting of the proposed CUDC, readers can
refer to Appendix A. During data collection, all methods have
been trained using a DDPG (Lillicrap et al. 2015) agent as
the backbone to ensure fairness. They have interacted with
3 domain environments in the absence of extrinsic rewards
for 1M steps. For the main results, a total of 90 datasets (6
algorithms × 3 main tasks × 5 seeds) have been collected.
Afterwards, relabeling has been performed for each down-
stream task. During the evaluation, a TD3 (Fujimoto, Hoof,
and Meger 2018) agent learns offline from each relabeled
dataset for 500K steps. We report the performance score at
100K steps for computational efficiency and at 500K steps
for learning performance.

Main Results on 12 Downstream Tasks Figure 2 indicates
that ProtoRL performs well in the Walker domain but fails
in the Quadruped domain. Similarly, all the other baseline
methods cannot collect consistent high-quality datasets for all
domains. In contrast, the dataset collected by CUDC demon-
strates a higher quality with an expanded feature space, as
the offline agent’s learning performances at 500K steps are
enhanced in all 12 downstream tasks across the 3 challenging
domains, as highlighted in Table 3 of Appendix C. Specif-
ically, CUDC outperforms the competence-based method
(APS) in the Walker domain by 6%, outperforms the data-
based method (APT) in the Quadruped domain by 51%, and

outperforms the knowledge-based method (ICM) in the Jaco
Arm domain by 10%. In terms of efficiency, Figure 2 shows
significant improvements of CUDC on 3 downstream tasks of
the Quadruped domain, indicating improved computational
efficiency. In the easiest domain of Walker, CUDC helps the
offline agent to converge faster in 3 downstream tasks. How-
ever, the computational efficiency in the Jaco Arm domain is
unsatisfactory. This could be due to too much complexity in
this most challenging environment, increasing the difficulty
of reachability analysis. A visualization of the quality for the
collected datasets is provided in Appendix C.1, where our
proposed method has collected higher-quality dataset with
increasingly more rewarding states being visited. For the sam-
ple efficiency, the offline RL agent can perform well with
significantly less data collected by the proposed CUDC as
discussed in Appendix C.2. Additional results are presented
in Appendix C.1 and consistent results are obtained by evalu-
ating with another offline RL algorithm of CQL (Kumar et al.
2020) in Appendix C.3.

Effects of Adapting the k-Step We empirically show that
adapting the temporal distance to explore more distant future
states can enhance the feature representation, and thereby
improve the data collection process. By comparing the re-
sults in Figure 3, CUDCICM

vary has outperformed ICM signifi-
cantly, with on average 1.25 × computational efficiency at
100K step and 1.16 × offline learning performance at 500K
step. Similarly, CUDCAPT

vary obtains respectively 1.12 × and
1.04 × scores at 100K and 500K steps across 4 downstream
tasks, compared with APT. Note that the standard deviation
increases slightly, which may be due to the introduced com-
plexity of considering more distant future states in improving
the learned representation. Thus, it is important to find an
adaptive way to smooth this process, such as by incorporating
the other proposed components coherently.

Effectiveness of the Other Proposed Components We
additionally integrated mixed intrinsic reward into CUDCAPT

vary
as CUDCreward, resulting in further improvements in learn-
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Figure 3: The performance score evaluated at 100K and 500K steps in 4 downstream tasks of Walker. All four versions of CUDC
perform better than ICM and APT.
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Figure 4: Learning curves of the offline RL agent on 4 downstream tasks of Walker. The k-step adaptation proposed in CUDC
outperforms the other two sampling methods in 3 out of 4 downstream tasks.

ing efficiency at 100K steps by 3.3% and capability at 500K
steps by 3.0% for the offline RL agent, as presented in Fig-
ure 3. However, due to the mixed intrinsic reward’s nature of
promoting uniform exploration in the state-action space and
focusing on under-learned states, the performance at 100K
steps became unstable with a 67% increase in standard devia-
tion. Thus, we leveraged the proposed reachability module to
function as the agent’s internal belief and facilitate the data
collection process. Comparing CUDCreach and CUDCreward,
the dataset collected by CUDCreach reduced standard devia-
tion by 48% and 25% at 100K and 500K steps, respectively,
stabilizing offline learning. However, its performance scores
decreased slightly in two tasks. The full model, compared to
CUDCreach, further regularizes the critic-actor update with the
curiosity weight to focus more on under-learned tuples, result-
ing in a 3.2% and 4.0% improvement in learning efficiency
and capability, respectively, with the minimum standard devi-
ation at 500K steps. To further investigate the effectiveness,
we carry out more experiments by respectively removing each
proposed component from the full model in Appendix C.5.
It can be concluded that varying the temporal distance is
the most crucial factor in collecting a useful dataset with an
expanded feature space, while the other components work
coherently to yield further improvement.

Adjusting the k-Step in Different Ways One may be cu-
rious about how adjusting the temporal distance k in the
reachability module affects the feature representation. To in-
vestigate this, we conducted an ablation study in the Walker
domain by sampling k uniformly (Uniform) from 3 to 6
and normally (Normal) with an increasing mean. The re-
sults in Figure 4 show that Uniform performs the worst in
all 4 tasks as it cannot adapt the temporal distance in a way
that enhances representation learning. At 500K steps, it only

achieves 85% overall learning capability with a 300% in-
crease in standard deviation, compared to CUDC. Normal to
some extent adapts k through an increasing mean, and it even
outperforms CUDC in the Flip task. However, its overall per-
formance is still 4.5% weaker than CUDC, and its standard
deviation is 128% higher than CUDC, indicating an instabil-
ity issue. Overall, the curious adaptation method proposed in
CUDC is the best, and there is potential to investigate more
adaptive ways in the future.

Limitations and Broader Impacts Despite demonstrating
strong empirical performance, CUDC is not without its lim-
itations. Like other unsupervised methods, its scalability to
complex environments may be limited, and in safety-critical
applications where expert data is crucial, relying solely on
unsupervised approaches can pose risks. From an ethical
standpoint, the application of CUDC in real-world scenarios,
such as robotics, AI video games, or social media platforms,
raises concerns. The process of diverse data collection with-
out proper supervision or restrictions can give rise to poten-
tial safety and privacy issues. It is important to address these
ethical considerations to ensure the responsible and safe im-
plementation of the CUDC method in practical applications.

Conclusion
We propose CUDC, a curiosity-driven unsupervised data col-
lection method for multi-task offline RL. It enhances dataset
quality by dynamically expanding the feature space. CUDC’s
reachability module estimates the probability of reaching a
k-step future state from the current state, allowing adaptive
exploration of distant future states. This improves feature
representation, outperforming existing benchmarks in com-
putational and sample efficiency. Our work offers valuable
insights for future research in effective data collection.
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